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1. Introduction. In 1927 Schreier [8] proved the Nielsen-Schreier Theorem that a sub-
group H of a free group F'is a free group by selecting a left transversal for H in F possessing a
certain cancellation property. Hall and Rado [5] call a subset T of a free group F a Schreier
system in Fif it possesses this cancellation property, and consider the existence of a subgroup
H of F such that a given Schreier system T is a left transversal for H in F.

Now if G =] [*4; (jeJ) is the free product of groups 4;, the Kurosh Subgroup Theorem
enables one to determine the structure of a subgroup H of G. This theorem of Kurosh can be
proved (see for example Maclane [7], Kuhn [6], Weir [9]) by selecting for each jeJ a left
transversal S; for H in G, such that S = 191 S; possesses a certain generalized cancellation

property. We call such a subset S a uniform Schreier system in G and study questions analogous
to those of Hall and Rado. The questions are made explicit in § 2 and answered in § 3, 4, 5.
Necessary and sufficient conditions for the existence of a subgroup H of G associated with an
arbitrary uniform Schreier system S are given by Theorems 3.11 and 4.7.

In § 6 the structure of a subgroup H of G is discussed in the light of the methods evolved
here and a formula (6.11) for the number of subgroups of finite index in G is derived. This is a
generalization of that of Hall [3] for free groups. In § 7 the methods are used to give an alter-
native proof that the free product of two residually finite groups is residually finite (Gruenberg
[2]).

The contents of this paper formed part of a Ph.D. thesis and I would like to record my
thanks to my supervisors Dr Hanna Neumann and Dr J. Wiegold for their help and encourage-
ment during this period of study.

2. Uniform Schreier systems and admissible functions. Let G =][*4, (j€J) be the free
product of groups 4; for all jeJ, some well-ordered index set. The elements of G can be
uniquely represented as reduced words g € G, g = a,4; ... 4,, in the syllables a;€ 4, (a;€J,
i=12,...,1), where a;#0;,,. Thelength of g, 1(g), is to be the number of syllables occurring
in this reduced expression for g. Let I be some other well-ordered index set, and let S = {s;;,
foralliel, jeJ} be a subset of G; then we make the following definition.

(2.1) DerINITION. The set S = {s,;} is a uniform Schreier system in G if the following con-
ditions are satisfied.
(i) 51 = 1, the identity of G, for all je J.
(i) If sy =a,a, ... a,#1, i#]1, and o, = j, then there exists a p € I, p+#1i, such that

SPJ' = alaz e at_l = Sm‘_l .
(iii) If sy = a,a, ... a,#1 and a,#]j, then s;; =5y, .
(v) If 5 = s, then i = p.

E
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It is convenient to consider a uniform Schreier system § as a matrix, where s;; is the
element in the (i, j)th place. We can then speak of the rows and columns of S. We denote
the jth column of S by S, so that § = 'UJ S;. We shall also require the following sets S ;and

Jje

S}, where §; = SUS;4; and S7is the subset of those elements of S; whose last syllable does
not lie in A}, together with s, ;.

(2.2) We note the following easy consequence of the definition:
If 5;; € S, where S is a uniform Schreier system, and if s5;; = a,a, ... a,, then

aa;...a,€ S, NS,

r+1

forr=12,..,1t-1,
The following lemma ensures the existence of uniform Schreier systems.

(2.3) LemMma (Maclane). Let G =[[*4; (j€J) be the free product of arbitrary groups A i

and let H be any subgroup of G. Then, for each j e J, we can find a left transversal S; for H in
G, such that S = jUJ S; is a uniform Schreier system in G.
€

The proof can be found in Maclane [7]. This lemma not only shows generally that
uniform Schreier systems exist but also shows that with each subgroup H of G one can associate
at least one uniform Schreier system S. It is this association that is studied here.

Again, let H be a subgroup of G, the free product of groups 4; (jeJ); then,ifg,,g,€G
lie in the same left coset of G modulo H, we shall write g, ~g, and ~ is then an equivalence
relation on G. Now, from (2.3), if g € G, there is a uniform Schreier system S for Hin G such
that g~s;; € S, for all jeJ and some i € ] depending on g. This permits us to define coset
functions ¥; (e.g. Kuhn [6], Weir [9]) with arguments in G and values in S;.

(2.4) DerNITION.  If H is a subgroup of G and S is a uniform Schreier system for H in G,
then the coset functions \; for each j € J are defined as follows: ifge G,g~s;;€8;(iel, jel),
then Y (g) = s;;.

1t follows from the proof of Lemma (2.3) that the coset functions defined on G with values
in S as chosen there satisfy the condition

(2.5) Yi(ga)ey(9)A), forallae A, jel.
We therefore make the definition:

(2.6) DerINITION. If H is a subgroup of G and S is a uniform Schreier system for H in G,
then H and S will be said to be associated if the corresponding coset functions defined by (2.4)
satisfy (2.5).

Lemma (2.3) states that each subgroup H of G can be associated with at least one uniform
Schreier system S in G and it is natural to consider the converse question, namely, if S is a
uniform Schreier system in G, is there any subgroup H of G with which S can be associated ?
To answer this question we examine the coset functions and introduce the concept of a set of
admissible functions for a uniform Schreier system S (cf. Hall and Rado [5]).

Let S be a uniform Schreier system associated with a subgroup H of G and let ¢; be the
restriction of y; to the set §; = SUS;4;; then we have
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(2.7) LeMMA. Letge G, g =aya, ... a,(a,€ A,, o, €J) and put

ho = ¢;(1) =sy;, hi= ¢;(e(Pa(hi-1)a)-

Then h, = y;(g).
The proof follows from the properties of the equivalence relation ~ and the definition of

7

Hence to calculate y,(g) we only require the values of ¢; defined on S 5

(2.8) LeMMA. The functions ¢ ; defined on S ; withvalues in S satisfy the following conditions.
() ¢;(s;;@) =s,; forsomepel,andall ac A,

(i) @;(sp) = 5,; forall s, €8.

(iii) ¢;(s;,a) € 5;4; for allae A,

(iv) ¢;(¢;(s;;a)a’) = ¢ (s;;aa’) for all a,a’ € A,
(v) ¢j(¢j(sija)a— 1) = Sij»

Proof. (i), (ii) follow from the definition of y, (iii) from the association of H and S.

(iv) follows from the fact that, if ¢;(s;;a) = s,;, then s;;a~s,; and s;;aa’ ~s,,a". So

¢j(sijaa') = ¢j(spja’) = ¢j(¢j(sija)al)'
(v) follows from (ii) and (iv) with @’ =a~ 1.
Suppose that S is a uniform Schreier system in G and that for each jeJ there is some
function ¢, defined on S, with values in S;. Put ® = {¢,: jeJ}; then we have

(2.9) DerINITION. @ is a set of admissible functions for S if the functions §; satisfy the
conditions of (2.8).

Thus we have that, if H is a subgroup of G and S an associated uniform Schreier system

for H, we can construct a set of admissible functions ® for S.
S and ® can now be used to describe the structure of H (cf. Maclane [7]).

(2.10) TueoreM (Kurosh). Let H be a subgroup of the free product G, S an associated
uniform Schreier system for H. If ® is the set of admissible functions constructed for S, then

H=F‘H* H* SUAJS,;I(\H )
jeld sUeS;

where S} is the set of those elements of S; whose last syllable does not lie in S; together with the
unit element. Further

(2.11) Fis a free group freely generated by the subset of Q = {s;;s;,*, for all i e Iand all j,
q € J} obtained by deleting unit elements and possible repetitions from Q, and

(2.12) s;;A;s;'nH is generated by the set of elements Q= {s;;a0;(s;0) ", for all
aeA}.
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If a subgroup H of G is described in this way by some associated uniform Schreier system
S and a set of admissible functions @, we shall write H = <S, ®) and call this a representa-
tion of H. We can now state a series of problems which will be discussed in the following
sections. Let H be a subgroup of G, S a uniform Schreier system in G and ® a set of admissible
functions for S.

(2.13) Given S, determine all the possible H associated with S, if any.
(2.14) Given S, determine all the possible ® for S, if any.

(2.15) Given S and ®, determine all those H such that H = (S, ®), if any.
(2.16) Given H, determine all the representations H = (S, ®>.

We have seen that, if S and H are associated, we can construct a suitable @; so the solution
to problem (2.13) will follow from those to problems (2.14) and (2.15).

3. Problem (2.15). In this section we solve problem (2.15), that is, we assume that Sis a
uniform Schreier system and that @ is a set of admissible functions for S and we determine
all the subgroups H with the representation H = <S, ®).

We start by considering a particular ¢; € @, and use its properties (2.8) to define a function
y; from G to §;.

(3.1) DEerINITION. If g € G, define ;(g) as follows:
(l) Ifg =1, lp_i(g) =8 = 1.

(i) Ifg#1,9 = a,a, ... a, where a;€ A,, 0,€J, we put hy = s,;, and

hy= ¢j (¢a, (¢a,(ht— )a);
then ;(g) is to be Y ;(g) = h,.

This y; is clearly a well-defined mapping, since each g € G has a unique representation as
areduced word. We also see that, ifg; = a,a, ... a;, then the nature of the constructive process
implies that ¥;(g;) = h;.

We now prove several lemmas describing the properties of this function ;.

(32) LemMA. LetgeG,g=a,a,...a, (@€ A,, i=1,2,...,t) and let ae A, for some
ael. Theny(g) is the same word as that obtained by applying the construction process of (3.1)
to

g’ = alaz ven aiaa-—lai+1 ees a‘.

Proof. Assume that in calculating ¥/;(g) we obtain the sequence of terms hy, hy, ..., A,
and that in applying the process to g’ we obtain the sequence kg, A1, ..., hj,,. Then, from a
remark above, h; = y;(aa; ... a) = hj. Consider

i+1 = 0;(0a($a(h)a)) = b ;(da(@e(h)a)),
and hivs = 6;(Sa(balhis )™ ")) = ;(be(ba((u(Sa(h)aP)a™)),
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Now it is a simple consequence of (2.8(ii)) that, if se S, ¢;(s) = ¢;(9.(s)); so, putting
¢a(¢a(hi)a) =8§€ Sa’
we have hivs = &;(d.(d.(d;(Na™"))
= ¢;(d.(da(s)a™ "))
= ¢;(¢.(sa”1)), by (2.8(ii)),
= ¢ ;(Pa(Po (¢ (h)a) " 'a)).
But, by (2.8(v)), this implies that
hi’+2 = ¢j(¢a(¢a(hi))) = ¢j(hi) = hi'

We see, therefore, that on completing the construction process, b, = h;.,. ,, proving the lemma.
This lemma implies that, if g, g’ € G, then in calculating y;(gg") we do not have to consider
any possible cancellations between g and g’.

(3.3) LeMMA. The restriction of i, to S is ¢;.

Proof. 1. We first show that, if s € S, then /;(5) = ¢;(s) = s.
(i) If se S and s = 1, then, from (3.1), ¥;(s) = 1 = ¢;(s).

(ii) Suppose now that se S, s#1, and that s = a,a, ... a, (a;€ 4,). Weputh,=1=s,,,
and calculate ;.

hy = ¢;(a,(ha,(ho)a)) = ¢(¢a,(ay)).
Now, from (2.2), a, € S,,nS,,; so ¢, (a) = a; = ¢,,(a,), and hy = ¢;(a,). Again, from the
construction,

hy = ¢j(¢az(hl)a2)) = ¢j(¢az(¢a;(¢ j(al))az))'
But, from a remark in the proof of (3.2) and from (2.2),

Pax(®5(ay)) = ¢,,(a)) = ay;
s0hy = ¢;(Pg,(a1ay)). But, againfrom(2.2),a,a; € S,,NS,,; $0 ¢,,(a,1a;) = a;a, = ¢,,(a1a,),
and h, = ¢;(a,a;). We repeat this argument to show that
¢;(8) =h = ¢;(asa, ... a) = Y;(s).

2. Finally, we have to show that, if sa € S;4;, then y;(sa) = ¢;(sa).

(i) Again, if sa = 1, Y;(sa) = ¢;(sa).

(ii) Now, if sa#1, from (3.2), we do not have to consider any cancellations which might
occur; so assume that, in calculating i ;(sa), we obtain a sequence of terms kg, h, ... h,, where
h—y =;(s) = ¢;(s), from the first part. Now consider k,. We have h, = ¢;(¢;(¢;(5)a)),
where ¢;(s) = s, since s€ S;. So h, = ¢;(¢p;(sa)) = ¢;(sa). That is, ¥;(sa) = ¢;(sa).

We have used in these proofs a simple consequence of (2.8(ii)), namely that, if s € S, then

¢;(s) = ¢;(¢«(s)), and from the previous lemma we immediately have ;(s) = ¥; (¥, (5)). We
extend this property to the whole of G.
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(3.4) LemMA. If g € G, then Y;(g) = ¥,;(¥(9))-

Proof. We assume that, in calculating ¥ ;(g), ¥, (g), we obtain the sequences hy, h,, ..., h,
and hg, hy, ..., hi, respectively. Then, clearly, since hy =s,; =1, and hg =5,, = 1, ¢;(hp)
= hy,. We make the inductive hypothesis that ¢;(h{_,) = #;_; then

h; = ¢(ba(@a(hi- 1)aD)) = ¢ (e (Do (¢ (hi- ))ai)).
Now, since ¢,,¢; = ¢,, on S,
h; = ¢;(d. (e (hi-1)aD)-
Because @, (¢, (hi-)ai) €S,
h;= ¢j(¢k(¢a((h§-1)ai))) = ¢j(h§)-
Putting i = ¢, we have ¥;(g) = ¢;(¥i(9)), and, from (3.3),
¥(9) = ¥,;(¥(9))-
We can now prove a most important lemma.
(3.5) LemMa. Ifg, g’ € G, then y;(9g9") = ¥;(¥;(9)g").
Proof. We prove this lemma in three stages.
(3.6) If 5;,€ S, and a € A;, then Y ;(5,,0) = Y ;(s5;;0).

Proof of (3.6). Suppose that in calculating y;(s;,a) we obtain a sequence of terms
hg, hy, ..., hy; then

hey= ‘/’j(siq) = ¢j(5iq) = Sij -
We calculate h,.

h = ¢;(¢;(¢;(5:)a)) = ¢;(s;;0)-
That is, from (3.3), Y;(5,,0) = h, = ¥;(s;0).
(3.7 Ifge G and a€ A, for some o.€ J, then
¥;(9a) = ;¥ ;(g)a).

Proof of (3.7). Again we suppose that in calculating /;(ga) we obtain a sequence
ho, hy, ..., h,, where b, = ;(g). We calculate &,

he = ¢ (¢ (@o (- )a)).
Suppose that h,_; = s;;; then, from (2.8(ii)) and (3.3),
ht = ll/j('pa(siaa)%
and, from (3.6), this is #, = {;(,(s;;@)). That is, from (3.4),

lpj(ga) = 'l’j(sija) = ‘/’j(hr—ﬂ) = ll’j(‘//j(g)a)-
We now return to the proof of (3.5).
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Proof of (3.5). We use an induction argument over the length of g’.

(D) If 2(¢g") =0, then g’ = 1 and Y;(g9") = ¥;(¥;(9)9").
(i) If A(g") = 1, then g’ € A; for some j € J, and this case is covered by (3.7).

(iii) Now let A(g")>1, and write g’ = g"'a, where a e 4, for some aeJ. Then, by the
inductive hypothesis,

¥i(99") = ¥;(¥,;(9)9")-

¥;(99") = ¥,(9g"a)
=y;(y;(gg")a), from (3.7),
=y;(¥;(¥;(g)g")a), by hypothesis,
=y;(Y;(9)g"a), from (3.7),
=¥;(¥;(9)9").

This completes the proof of the lemma.
We now have the properties of §; required to solve problem (2.15). We start by defining
an equivalence relation on G,

Hence

(3.8) DerINITION. Ifg,g' € G, we say that g and g’ are equivalent if there is a j € J such that
¥;(9) =v,(g).

This is clearly an equivalence relation, and it is independent of j, because if keJ, k#},
from (3.4),

Yi(g) = 'l/k('ll_;(g)) = ‘//k('pj(g')) =y.(9).

Also, from the definition of the y/;, each g € G is equivalent to some s;; € §; and, since no two
elements of S; are equal, we can take the elements of S; as representatives of the equivalence
classes. That is, G is partitioned into disjoint subsets indexed by the elements of 7. We can
now prove the following lemma.

(3.9) LeMMA. The equivalence class containing 1 € G, is a subgroup H of G.
Proof. (i) From the definition of H, 1 & H.
(i) Let g, g’ € H; then y/;(g) = ¥;(g") = 1. But, from (3.5),
¥;(99) = ¥;(¥;(9)9) =¥;(g) =1,
sogg' € H.
(iii) Let g € H; then y;(g) = 1. Again from (3.5),
Uilgg™ ) = v;i(9)9 ™) = ;g7 Y).
Butgg™'=1€eH; soy;(gg " )=1=y;(g""),and g™ e H.
This subgroup is to be the one with the representation H = ¢S, ®). We first prove
(3.10) LeMMA. S; is a left transversal for H in G.
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Proof. We denote the equivalence class containing s;; € S; by H;, so that H = H;; then
we show that Hs;; = H;.

1. Let g € G, and consider the left coset Hg. A typical element is hg € Hg, and we cal-
culate y;(hg). From (3.5),
¥;(hg) = ¥;(¥;(h)g)
=1 ;(g), since heH,
=5;;, say.
That is, Hg € H;, and so each equivalence class contains at least one left coset, Hs;;.

2. Now let Hg, Hg' lic in H;; then g, g'e H;, and ¥ ;(g) = y;(g’). Now calculate

¥;(g’g™") using (3.5).
¥i(g'9™ ) =v;(0i(gNg™ ) =v,(;(9)9™ ) =¥(gg™) =1
That is, g’g~! € H, and so Hg = Hg'. This completes the proof of the lemma.

We have now shown that the left cosets of H in G are indexed by 7, and that each S; is a
left transversal for H in G. Clearly the coset functions (2.4), which can now be defined, are, in
fact, the y;; so H and S are associated, and ® is a set of admissible functions for S. That is,
H has the representation H = (S, ®).

Now clearly, if H' =<S, ®) is another subgroup with the same representation as H,
then, from (2.10), both have precisely the same free decomposition, so that H = H'.

We can summarize this section in a theorem which states the solution to problem (2.15).

(3.11) THEOREM. If, in a free product G, we are given a uniform Schreier system S and a
set © of admissible functions for S, then there is precisely one subgroup H of G such that H has
the representation

H={S, 0.

4. Problem (2.14). In this section we solve problem (2.14), namely, given a uniform
Schreier system S, determine all the sets of admissible functions ®, if any, defined on S. This
requires that, for each j e J, we have to define a function ¢; from S ; to S; satisfying the con-
ditions of (2.8). The conditions (2.8(ii)) determine precisely the values of the ¢; at elements of
S. The only possibility of any choice is in defining the ¢; on S;4; to satisfy (2.8(iii), (iv)). We
consider the possible choices by looking at the effect of a ¢; € ®@, a given set of admissible
functions for S. This function ¢; can be considered as a matrix:

(4.1) ¢j con a

slj

Sij ¢;(s i) -
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where the rows are indexed by the elements of S;, and the columns by the elements a € 4;.
The element in the row s;; and the column q, is to be ¢,(s;;a). We prove the following lemma.

(4.2) LeMMA. Each column of the matrix (4.1) is a permutation of S;.

Proof. We consider the column indexed by a € 4;.

(i) Since ¢;(s;;a) € S;, each element in the column is in S;.

1

(ii) If 5;;€ S;, then ¢;(s;;a™ ") = 5,; occurs in the column headed by a™'; so, in the

column headed by a,
¢j(5kja) = ¢j(¢j(sija_l)a) = Sijs
since ¢; satisfies (2.8(iv)). That is, each s;; € S; occurs in each column.
(ili) Suppose that ¢;(s;;a) = ¢;(s;a); then
¢j(¢j(sija)a_ 1) = ¢j(¢j(skja)a_ 1),

and s;; = s,;. But, from (1.1(iv)), this implies that i = k; so each s;; occurs only once in the
column. This completes the proof.
We use this lemma to define a mapping of 4; into the set of permutations of the index set I.

(4.3) DerINITION. Let a€ A;, i€ I; then n;(a) is to be the permutation corresponding to a,
such that in;(a) = p if and only if ¢;(s;;a) = 5,;.
We form the set IT(4;) = {n;(a), for allae 4,}.

(4.4) LemMA. TI(A)) is a permutation representation of A; on the set I.

Proof. We only have to show that, if a, a’ € 4, then n;(aa’) = n;(a)n;(a’). Nowifiel,
consider s,;; then, from (2.8(iv)),

¢j (4’; (Sija)a,) = d’j (sijaa,)a

in;(aa’) = i(n;(a)n;(a")),
for all i € I, so that n;(aa’) = n;(a)n;(a’).

Much of the remaining work in this and the following sections is a study of these permu-
tation representations I1(4;). We start by determining the transitivity classes of I7(4;), and
for this we introduce some more terminology.

The elements of S} form a subset of S;, which will be denoted by S} = {s; ;}, so that, if
s;; € S, then, from (1.1(ii)), 5;; = s; ;a, for some r, and for some a € A;. We use this fact to
split S; into non-empty disjoint subsets S; ;, one to each s; ; € ST, where s5;; € S; ; if there is an
ae€ A such that 5;; =5, ;a.

Clearly, each §; ; contains precisely one of the 5; ;. We can now describe a similar de-
composition of / into non-empty disjoint subsets 1,;.

that is,

irj?

(4.5) DEFINITION. 1,; is to be the subset of I such that i€ I, if and only if 5;;€ S, ;. We
shall call the I,; the blocks of I.
We can immediately prove
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(4.6) LEMMA. The blocks 1,; of I are the transitivity classes of II(A4)).

Proof. Let i€ I be one of the indices such that s5;; =5, ; € S;‘, and let p be some other

index in the block containing i; then there exists an a € 4; such that 5,; = 5;;,a. But, from
(2.8(i1)), 5,5 = ¢;(s,;) = ¢;(s;;0), that is, n;(a) takes i into p. Hence each block is contained in
some transitivity class. Now let p be some other index in the transitivity class containing i;
then there exists an a € 4; such that in;(a) = p, that is, 5,; = ¢;(s;;a). But, from (2.8(iii)),
¢;(s;;0) = 5;;a" for some a’ € 4, and so p lies in the same block as i.

‘We now come to the main theorem in this section.

(4.7) THEOREM. Let S be a uniform Schreier systemin G. Then there is a set ® of admissible
Junctions for S if and only if to each jeJ, and to each block I,; of I, there is a permutation
representation IT.(A;) of A; satisfying the following conditions.

(4.8) I1.(A)) is transitive on I,;.
(4.9) If s;; = s,;a for some a € A; and for some i, p € 1,;, then pn,;(a) = i, where
m,;(a) e II (4)).
Proof. 1. We have already seen (4.3, 4.5), that, if ® is a set of admissible functions for S,

then we can construct permutation representations I7,(4;) satisfying (4.8). (4.9) follows from
the fact that, if 5;; = 5,,a, then ¢,(s;)) = ¢;(5,;0).

2. We now assume that we are given a uniform Schreier system S and permutation repre-
sentations satisfying (4.8) and (4.9). We use these to define a set of admissible functions ® for
S by constructing, for each je J, a function ¢; satisfying (2.8). We do this as follows.

(4.10) If sy isin S but not in S;, we define ¢ ;(sy) = ;5. If 5;;€ S}, for each a € A;, we define
¢ ;(s:;,0) = s,,;, where in,;(a) = p. .

We have to show that these functions ¢; satisfy (2.8).

(i) ¢; is defined on §; = SUS;4;,

(i) Let s,, € S; then, if 5,,¢ S}, ¢;(s,) = 5,;- On the other hand, if 5,, € S}, ,;(1) fixes
p, so that, from (4.10), ¢;(s,, . 1) = 5, Hence, in either case, ¢;(s,,) = 5,;.

with its values in S}, and is clearly well defined.

(iii) Let 5;;€ S; and a € 4;; then =,;(a) takes i into some index p in the same block as i.
That is, there exists an s; ;€ S} such that s;; =s; ;0" and s5,; =35, ;a", where @', @’ € 4.
Thus, from (4.10), ¢ ;(s;0) = s,; = 5, ;8" = 5;,,0' (@)~ 'a" = s;;(a') " 'a".

Hence ¢;(s;;a) € 5,;4;.

(iv) Let 5s;;€S; and a,a’ € 4, and let ¢;(s;;a) =s,; and ¢;(s,,a) =s,;. Then, from
(4.10), in,;(a) = p and pm,;(a’) =q. But I,(4;) is a permutation representation; so

nrj(a)nrj(al) = 7":rj(aa’)’
that is, in,;(aa’) = g, and so ¢;(s;;aa’) = s5,;. That is,

¢j(¢j(sija)a’) = ¢;(s;;aa’).
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Hence ¢; defined by (4.10) satisfies (2.8(i), (ii), (iii), (iv)), which implies that (2.8(v)) is also
satisfied. Now put @ = {¢;, for all je J}; then, from (2.9), @ is a set of admissible functions
for S. This completes the proof.

We note that (4.8) is in fact implied by (4.9) and could therefore have been omitted.

This theorem solves problem (2.14) in that, to each of the possible sets of permutation
representations {II(4,), j e J} satisfying (4.7), we obtain a set of admissible functions @ for §,
and every set of admissible functions for S gives rise to such a set of permutation representations
{(I14)), j e J}, satisfying (4.7).

5. Problem (2.16). In this section, we consider problem (2.16), namely, given a subgroup
H of G, determine all its representations H = ¢S, ®>. We prove the following theorem.

(5.1) THEOREM. Let G =[[*A4; (jeJ), and let H,, H, be subgroups of G such that
H, =(S,®) and H, =(S', ®'). Then H, = H, if and only if there exist 1-1 mappings p; of
each S; onto Sj(jeJ), such that

® Syl = S'u,

(it) ¢;(sy;a)u; = @i(s;uya)  forallae 4,

(iii) d’k(sij)/-‘k = ¢I,c(sijﬂj)'

Proof. 1. We first assume that H; = H, and construct the mappings ;. Asin§?2,let ~
be the coset equivalence, so that, if g, g’ € G, then g~¢’ if and only if g and g’ lie in the same
left coset of G modulo H,. Clearly, to each s;; € S; there corresponds a unique s,; € S; such

that s;;~s,;. We use this to define g; from §; to S; by the rule, s;;u; = s,; if and only if
5iy~Sp;. We have to show that the conditions (i), (ii), (iii) of the theorem are satisfied.

(i) Since s,; = 1 =5}, §;;~5};, and 50 5 jut; = s} ;.

(i) Let 5;; € S;, and let a € 4;; then, from the definition, s;;~s;;;; so s;;a~s;;ua. But,
from thfe definition of ¢; and ¢ (2.1, 2.5), ¢;(s;;a) ~5;a and @ (s;j1a) ~ 5;1,a. How-ev‘er ~ is
an equivalence relation; so ¢;(s;;a)~ ¢ j(s;;u;a), and, from the definition of u;, this implies
that

¢;(si;a)p; = ¢}(Sijﬂja)-
(iii) Again, suppose that s;;€ S;; then s;;~s,;;. From the definition of ¢, and ¢;,
Du (i)~ sij~ 805~ Dlsijiey),
and, from the definition of the y;, ¢, (s;Dux = @¢(s:;19)-
2. We now assume that we are given the two subgroups
H, =<(S,®> and H,=<S, o,

and the mappings yu; for all jeJ, satisfying the conditions (i), (ii), (iii), and we show that
H, = H,. We do this by showing that the cosets H,s;; and H,s;;u; are equal. We proceed by
induction on the length of the elements of G.
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(1) If the length of g, A(g) =0, theng =1 and
g€ HysyjnH,sy;.
But, from condition (i), s1; = 5,;1;; so g€ Hys.;nH,s;u;.

(II) Now let g be of length ¢ and let g = g’a,, where g’ is of length t—1. Then, by hypo-
thesis, g’ € H,s;;nH,s;;u; for some s;;€ S;. Now let y/;, ¥ be the extensions (3.1) of ¢, ¢;
to the whole of G; then s;; = y;(¢") and s;;u; = ¥j(g").  Clearly g € H;(g)nH¥;(g); so
we only have to show that y;(g)u; = ¥(g).

Suppose then that a, € 4;; then, from (3.5),

‘/’j(g)ﬂj = Wj(g 'a:)llj = 'l/j('//j(g ')ax)l‘«j = \[’j(sijat)llj = ¢j(¢k(sikat))ﬂj$
from (3.1).
Using condition (iii), we have
¥i(Pu; = i (dr(suadim),

which from condition (ii) implies that
¥y = ¢5(di(sittnar))-
Hence, from (2.8(ii)), it follows that
Vi(@u; = ¢j(i(di(d)(suma)),

which, from condition (iii), is

Vi (@n; = 0j(@u(i(d;(sinad) = ¢j(dr(dilsinyay).
But the right-hand side is now y;(s;;1;a,), by (3.1); so

Vi@ = vi(sinia) = Y;i(W;(ga) = ¥i(g'a) = ¥j(g),
and so g € H,s5,;nH,s,;u;, for some s,; € §;.

This shows that, for each s;; € S,

Hlsij = stijﬂj
and in particular
Hlslj = stljuj = stllj,
that iS, Hl = Hz.

It is clear that any permutation of the rows of a uniform Schreier system leaving the first
row fixed induces mappings y; satisfying the conditions of (5.1), so that it is natural to ask how
many ‘different’ uniform Schreier systems lead to representations of the same subgroup of G.
There is great variation in the possibilities, since if G = A*B, where 4, B are cyclic of orders 2
and 3 respectively, then the normal closure of B in G has only one associated uniform Schreier
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system. However, if G is the free group of rank 2 generated by a and b, and H is the sub group
of index 2 in G freely generated by a?, b, aba™ !, then, for each integer a,

1 1
S(a) =
( ) <a2a+l a2a+l>

is a uniform Schreier system for H in G.

6. Subgroup representations. We have seen that, if H is a subgroup of G, then there are a
uniform Schreier system S and a set of admissible functions ® for S associated with H which
together determine the structure of H. We have also associated certain permutation repre-
sentations of the free factors 4; of G with S and ®, and in this section we consider connections

between these representations and the free factors s;;4;5;;'nH of H.

(6.1) THEOREM. Let s;;€ ST and let i€ I, a block of 1. Let I1,(A;) be the transitive per-
mutation representation of A;induced on 1,; by ¢; € @, and let B,; be the subgroup of A; such that

S,_,-B,js,;-l = S,-jAjSi;lﬁH.
Then I1,(B,)) is the stabilizer of i in I1,(4}).

Proof. 1. Let x = s;;a¢,;(s;;a)"* be a typical generator of s;;B,;s;;'; then, from (2.8(iii)),
¢,(s,;4) = 5,50’ for some a’ € A;. Hence x = s;;a(a’)"'s;;' and a(a’)™! is a generator of B,;.
We calculate ¢;(s;;a(a’)™?), using (2.8(iv)).

d’j(sija(a,)-l) = ¢j(¢j(sija)(al)_l) = ¢j(sijal(a')—l) = ¢j(su) = §y;-

So, in I1,(4)), n,;(a(a’) ") fixes i. Similar results hold for all the generators of B,;, and hence
I1,(B,;) lies in the stabilizer of i.

2. Now let n,;(a) fix i, for some ae 4;; then ¢;(s;;a) = s,; and so

s,,09;(s;;a)"" = s;jas;;* € s;;B,;5;%,
that is, a € B,;.

We now consider further the role of these B,;, but first we introduce some more notation.
Let I,; be a block of I and i € I; for some s;; € S*; then we denote by 4,; the subset of 4; such
that a € 4,;if and only if s;;a € S;. In particular 1 € 4,;. Clearly =,;(a), for a € 4,;a#1, does
not fix i, and, in fact, for each p € I; there is an a € 4,; such that in,;(a) = p. We now recall
that, if M is any group and JI(M) a permutation representation of M which is transitive on a
set R, then there is a subgroup N of M, fixing some symbolin R, such that I7(M)is the represen-
tation of M induced by the left cosets of N in M and such that the index of N in M is the
cardinal of the set R.

Applying this to our situation we see that, from (6.1), IT,(4;) is the transitive permutation
representation of 4; induced by the left cosets of B,;in 4}, and that the index of B,; in 4; is the
cardinal of the set I,;. In fact, 4,;is a left transversal for B,; in A4;.

We can now distinguish between the different subgroups obtained from the various sets of
admissible functions defined on a given uniform Schreier system S.
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(6.2) THEOREM. Let @, @’ be two sets of admissible functions defined on a given uniform
Schreier system S, and let H, H' be the two subgroups, H = (S, ®), H' = S, @), with free

decompositions
H=FI*( IT* si;Busi' ),
jeldJ Sij € s;
H’=FI* H* ]-_I* sijB:jsi;l .
jeJ \siyes3 :
Then
(6.3) F=F',

and

(6.4) there is a 1-1 correspondence between the B,; and By; such that, if B,; and By; corre-
spond, then

(6.5) either B,; = By; or B,;, By; are two subgroups of the same index in A; with the same
left transversal A,; in A;.

Proof. From (2.11), the free factor of a subgroup associated with a uniform Schreier
system S is generated by the set Q = {s;;5;, ! forallie Iand allj, g € J}, which depends only on
S and not on @ or ®'. Hence F, F’ are generated by the same set Q and so F=F'.

Again, the number of B,; depends only on the number of blocks ,; or 1, and not on ® or
@', and so the B,;, B/, can be put into 1-1 correspondence by the rule that B,;, B;; correspond
if they refer to the same block 1,; of I. That is, s;;B,;s;;'is a factor of H and s;;B,;s;;' is a
factor of H' for the same s;;€ §*. Now let I1,(4,) be the representation of A ; induced by
¢;€ ® on I,;, and IT;(4;) be the representation of 4; induced by ¢; € @’ also on /,;; then we
have seen that I7,(A4;) is induced by the left cosets of B,;in 4; and II;(4}) is induced by the left
cosets of B;; in A;. So either B,; = B;; or B,;# B,; and both subgroups have the same index,
the cardinal of I,;, and the same left transversal 4,; in 4;.

Again, let H be any subgroup of G and H = (S, ®) and consider the permutation repre-
sentations of the free factors of G induced by Sand ®. These representations induce a transitive
permutation representation of G which is essentially the representation of G induced by the left
cosets of Hin G. Conversely, any transitive permutation representation of G is induced by the
left cosets of some subgroup H of G; however, we put this more precisely:

(6.6) THEOREM. Let II(G) be a transitive permutation representation of G on a set
I={1,...}. Then there is auniform Schreier system S, and a set of admissible functions ® for S,
such that the following conditions hold.

(6.7) The rows of S are indexed by I.

(6.8) II(G) is the representation of G induced by the left cosets of the subgroup H = (S, ®)
in G.

(6.9) Ifsy;,5,;€ S;janda € Aj, then ¢;(s;;a) = s,;if and only if in(a) = p.
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Proof. Let pu be the homomorphism of G onto IT(G), R be the stabilizer of 1 in I1(G),
and H be the subgroup such that Hu = R. Since H is a subgroup of the free product G, there
is a uniform Schreier system S and a set of admissible functions for S such that H = (S, ®).
We have to show that the conditions (6.7), (6.8), (6.9) are satisfied.

First, consider the left coset Rn(g) of R in II(G). If n(g) ¢ R, there is some index ie I
such that 1n(g) = i, and hence every element of Rr(g) takes 1 into i. Now, since IT(G) is
transitive on the set J, to each i e I there corresponds a n(g) € II(G) such that 1n(g) = i, and
for this n(g) the coset Rn(g) takes 1 into i. That is, the left cosets of R in IT(G) can be indexed
by I.

Now let g € G; then, since u is a homomorphism, (Hg)u = Hugu = Rgu, and each left
coset of H in G is mapped onto some left coset of R in (JIG). Now pis onto IT(G) and so at
least one coset, Hg, of H in G is mapped onto each coset Rn(g), of R in JI(G). Suppose that
Hg,, Hg, are two left cosets of H in G such that Ra(g,) = Rn(g,). Then n(g,)and n(g,) both
take 1 into /, say, and so n(g; ') takes i into 1. That is, n(g,)n(g5 ") = n(g,95 ") fixes 1. But
from the definition of H, this implies that g,g; ' € H, and so Hg, = Hg,. Hence at most one
left coset of H in G is mapped onto each left coset of R in IT(G). That is, there is a 1-1 cor-
respondence between the left cosets of H in G and the left cosets of R in IT(G), which we have
seen can be indexed by 1. Now the rows of S correspond to the left cosets of H in G and so can
also be indexed by I. In particular the first row of S is indexed by 1, since it corresponds to the
coset H. This proves (6.7).

Now let s;;, 5,;€ S;; then =n(s;;) takes 1 into i, and n(s,;) takes 1 into p. Suppose that
#;(sy;a) = 5,; for some a € A;; then this implies that Hs;;a = Hs,;, and so (s;;a)u =s,;. That
is, n(s;n(a) = n(s,;), and so in(a) =p. Now let ae 4; be such that in(a) =p; then
n(si)n(a) = n(s,;), and so (s;;@)u = s,;i. This implies that Hs;;a = Hs,;, and so, from the
definition of ¢;, ¢;(s;;a) = s5,;, which proves (6.9). This also proves (6.8), since II(G) is then
the permutation representation of G induced by the left cosets of H in G, which has the
given representation H = (S, ®).

We now come to the theorem on subgroups of finite index in G.

(6.10) THEOREM. Let G =[]*4; (jeJ), where J is the finite set {1,2, ..., k}, and let
dj (n>0) be the number of homomorphisms of A; into the symmetric group on n symbols and
dj’ = 1. Let N, be the number of subgroups of G of index n; then Ny =1 and, if n>1,

an No= (=01 TT & =% (=3 [T d~'N,

i=1

Proof. (i) N, = 1 states that G is its own unique subgroup of index 1.
(i) The integer df is the number of permutation representations of 4; on n symbols. 1If,
for each j e J, we take a permutation representation II(4;) of A; and put

I1(G) =gp {II(4)): jel},
we obtain a permutation representation of G on n symbols. Therefore the total number of
k

permutation representations of G on n symbols is [] dj.
j=1
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Now let II(G) be a particular permutation representation of G on n symbols, let
{1,by, b3, ..., b;}

be the transitivity class containing 1, and let /7(G) be the transitive permutation representation
of G induced by 7I(G) on these i symbols. Then, from (6.6), there is a unique subgroup H of
index i in G corresponding to IT'(G). We now consider the total number of permutation
representations of G on n symbols which give rise to this subgroup H. Clearly, it does not
matter what permutation representation of G on the remaining n—i symbols is taken. Also,
since any permutation of the symbols b,, b,, ... b; gives rise to the same subgroup H, with each
subgroup of index i in G we can associate

k
(-1 ... (m-i+1)) [] 4}
i=1
permutation representations of G on n symbols. Hence

k n k
[l di= Y {(n=DY(n-0} [T &7'N,,
J=1 i=1 Jj=1
and on rearranging we get
k n-1 k
N,={1j(n-1)1} 1‘[1 dy — 21 {1/(n—1i)1} 1‘[1 d}™'N,.
J= i= j=
As an example, consider the case where each 4 is an infinite cyclic group; then G is a free

group of finite rank k. Since the generator of 4; can be mapped onto any element in the sym-
metric group on n symbols, dj =n! Hence

N, = (= D)6~ 3 (=D}~ DIPN,

—n()I= Y (-DYN,
i=1

which is the formula of Hall [3].
Let us now consider normal subgroups of G, and investigate their effect on uniform

Schreier systems and on the permutation representations I1(G).
We start by proving the following theorem.

(6.12) THEOREM. Let G =[[*4;(j€J), and let H be a subgroup of G. Let S be a uniform
Schreier system and ® a set of admissible functions for S, such that H = (S, ®>. Let {1, be the
extension of ¢, in the sense of (3.1) and let B = .U, A;. Then H is normal in G if and only if, for
all b e B, '€

(i) lﬂl(bs,-ja) = ¢1(b¢j(s‘ja)),f0r all S"ja € SJAj and aleEJ,
(1) ¥y (bsi)) =W (bsyy), for all j,qeJ and all i€ I.

Proof. 1. First, let H be normal in G; then, from (2.11) and (2.12), H is generated by
elements of the form s; js,;‘ and s;,a¢;(s;;a)”". Now let b e B; then, since H is normal in G,

bs;si,'b~'eH and bs;jad;(s;a) b~ e H.
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This implies that bs;; and bs,, lie in the same coset of H, and that bs,;a and b¢,(s;;a) also lie in
the same coset of H. Hence, from the properties of ¥/,

Y1 (bs;) = Y1 (bsyy)

Y (bs;;a) = Y1 (bg;(si;a)-

2. Now let H be a subgroup of G and let H = <S, ®>, where S, ® satisfy the statement
of the theorem. That is,

and

¥y (bsija) =y, (b¢j(sija))
¥, (bsij) =y, (bsiq)'

bs;jsi'b~' e H and bs;ad;(s;a)" bt e H.

and

This implies that

Now s;;a¢;(s;;a)”" and s,-jsi;‘ run over all the generators of H, so that, by the obvious ex-

tension to H, bHb™' = H,for all be B. Now B = leJJ A;, and so, again by extending to the

elements of G in an obvious way, g~ 'Hg = H, for all g € G. That is, H is normal in G.
Again suppose that the H normal in G has the free decomposition

H=F* 1‘[*( IT* s,jA,sglnH)
JjedJ Sij € Sj

and, as in (6.1), put s;;B,;5;" = s;;4;5;;'nH, where i € I,;, a block of I; then it is easy to show

that B,; = A;nH for all r and that B,;isnormal in 4;. Applying this observation to the earlier

results in this section we find that the cardinal of each block I,; is the same for all r, being the

index of 4;nH in A;, and that IT,(4;) is the same representation for each r, being that repre-

sentation of 4; induced by the cosets of 4;nH in A4;.
As a simple consequence of these facts, if we consider a group G = A«B, where A4, B are

cyclic of prime order, then the only normal subgroups of G, apart from the normal closures of
A and B in G, are free subgroups, that is when I1,(A), II,(B) are regular representations of
A and B. In such a situation a formula analogous to (6.11) can be proved which counts the
number of free subgroups of finite index in G in terms of those permutation representations of

G which lead to free subgroups (Dey [1, p. 71]).

7. Residual finiteness. It is well known that the free product of two residually finite groups
is residually finite (Gruenberg [2]); however, to illustrate the methods evolved in this paper
we give a simple proof of this theorem.

(7.1) THEOREM. Let G = A *4, be the free product of two residually finite groups A,, 4,;
then G is residually finite.

Proof. LetgeG, g+#1; then we have to find a normal subgroup N of finite index in G
such thatg ¢ N. Since g € G, g has a unique representation as a reduced word in syllables from
A, and 4,,g = a,a, ... a, such that no two adjacent syllables lie in the same 4; (jeJ = {1, 2}).

R
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Put/={1,2,..,1 t+1} and construct the following subset S’ of G: S’ = {si;: i€l jel},
where, for all je J,

(l) sllj = 1,

(i) s;; =a1a; ... a;y  (i#1).

Clearly S’ is a uniform Schreier system in G such that each block 1,; (4.5) contains either
one or two indices and there are only finitely many such blocks. Now, from (4.7), there is a
set of admissible functions @' for §” if for each block 7,; there is a transitive permutation repre-
sentation I7,(4;) of A;on I,;. Consider any block I, ;; then either there is such a representation
or there is not and if not, then the block I,; must contain two indices. Suppose that there is
no such representation on the block 1,; = {i,, i,}; then s,;=s,s, j=sa, where ae A,
s € S’ and the last syllable of s does not lie in 4;. Since A4, is residually finite, we can choose a

transversal 1, a, ', a”, ...,a™ for a normal subgroup of finite index in 4; which does not
contain the element a. Now, putting

I={1,2,..,t+1,142, ..., t+n+1},
we form the subset " of G, S = {s;;: i€ 1, jeJ} by taking
(i) sij=s;forjed, 1Sist+1,
(i) sjj=sa""""VforjeJ, t+1<iZt+n+1.

That is, we have added further rows to S’ in such a way that S is still a uniform Schreier
system and the number of blocks I,; is unaltered but there is now a transitive permutation
representation IT,(4;) of A; on the block corresponding to the elements s, sa, sa’, ..., sa™ in
Sy

! However, if we consider blocks of the form 7,,, where k is the other index in J different
from j, then there are p more such blocks in S” than in S’. Now each of these additional
blocks contains precisely one index and so the number of blocks I, which do not give rise to a
transitive permutation representation of A, is still the same. However, the number of blocks
I,; which do not give rise to a transitive permutation representation of 4; has been reduced by
one.

We can therefore repeat this process and, by adding finitely many rows to the uniform
Schreier system at each stage, we shall eventually obtain a uniform Schreier system S in G such
that g € S and there is a transitive permutation representation I7,(4;) of 4; on each of the
blocks 1,;, for each jeJ. Hence there is a set of admissible functions @ for S which, from
(3.11), implies the existence of a subgroup H of G such that each column of S is a left trans-
versal for Hin G. That is, H is of finite index in G'and g ¢ H. Now let N be the intersection
of all the conjugates of H in G (there are only finitely many such conjugates); then N is a
normal subgroup of finite index in G and g ¢ N. This completes the proof.
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