Language disturbances in ADHD

M. Bellani1*, A. Moretti2,3, C. Perlini1 and P. Brambilla4,5

1 Section of Psychiatry and Clinical Psychology, Department of Public Health and Community Medicine, Inter-University Center for Behavioural Neurosciences (ICBN), University of Verona, Verona, Italy
2 IRCCS ‘E. Medea’ Scientific Institute, San Vito al Tagliamento, Italy
3 University of Udine, Udine, Italy
4 Department of Experimental Clinical Medicine, Inter-University Center for Behavioural Neurosciences (ICBN), University of Udine, Udine, Italy
5 IRCCS ‘E. Medea’ Scientific Institute, Udine, Italy

This article aims to review the studies exploring language abilities in attention deficit hyperactivity disorder (ADHD; with or without comorbid language impairment) focusing on oral speech discrimination, listening comprehension, verbal and spatial working memory as well as on discourse analysis and pragmatic aspects of communication and language comprehension.

Received 11 June 2011; Revised 13 June 2011; Accepted 18 June 2011

Key words: ADHD, language impairment, pragmatics, working memory.

According to the DSM-IV-TR (APA, 2000), the Attention Deficit Hyperactivity Disorder (ADHD) is characterized by persistent and severe levels of hyperactivity/impulsivity and/or symptoms of inattention, interfering with normal functioning in social, educational and working environments. Even if not included in the core diagnostic criteria of ADHD, language disturbances may often be present (Baker & Cantwell, 1992; Camarata & Gibson, 1999), affecting both linguistic and pragmatic domains. Indeed, hyperactive/impulsive symptoms may result in speaking without thinking or respecting the conversational turn in conversations, interrupting others’ speech and talking excessively. These symptoms may reflect an association between ADHD and difficulties in pragmatic aspects of communication. Interestingly, such kinds of impairments (i.e. inappropriate and impulsive behaviours in conversations and relationships), which have been reported in ADHD (Oram et al. 1999; Kim & Kaiser, 2000) (Table 1), are somewhat similar to those described in pervasive developmental disorders (Bishop & Baird, 2001; Geurts & Embrechts, 2008) (Table 1) and schizophrenia (Tavano et al. 2008; Bellani et al. 2009, 2010).

Inattentive symptoms appear to be linked also with language comprehension difficulties, since children do not apparently listen and do not follow teacher’s instructions. In their study, Baker & Cantwell (1992) realized indeed that there is a strong association between language impairments (LI) and ADHD (Table 1). Achievement and cognition problems are related to both conditions, and so it is a challenge to define which deficits belong to ADHD, which ones to LI alone and which ones are shared by the two conditions, although the presence of LI is suggested to represent the crucial factor (Cohen et al. 2000).

Other authors have mainly focused on working memory abilities in ADHD children, with or without language impairments, reporting different results.
<table>
<thead>
<tr>
<th>Study</th>
<th>Subjects</th>
<th>Children age range (years)</th>
<th>Language tests</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker & Cantwell</td>
<td>Children with: ADHD + SL disorder (n = 65)</td>
<td>6.0–15.3</td>
<td>Goldman-Fristoe Test of Articulation, Denver Articulation Screening Test, PPVT, Receptive-Expressive-Emerging Language Scale, Test of Auditory Comprehension of Language, Token Test for Children, Illinois Test of Psycholinguistic Abilities, Carrow Elicited Language Inventory, Memory for Sentences Test, Detroit Test of Learning Aptitude</td>
<td>All children presented linguistic deficits: 78% speech articulation, 69% language-processing, 58% expressive language, 34% receptive language.</td>
</tr>
<tr>
<td>Oram et al. (1999)</td>
<td>Children with: ADHD (n = 25), ADHD + LI (n = 28), non-ADHD controls (n = 24)</td>
<td>7–11</td>
<td>Test of Word Finding, Rosner’s Auditory Analysis Test, CELF-R</td>
<td>ADHD-only children had poor performance on the CELF-R Formulated Sentences subtest.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Participants</td>
<td>Age</td>
<td>Measures</td>
<td>Findings</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Bishop & Baird (2001)</td>
<td>Parents (P) and Teachers (T) of children with: Autistic Disorder (P = 17; T = 15), Asperger Syndrome (P = 31; T = 23), PDDNOS (P = 40; T = 28), ADHD (P = 22; T = 16), SLD (P = 9; T = 11), Normal Controls (n = 31)</td>
<td>5–17</td>
<td>CCC</td>
<td>ADHD group had low scores on the CCC pragmatic composite similar to Asperger or PDDNOS groups, as evaluated by Parents and Teachers.</td>
</tr>
<tr>
<td>McInnes et al. (2003)</td>
<td>Children with: ADHD (n = 21), ADHD + LI (n = 18), LI (n = 19), Normal Controls (n = 19)</td>
<td>9–12</td>
<td>PPVT-III, EVT, CELF-3 Receptive Language and Expressive Language, Word Attack WRMT-R, Block Design WISC-III, Narrative and Expository Passage Comprehension Tasks, Comprehension Monitoring Ability-Error Detection Tasks, Verbal and Spatial Memory tasks (Span and Working Memory measures)</td>
<td>The ADHD patients comprehension was impaired in listening to spoken expository passages (inferences and monitoring of instructions), poorer verbal working memory, spatial span and spatial working memory.</td>
</tr>
<tr>
<td>Martinussen & Tannock (2006)</td>
<td>Children with: ADHD (n = 62), ADHD + RD/LI (n = 32), RD/LI (n = 15), Normal Controls (n = 34)</td>
<td>7–13</td>
<td>Digits Forward and Digits Backward subtests from the WISC-III, Finger Windows task from the WRAML</td>
<td>Worse verbal storage in children with RD/LI and ADHD + RD/LI. Deficits in visual-spatial storage and verbal and visual-spatial central executive functions in all clinical groups.</td>
</tr>
<tr>
<td>Mathers (2006)</td>
<td>Children with: ADHD (n = 11), TD children (n = 11)</td>
<td>8–12</td>
<td>Use of an interactive software to generate an animated cartoon, Three language-sampling tasks (providing a story retell text, providing a recount text and providing a procedural text), Writing texts task</td>
<td>In ADHD children more abandoned utterances in spoken texts, spelling and punctuation errors in written texts and more tangential and unconnected information.</td>
</tr>
</tbody>
</table>

Continued
McInnes et al. (2003; Jonsdottir et al. 2005; Martinussen & Tannock, 2006) (Table 1). For example, McInnes et al. (2003) described altered listening comprehension, spatial span, and verbal and spatial working memory in ADHD children without comorbid LI. In contrast, Jonsdottir et al. (2005) showed that working memory abilities were impaired only in ADHD children with language problems. Martinussen & Tannock (2006) noted that working memory may be compromised independently of comorbid reading or language deficits in ADHD. Additionally, in 2006, Mathers analysed the texts of ADHD children observing more abandoned utterances, spelling and punctuation errors, avoidance, tangential and unconnected information in comparison with typical developing children (Table 1).

In conclusion, pragmatic aspects, verbal working memory and discourse analysis seem to be affected in ADHD, being related to language abilities but, partially, also to general executive functions (Cohen et al. 2000). Therefore, comorbidity with language disorders in children with ADHD should consistently be detected and, when present, taken into account for intervention strategies, being a good indicator of inattention. Future studies should further characterize the correlations between language impairments and higher cognitive dimensions, trying to plan innovative and specific interventions for ADHD with or without LI.

References

