## PERFECT DIFFERENCE SETS

## by H. HALBERSTAM and R. R. LAXTON

(Received 12 August, 1963)

1. Introduction. If the set K of r+1 distinct integers  $k_0, k_1, ..., k_r$  has the property that the (r+1)r differences  $k_i-k_j$  ( $0 \le i, j \le r, i+j$ ) are distinct modulo  $r^2+r+1$ , K is called a perfect difference set mod  $r^2+r+1$ . The existence of perfect difference sets seems intuitively improbable, at any rate for large r, but in 1938 J. Singer [1] proved that, whenever r is a prime power, say  $r=p^n$ , a perfect difference set mod  $p^{2n}+p^n+1$  exists. Since the appearance of Singer's paper several authors have succeeded in showing that for many kinds of number r perfect difference sets mod  $r^2+r+1$  do not exist; but it remains an open question whether perfect difference sets exist only when r is a prime power (for a comprehensive survey see [2]).

In this note we shall be concerned solely with perfect difference (p.d.) sets mod  $p^{2n} + p^n + 1$ , where p is prime. From now on (except in §2), let r denote  $p^n$  and write

$$q = r^2 + r + 1 = p^{2n} + p^n + 1. (1.1)$$

We shall lose no generality by assuming that r > 7.

If K is a p.d. set mod q and K+s denotes the set  $k_0+s$ ,  $k_1+s$ , ...  $k_r+s$  then clearly K+s is also a p.d. set mod q; since K contains two elements whose difference is congruent to  $1 \pmod{q}$ , there exists a translation K+s which takes these two elements into 0 and 1. A p.d. set containing 0 and 1 is said to be *reduced*, and two p.d. sets mod q which can be translated to the same reduced set are said to be *equivalent*.

Singer arrived at his p.d. sets in the following way. Let  $G_3$  and  $G_1$  denote respectively the Galois fields  $GF(p^{3n})$  and  $GF(p^n)$ , so that  $G_3$  is a cubic extension of  $G_1$ . If  $\zeta$  is a generator of  $G_3^*$ , the multiplicative cyclic group associated with  $G_3$ ,  $\zeta$  satisfies a monic cubic equation over  $G_1$  irreducible in  $G_1$ , and every element of  $G_3$  can be written in the form

$$a+b\zeta+c\zeta^2$$
,  $a, b, c \in G_1$ ;

moreover, every element of  $G_3$  other than 0 can also be expressed as a power of  $\zeta$ . Consider then all the elements of  $G_3$  of the form

$$a + b\zeta = \zeta^k \tag{1.2}$$

as a, b run independently through  $G_1$  but are not both 0. We say that two such numbers are equivalent if there exists a number  $c \neq 0$  in  $G_1$  such that one is c times the other. The equivalence relation induces a partition of all numbers of the form (1.2) into r+1 equivalence classes; for there are, in all,  $p^{2n}-1$  numbers of form (1.2) corresponding to the  $p^{2n}-1$  choices for the pair a, b, and on the other hand there are r-1 choices for c. Let

$$a_i + b_i \zeta = \zeta^{k_i}$$
  $(i = 0, 1, ..., r)$ 

be a representative set chosen from these equivalence classes. Then the system K of exponents is a p.d. set mod q (a simple proof is given in [3]; see also [4]). A p.d. set constructed in this way will be called a Singer p.d. set, or a p.d. set of Singer type.

N

Singer proposed the following two conjectures:

- I. All p.d. sets mod  $p^{2n} + p^n + 1$  are of Singer type.
- II. There exist exactly  $\phi(q)/(3n)$  reduced Singer p.d. sets.

The chief aim of the present paper is to prove II (see Theorem 2 below). It may be that the method evolved below will be of help in a successful attack on the much more difficult conjecture I.

The main step in the proof of II is Theorem 1 (see §3), and two proofs of this theorem have appeared recently. One proof is implicit in the results of Bruck [5] and Higman and McLaughlin [6]; the other is Theorem 5 of Gordon, Mills and Welch [7]. The proof given below is different from either of these, and appears to us more elementary in conception.

We are indebted to Dr M. C. R. Butler for a valuable suggestion.

2. The reduction lemma. We begin with a completely elementary result which will provide an essential step in the main argument below (see §3).

For the purpose of this section we may drop the restriction that r is a prime power.

We say that an integer is written in standard form  $mod r^2 + r + 1$  when it is expressed modulo  $r^2 + r + 1$  as

$$u+vr$$
 or  $u+r^2$  or  $r+r^2$  (2.1)

with integers u, v satisfying

$$0 \le u < r, \quad 0 \le v < r. \tag{2.2}$$

We say that an integer t is of reduced type mod  $r^2+r+1$  if

$$t \equiv u + vr \pmod{r^2 + r + 1},$$

where u, v satisfy (2.2) and also

$$0 < u + v \le r. \tag{2.3}$$

Then

LEMMA 1. Let r be a fixed integer greater than 1. Then every integer t greater than 1 and coprime to  $r^2+r+1$  has the property that t, tr or  $tr^2$  is of reduced type mod  $r^2+r+1$ .

*Proof.* If  $t \equiv u + r^2 \pmod{q}$ ,  $0 \le u < r$ , then  $tr \equiv ur + 1 \pmod{q}$  and  $0 < u + 1 \le r$ . If  $t \equiv r + r^2$ , then  $tr^2 \equiv 1 + r$  and  $0 < 2 \le r$ . Thus in the first case tr, and in the second  $tr^2$ , are of reduced type mod q.

It remains to consider the case  $t \equiv u + vr \pmod{q}$ ,  $0 \le u$ , v < r and

$$u+v>r. (2.4)$$

From (2.4)  $u+v \ge r+1$ , whence u=0,1 is impossible; hence  $u \ge 2$  and similarly  $v \ge 2$ .

- (i) Suppose that u = v. Then  $t \equiv u(1+r) \equiv -ur^2$ ; therefore  $tr \equiv -u \equiv (r-u)-r$  and  $tr^2 \equiv (r-u)r-r^2 \equiv (r-u)r+1+r \equiv (r-u+1)r+1$ . Hence  $tr^2 \equiv u'+v'r \pmod{q}$ , with u'=1, v'=r-u+1,  $0 \le u'$ , v' < r and  $u'+v'=r-u+2 \le r$ , since  $u \ge 2$ . Therefore  $tr^2$  is of reduced type.
  - (ii) Suppose that u > v. Then  $u \ge v+1$  and

$$tr \equiv ur + vr^2 \equiv (u - v)r - v = (u - v - 1)r + (r - v) \equiv u' + v'r \pmod{q}$$

with u' = r - v, v' = u - v - 1 and  $0 \le u'$ , v' < r.

If  $u'+v' \le r$ , then tr is of reduced type. If u'+v' > r, then r+u-2v-1 > r, that is, u > 2v+1. In this case

$$tr^2 \equiv ur^2 + v \equiv (v - u) - ur \equiv (v - u) - ur + r^2 + r + 1 \equiv (r + v + 1 - u) + (r - u)r \equiv u'' + v''r$$
 (mod q),

with u'' = r + v + 1 - u and v'' = r - u. Since u > 2v + 1, we have 0 < u'', v'' < r. Now u'' + v'' = 2r + v + 1 - 2u > r if and only if r + 1 + v > 2u. However, if u > 2v + 1, then

$$2u > 2v + u + 1 = (v + 1) + (v + u) > v + 1 + r.$$

It follows that  $u'' + v'' \le r$  and hence  $tr^2$  is of reduced type.

(iii) Suppose that v > u. Then  $v \ge u+1$  and

$$tr \equiv ur + vr^2 \equiv (u - v)r - v \equiv (u - v)r - v + r^2 + r + 1 \equiv (r - v + u)r + (r - v + 1) \equiv u' + v'r \pmod{q},$$
  
with  $u' = r - v + 1$ ,  $v' = r - v + u$ ,  $0 \le u'$ ,  $v' < r$  and  $u' + v' = 2r - 2v + u + 1$ .

If  $u' + v' \le r$ , then tr is of reduced type. If u' + v' > r, then r + u + 1 > 2v. In this case,

$$tr^2 \equiv ur^2 + v \equiv (v - u) - ur \equiv (v - u) - ur + r^2 + r + 1 \equiv (r - u + 1)r + (v - u + 1) \equiv u'' + v''r$$
 (mod q),

with u'' = v - u + 1, v'' = r - u + 1,  $0 \le u''$ , v'' < r and u'' + v'' = r + v - 2u + 2.

If  $u'' + v'' \le r$ , then  $tr^2$  is of reduced type. There remains the case when both u' + v' > r and u'' + v'' > r, that is, when r + u + 1 > 2v and v + 2 > 2u. The first inequality implies that  $r + 2u + 1 \ge 2v + u + 1 = v + 1 + (v + u) > v + 1 + r$ , i.e.  $2u \ge v + 1$ . This, together with the second inequality, shows that 2u = v + 1 is the only possibility. Now if 2u = v + 1 and

$$r+u+1 > 2v = 4u-2$$
,

then r+3>3u. Also 3u=u+v+1>r+1 and so we are left with the one case 3u=r+2 to consider. But then 3v=6u-3=2r+4-3=2r+1 and therefore

$$3t \equiv 3u + 3vr \equiv (r+2) + (2r+1)r = 2(r^2 + r + 1) \equiv 0 \pmod{q}$$
;

whence (t, q) > 1.

3. Multipliers. We need to introduce the notion of a multiplier of a p.d. set (see [2]). Let tK denote the set of integers  $tk_0$ ,  $tk_1$ , ...,  $tk_r$ . If (t, q) = 1, it is evident that tK is also a p.d. set; we say that t is a multiplier of K if K and tK are equivalent. Clearly, if  $t_1$  and  $t_2$  are multipliers, then so is  $t_1t_2$ . Singer himself showed in [1] that if t is congruent mod q to a power of p, t is a multiplier of any p.d. set of Singer type. (This also follows at once from Lemma 3 in §4.) The object in this section is to prove the converse (see Theorem 1 below).

We observe that t is a multiplier of K if and only if there exists an integer s such that tK and K+s are identical modulo q, i.e. such that for every element  $k_i$  of K there exists an element  $k_i$  of K such that

$$tk_i \equiv k_i + s \pmod{q}$$
.

Bearing in mind the construction of Singer p.d. sets described in  $\S1$ , an equivalent necessary and sufficient condition for t to be a multiplier of the p.d. set of Singer type generated by  $\zeta$  is:

CONDITION C. There exists an integer s with the following two properties: for every  $a \in G_1$ , there exist elements b, c of  $G_1$  such that

$$(a+\zeta)^t = \zeta^s(b+c\zeta); \tag{3.1}$$

also, there exist elements  $b_1$ ,  $c_1$  of  $G_1$  such that  $\zeta^{-s} = b_1 + c_1 \zeta$ .

We prove

LEMMA 2. Let t > 1 be an integer of reduced type mod q. Then t does not satisfy condition C unless t is congruent mod q to a power of p. In particular, t does not satisfy C if  $t \equiv u + vr$  and u + v = r.

Proof. We may clearly suppose without loss of generality that

$$1 < t < q$$
.

Let†

$$F(x) = F(x, \zeta) = \prod_{a \in G_1} (x - \zeta - a) = x^r - x - (\zeta^r - \zeta).$$

Then we have, modulo F(x), that

$$x^r \equiv x + \zeta^r - \zeta$$
 and  $x^{r^2} \equiv x + \zeta^{r^2} - \zeta$ . (3.2)

Further, let

$$H(x) = H(x, \zeta) = \prod_{b, c \in G_1} (x - b\zeta^s - c\zeta^{s+1})$$
  
=  $x^{r^2} - x^r \zeta^{r(r-1)s} - (x^r - x\zeta^{(r-1)s})(\zeta^{r(s+1)} - \zeta^{rs+1})^{r-1},$ 

so that

$$H(x^{t}) = x^{r^{2}t} - x^{rt}\zeta^{r(r-1)s} - (x^{rt} - x^{t}\zeta^{(r-1)s})(\zeta^{r(s+1)} - \zeta^{rs+1})^{r-1}$$
(3.3)

is the polynomial having as its zeros the tth roots of all the linear forms  $\zeta^s b + \zeta^{s+1} c$ . Then, by (3.1), t can satisfy the condition C for some s only if

$$H(x^t) \equiv 0 \pmod{F(x)}$$
.

By (3.2) and (3.3) we have

$$H(x^t) \equiv (x + \zeta^{r^2} - \zeta)^t - A(x + \zeta^r - \zeta)^t + Bx^t \pmod{F(x)},\tag{3.4}$$

where

$$A = \zeta^{r(r-1)s} + (\zeta^{r(s+1)} - \zeta^{r(s+1)})^{r-1} = \zeta^{r(r-1)s} (1 + (\zeta^r - \zeta)^{r-1}), \tag{3.5}$$

so that  $A \neq 0$ , and

$$B = \zeta^{(r-1)s} (\zeta^{r(s+1)} - \zeta^{rs+1})^{r-1} = \zeta^{(r^2-1)s} (\zeta^r - \zeta)^{r-1}.$$
 (3.6)

† In the calculations below we make repeated use of the facts that  $(x+y)^p = x^p + y^p$  for  $x, y \in G_3$ , and that  $\prod_{a \in G_1} (y-a) = y^r - y$ .

Since t is of reduced type and t < q, we may substitute u+vr for t in (3.4) and obtain, after applying (3.2),

$$0 \equiv H(x^{t}) = H(x^{u+vr})$$

$$\equiv (x + \zeta^{r^{2}} - \zeta)^{u}x^{v} - A(x + \zeta^{r} - \zeta)^{u}(x + \zeta^{r^{2}} - \zeta)^{v} + Bx^{u}(x + \zeta^{r} - \zeta)^{v} \pmod{F(x)}.$$
(3.7)

The polynomial on the right has degree less than or equal to u+v and so less than or equal to r, and the degree of F is r. Accordingly, if u+v=r, this polynomial and F are essentially the same, and, if u+v< r, all the coefficients of the polynomial vanish. This is the situation which we now proceed to exploit. Since 1 < u+vr and  $u+v \le r$ , we have to consider the following three cases: (i) u=0 or v=0; (ii) u>0, v>0, u+v< r; (iii) u>0, v>0, u+v=r.

Case (i). The proof of the lemma in this case has been given in [3]. It can also be proved independently by the methods used below. To be precise, the main result of [3] is that if  $t \equiv u$ , 0 < u < r, then t cannot satisfy C unless it is congruent mod q to a power of p; and this result also settles the case  $t \equiv vr$ , 0 < v < r.

Case (ii). Since both u and v are positive and u+v < r, the constant term in the polynomial on the right of (3.7) must vanish, that is,  $A(\zeta^r - \zeta)^u(\zeta^{r^2} - \zeta)^v = 0$ . Since none of A,  $\zeta^r - \zeta$  and  $\zeta^{r^2} - \zeta$  is 0, this is impossible. Hence t cannot, in this case, satisfy condition C.

Case (iii). Here both u and v are positive and u+v=r. If the coefficient of  $x^{u+v}$  (=  $x^r$ ) is zero, we refer back to case (ii). If the coefficient of  $x^r$  is non-zero, the polynomial on the right of (3.7) must be a constant multiple of F, and the ratios of the pairs of corresponding coefficients are equal. Since r > 7 (by hypothesis—see §1) at least one of u, v exceeds 2; suppose first that both do. Equating the ratios of the coefficients of x and the constant term, we obtain

$$\frac{1}{a_1} = \frac{v}{a_2} + \frac{u}{a_1},$$

where  $a_1 = \zeta' - \zeta$  and  $a_2 = \zeta'^2 - \zeta$ . It follows that

$$a_1 = a_2'$$
 and  $va_2^{(r-1)} = (u-1)$ . (3.8)

Since  $a_2 \neq 0$ ,  $u \equiv 1 \pmod{p}$  if and only if  $v \equiv 0 \pmod{p}$ , and  $u + v \equiv 1 \pmod{p}$  contradicts u + v = r. Hence  $u \not\equiv 1 \pmod{p}$ ,  $v \not\equiv 0 \pmod{p}$  and  $p \not\equiv 2$ .

We consider the coefficient of  $x^2$  in (3.7). The coefficient is zero in F since r > 7; and since  $u \ge 3$ ,  $v \ge 3$ ,  $a_1 \ne 0$ ,  $a_2 \ne 0$ ,  $p \ne 2$ , we have

$$a_2^2u(u-1) + 2a_1a_2uv + a_1^2v(v-1) = 0.$$

Applying (3.8), we see that this reduces to  $a_2^{2(r-1)}v(v-1) = u(u-1)$ , and a second application of (3.8) gives (u-1)((u-1)(v-1)-uv) = 0. But  $u \neq 1 \pmod{p}$ ; hence

$$0 \equiv (v-1)(u-1) - uv = uv - u - v + 1 - uv = -(u+v-1) \pmod{p}.$$

Since  $u+v=r\equiv 0\ (\mathrm{mod}\ p)$ , we have arrived at a contradiction.

It remains to consider the special possibilities

$$u = 1, v = r-1; u = 2, v = r-2; u = r-1, v = 1$$
 and  $u = r-2, v = 2$ .

If u+vr is a multiplier, then so is r(u+vr). In the first case

$$r(u+vr) = r(1+(r-1)r) = r^3 - r^2 + r \equiv 2 + 2r \pmod{q},$$

and in the second

$$r(u+vr) = r(2+(r-2)r) = r^3 - 2r^2 + 2r \equiv 3+4r \pmod{q}.$$

But from case (ii) above, neither 2+2r nor 3+4r is a multiplier (we recall that r > 7) and so the same can be said of 1+(r-1)r and 2+(r-2)r. If u+vr is a multiplier, then so is  $r^2(u+vr)$ . In the third case

$$r^{2}(u+vr) = r^{2}((r-1)+r) = 2r^{3}-r^{2} \equiv 2-r^{2} \equiv 3+r \pmod{q}$$

and in the fourth case

$$r^2(u+vr) = r^2((r-2)+2r) = 3r^3-2r^2 \equiv 3-2r^2 \equiv 5+2r \pmod{a}$$

Again, by case (ii), neither 3+r nor 5+2r is a multiplier if r > 7 and so the same can be said of (r-1)+r and (r-2)+2r.

Hence t cannot, in case (iii), satisfy condition C. Thus, to sum up, t can satisfy C only in case (i), and then only when one of u, v is zero and the other is a power of p. The proof of the lemma is thus complete.

We are now in a position to prove

Theorem 1. The only multipliers of perfect difference sets mod q of Singer type are the powers of  $p \pmod{q}$ .

**Proof.** It suffices to prove that if t is a multiplier of a p.d. set of Singer type, then t is congruent mod q to a power of p. By Lemma 2 this is certainly true if t is of reduced type mod q. Moreover, if t is a multiplier, so is each of tr,  $tr^2$ ; and by Lemma 1, if t is not of reduced type, then at least one of these two must be. The theorem follows at once on appealing again to Lemma 2.

- **4. Proof of conjecture II.** It remains to prove our main result and, incidentally, to establish another conjecture given in [1], namely, that any two Singer p.d. sets (mod q) are connected, i.e. that if  $K_1$ ,  $K_2$  are two such sets, there exists an integer t such that  $K_1$  and  $tK_2$  are equivalent. We require
- LEMMA 3. Given a generator  $\zeta$  of  $G_3^*$ , then, for any integer t coprime with q, there exists an integer s such that, for every pair a,  $b \in G_1$ , there exists a pair c,  $d \in G_1$  such that

$$a + b\zeta^t = \zeta^s(c + d\zeta). \tag{4.1}$$

Proof. Let

$$\zeta^m = \alpha_m \zeta^2 + \beta_m \zeta + \gamma_m, \quad \alpha_m, \beta_m, \gamma_m \in G_1 \quad (m = 1, 2, ...),$$

and write  $\alpha$ ,  $\beta$ ,  $\gamma$  for  $\alpha_3$ ,  $\beta_3$ ,  $\gamma_3$  respectively, so that  $\zeta^3 - \alpha \zeta^2 - \beta \zeta - \gamma = 0$  is the irreducible cubic satisfied by  $\zeta$  (see introduction). The  $\alpha$ 's,  $\beta$ 's and  $\gamma$ 's satisfy the following recurrence relations

$$\alpha_{m+1} = \alpha \alpha_m + \beta_m, \quad \beta_{m+1} = \beta \alpha_m + \gamma_m, \quad \gamma_{m+1} = \gamma \alpha_m.$$

We write (4.1) in the form

$$a + b\left(\alpha_t \zeta^2 + \beta_t \zeta + \gamma_t\right) = c\left(\alpha_s \zeta^2 + \beta_s \zeta + \gamma_s\right) + d\left(\alpha_{s+1} \zeta^2 + \beta_{s+1} \zeta + \gamma_{s+1}\right),$$

and note that this relation is equivalent to the three simultaneous equations

$$b\alpha_{t} = c\alpha_{s} + d\alpha_{s+1},$$
  

$$b\beta_{t} = c\beta_{s} + d\beta_{s+1},$$
  

$$a + b\gamma_{t} = c\gamma_{s} + d\gamma_{s+1}.$$

For given a, b, these equations are soluble if and only if

$$\begin{vmatrix} \alpha_s & \alpha_{s+1} & b\alpha_t \\ \beta_s & \beta_{s+1} & b\beta_t \\ \gamma_s & \gamma_{s+1} & b\gamma_t + a \end{vmatrix} = 0,$$

and if a, b now vary over  $G_1$ , this is true only if

$$\begin{vmatrix} \alpha_s & \alpha_{s+1} & \alpha_t \\ \beta_s & \beta_{s+1} & \beta_t \\ \gamma_s & \gamma_{s+1} & \gamma_t \end{vmatrix} = 0 \text{ and } \alpha_s \beta_{s+1} - \alpha_{s+1} \beta_s = 0;$$

and it is easy to check that these two relations determine  $\zeta^s$  uniquely to within a factor from  $G_1$ .

Lemma 4.† If K is a Singer p.d. set mod q, and (t, q) = 1, then tK is also a Singer p.d. set mod q.

*Proof.* Suppose that K is generated by  $\xi$ , a generator of  $G_3^*$ , so that

$$a + b\xi = \xi^k \quad (k \in K), \tag{4.2}$$

for any pair  $a, b \in G_1((a, b) \neq (0, 0))$ . Now solve  $\zeta^t = \xi$  for  $\zeta$ , giving another generator of  $G_3^*$ . (There is no loss in generality in assuming that  $(t, r^3 - 1) = 1$ , for (t, q) = 1 and so (t + mq, r - 1) = 1 for some positive integer m (by Dirichlet's theorem on primes in an arithmetic progression), so that we use t + mq in place of t if (t, r - 1) > 1.) Then (4.2) now reads

$$a+b\zeta^t=\zeta^{tk}\quad (k\in K),$$

and by Lemma 3 it follows that there exists s such that, for given  $a, b \in G_1$ , there exist  $c, d \in G_1$  such that  $a + b\zeta^t = \zeta^s(c + d\zeta)$ , i.e. we have

$$\zeta^{tk} = \zeta^{s}(c + d\zeta).$$

But, on varying c, d over  $G_1$ , this means that tK-s is the p.d. set generated by  $\zeta$ , i.e. tK is a p.d. set of Singer type.

We mention in passing that Lemma 3 also implies the result to which we referred earlier, namely that every number congruent mod q to a power of p is a multiplier of Singer p.d. sets mod q. To see this we have only to note that if  $t \equiv p^m \pmod{q}$ , (3.1) of condition C reads

† This result is proved in [4] using the theory of projective planes.

$$a' + \zeta^t = \zeta^s(b + c\zeta),$$

the relation discussed in Lemma 3.

Let K denote a fixed Singer p.d. set mod q, and let t run through a reduced set of residues mod q, thereby giving rise to  $\phi(q)$  p.d. sets tK, each of Singer type by Lemma 4. By Theorem 1, these  $\phi(q)$  sets fall into  $\phi(q)/3n$  non-overlapping classes, with  $t_1K$ ,  $t_2K$  belonging to the same class if and only if  $t_1 \equiv p^m t_2 \pmod{q}$  for some m; two of these sets are equivalent or not according as they belong to the same or to different classes. Hence it follows that there exist at least  $\phi(q)/3n$  non-equivalent p.d. sets mod q of Singer type.

In the opposite direction, any Singer p.d. set mod q is generated by some generator  $\zeta$  of  $G_3^*$ , and there exist in all  $\phi(p^{3n}-1)$  distinct generators of  $G_3^*$  which can be written as  $\zeta^t$  with t running through a reduced set of residues mod  $(p^{3n}-1)$ . However, if  $\zeta^{t_1}$  and  $\zeta^{t_2}$  are generators of  $G_3^*$  with  $t_1 \equiv t_2 \pmod{q}$ ,  $\zeta^{t_1}$  and  $\zeta^{t_2}$  evidently give rise to the same p.d. set; hence we need concern ourselves only with  $\phi(q)$  generators  $\zeta^t$ , any two having exponents non-equivalent mod q. However, if  $\zeta^{t_1}$  and  $\zeta^{t_2}$  are two of these generators and  $t_1 \equiv t_2 p^m \pmod{q}$ , then  $\zeta^{t_1}$  and  $\zeta^{t_2}$  generate equivalent p.d. sets; for if  $a+b\zeta^{t_1}=\zeta^{t_1k}$ ,

$$\zeta^{t_1k} = a + b'\zeta^{t_2p^m} = (a'' + b''\zeta^{t_2})^{p^m} = (\zeta^{t_2l})^{p^m}$$

where *l* runs through the p.d. set generated by  $\zeta^{t_2}$ , and so  $\zeta^{t_1k} = \zeta^{t_1l+dq}$ —in other words,  $\{k\}$  and  $\{l\}$  are equivalent sets. Hence there exist at most  $\phi(q)/3n$  non-equivalent Singer p.d. sets mod q. It follows from the previous paragraph that there exist precisely  $\phi(q)/3n$  non-equivalent Singer p.d. sets mod q and that any two of these are connected. We have proved

THEOREM 2. There exist precisely  $\phi(q)/3n$  reduced Singer p.d. sets mod q, any two of which are connected. Two generators  $\zeta$  and  $\zeta^t$  of  $GF^*(p^{3n})$  give rise to equivalent p.d. sets if and only if t is congruent mod q to a power of p.

We remark in conclusion that the reduction lemma (Lemma 1) is relevant to the study of multipliers of p.d. sets mod  $r^2+r+1$  even when r is not a prime power; in testing whether or not a given t is a multiplier, we know that tr or  $tr^2$  possesses the same multiplier properties as t and one of t, tr,  $tr^2$  is of reduced type mod  $t^2+r+1$ .

## REFERENCES

- 1. J. Singer, A theorem of finite projective geometry and some applications to number theory, *Trans. Amer. Math. Soc.* 43 (1938), 377-385.
  - 2. M. Hall, Jr, A survey of difference sets, Proc. Amer. Math. Soc. 7 (1956), 975-986.
- 3. H. Halberstam and R. R. Laxton, On perfect difference sets, Quart. J. Oxford Ser. (2) 14 (1963), 86-90.
- 4. G. Berman, Finite projective plane geometries and difference sets, *Trans. Amer. Math. Soc.* 74 (1953), 492-499.
  - 5. R. H. Bruck, Difference sets in a finite group. Trans. Amer. Math. Soc. 78 (1955), 464-481.
- D. G. Higman and J. E. McLaughlin, Geometric ABA-groups, Illinois J. Math. 5 (1961), 382–397.
- 7. B. Gordon, W. H. Mills and L. R. Welch, Some new difference sets, Canad. J. Math. 14 (1962), 614-625.

TRINITY COLLEGE, DUBLIN
UNIVERSITY OF MICHIGAN and UNIVERSITY OF SUSSEX