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Abstract

It has been a long-standing question whether every amenable operator algebra is isomorphic to a
(necessarily nuclear) C∗-algebra. In this note, we give a nonseparable counterexample. Finding out
whether a separable counterexample exists remains an open problem. We also initiate a general
study of unitarizability of representations of amenable groups in C∗-algebras and show that our
method cannot produce a separable counterexample.

2010 Mathematics Subject Classification: 47L30, (primary); 46L05, 03E75 (secondary)

1. Introduction

The notion of amenability for Banach algebras was introduced by Johnson
[Jo72] in the 1970s and has been studied intensively since then (see a more
recent monograph [Ru02]). For several natural classes of Banach algebras, the
amenability property is known to single out the ‘good’ members of those classes.
For example, Johnson’s fundamental observation [Jo72] is that the Banach
algebra L1(G) of a locally compact group G is amenable if and only if the group

c© The Author(s) 2014 The online version of this article is published within an Open Access environment subject to the conditions of the
Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>.

Vol. 2, e ,2

https://doi.org/10.1017/fms.2013.6 Published online by Cambridge University Press

mailto:choi@math.usask.ca
mailto:ifarah@mathstat.yorku.ca
mailto:narutaka@kurims.kyoto-u.ac.jp
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1017/fms.2013.6


Y. Choi, I. Farah and N. Ozawa 2

G is amenable. Another example is the celebrated result of Connes [Co78] and
Haagerup [Ha83] which states that a C∗-algebra is amenable as a Banach algebra
if and only if it is nuclear.

In this paper, we are interested in the class of operator algebras. By an operator
algebra, we mean a (not necessarily self-adjoint) norm-closed subalgebra of
B(H), the C∗-algebra of the bounded linear operators on a Hilbert space H. It
has been asked by several researchers whether every amenable operator algebra
is isomorphic to a (necessarily nuclear) C∗-algebra. The problem has been solved
affirmatively in several special cases: for subalgebras of commutative C∗-algebras
[Še77], and subsequently for operator algebras generated by normal elements
[CL95]; for subalgebras of compact operators [Gi06, Wi95]; for 1-amenable
operator algebras [BL04, Theorem 7.4.18]; and for commutative subalgebras of
finite von Neumann algebras [Ch13].

Here we give the first counterexample to the above problem. In fact, our
counterexample is a subalgebra of the homogeneous C∗-algebra `∞(N,M2).
Hence the result of [Še77] is actually quite sharp and the result of [Ch13] does
not generalize to an arbitrary subalgebra of a finite von Neumann algebra.

THEOREM 1. There is a unital amenable operator algebra A which is not
isomorphic to a C∗-algebra. The algebra A is a subalgebra of `∞(N,M2) with
density character ℵ1, and is an inductive limit of unital separable subalgebras
{Ai}i<ℵ1 , each of which is conjugated to a C∗-subalgebra of `∞(N,M2) by an
invertible element vi ∈ `∞(N,M2), such that supi ‖vi‖‖v

−1
i ‖ <∞. Moreover, for

any ε > 0, one can choose A to be (1+ ε)-amenable.

Here, C-amenable means that the amenability constant is at most C (see
[Ru02, Definition 2.3.15]). One drawback of our counterexample is that it is
inevitably nonseparable, as explained by Theorem 8 below, and the existence of
a separable counterexample remains an open problem. We note that if such an
example exists, then there is one among the subalgebras of the finite von Neumann
algebra

∏
∞

n=1 Mn . Indeed, by Voiculescu’s theorem [Vo91], the cone C0((0, 1],
A) of a separable operator algebra A can be realized as a closed subalgebra of∏
∞

n=1 Mn/
⊕
∞

n=1 Mn . The cone of A is amenable (see [Ru02, Exercise 2.3.6]),
and its preimage Ã in

∏
∞

n=1 Mn is an extension of the cone by the amenable
algebra

⊕
∞

n=1 Mn; hence Ã is amenable (see [Ru02, Theorem 2.3.10]). Ã is not
isomorphic to a C∗-algebra, since it has A as a quotient and every closed two-
sided ideal in a C∗-algebra is automatically ∗-closed.

Note added in proof. In a recent preprint (http://arxiv.org/abs/1311.2982),
L. W. Marcoux and A. Popov have proved that every abelian, amenable operator
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algebra is similar to an abelian C∗-algebra. This subsumes the results of [Wi95,
Ch13].

2. Proof of Theorem 1

Let C be a unital C∗-algebra, Γ be a group, and π : Γ → C be a representation,
that is, π(s) is invertible for every s ∈ Γ and π(st) = π(s)π(t) for every s, t ∈ Γ .
The representation π is said to be uniformly bounded if ‖π‖ := sups ‖π(s)‖ <
+∞. It is said to be unitarizable if there is an invertible element v in C such
that Adv ◦ π is a unitary representation. Here Adv(c) = vcv−1 for c ∈ C. The
element v is called a similarity element. A well-known theorem of Szökefalvi-
Nagy, Day, Dixmier, and of Nakamura and Takeda, states that every uniformly
bounded representation of an amenable group Γ into a von Neumann algebra
is unitarizable. In fact the latter property characterizes amenability by Pisier’s
theorem [Pi07]. In particular, the operator algebra spanπ(Γ ) generated by a
uniformly bounded representation π of an amenable group Γ is an amenable
operator algebra which is isomorphic to a nuclear C∗-algebra. See [Pi01, Ru02]
for general information about uniformly bounded representations and amenable
Banach algebras, respectively.

Let us fix the notation. Let M2 be the 2-by-2 full matrix algebra, `∞(N,M2) be
the C∗-algebra of the bounded sequences in M2, and c0(N,M2) be the ideal of the
sequences that converge to zero. We shall freely identify `∞(N,M2)with `∞(N)⊗
M2, and `∞(N,M2)/c0(N,M2) with C(N) ⊗M2, where C(N) = `∞(N)/c0(N).
The quotient map from `∞(N) (or `∞(N) ⊗M2) onto C(N) (or C(N) ⊗M2) is
denoted by Q.

LEMMA 2. Let Γ be an abelian group and π : Γ → C(N)⊗M2 be a uniformly
bounded representation. Then the amenable operator algebra

A := Q−1(span π(Γ )) ⊂ `∞(N,M2)

is isomorphic to a C∗-algebra if and only if π is unitarizable.

Proof. First of all, we observe that the operator algebra A is indeed amenable
because it is an extension of an amenable Banach algebra spanπ(Γ ) by the
amenable Banach algebra c0(N,M2) (see [Ru02, Theorem 2.3.10]). Suppose now
that π is unitarizable and v ∈ C(N)⊗M2 has the property that Adv ◦π is unitary.
We may assume that v is positive, by taking the positive component from its polar
decomposition. Since v is invertible, we can choose a representing sequence vm ,
for m ∈ N of v such that each vm is positive and moreover 1/‖v−1

‖ ≤ vm ≤ ‖v‖

for all m. In particular each vm is invertible and ‖vm‖‖v
−1
m ‖ ≤ ‖v‖‖v

−1
‖ for all
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m. Now we have a representing sequence of an invertible lift ṽ ∈ `∞(N,M2)

of v such that ‖ṽ‖‖ṽ−1
‖ = ‖v‖‖v−1

‖. Then ṽAṽ−1
= Q−1(span (Adv ◦ π(Γ )))

is a self-adjoint C∗-subalgebra of `∞(N,M2). Conversely, suppose that A is
isomorphic to a C∗-algebra, which is necessarily nuclear. Then thanks to the
solution of Kadison’s similarity problem for nuclear C∗-algebras (see [Pi01,
Theorem 7.16] or [Pi07, Theorem 1]), there is a ṽ in the von Neumann algebra
`∞(N,M2) such that ṽAṽ−1 is a C∗-subalgebra. Let v = Q(ṽ) ∈ C(N) ⊗ M2.
Since Q(ṽAṽ−1) is a commutative C∗-subalgebra of C(N)⊗M2, for every s ∈ Γ ,
the element vπ(s)v−1 is normal with its spectrum in the unit circle, which implies
that vπ(s)v−1 is unitary.

The above proof uses the fact that every (not necessarily separable) amenable
C*-algebra is nuclear, as well as the solution to Kadison’s similarity problem
for nuclear C*-algebras. The reader may appreciate a more elementary and
self-contained proof. Assume that θ is a bounded homomorphism of a unital
C*-algebra A into `∞(N,M2). We need to prove that θ is similar to a
*-homomorphism. It suffices to show that every coordinate map is similar to a
*-homomorphism and that the similarities are implemented by a uniformly
bounded sequence vn , for n ∈ N, of operators. Consider the restriction of θ to the
unitary group G of A. At the nth coordinate we have a bounded homomorphism
from G to GL(2,C). Since a bounded subgroup of GL(2,C) is included in
a compact subgroup, by a standard averaging argument we find vn such that
Advn ◦ θ is a unitary representation of G. The operators vn are easily seen to
satisfy the required properties.

Proof of Theorem 1. We consider two 2-by-2 order-two invertible matrices which
are not simultaneously unitarizable. For instance, let s0

=

[
1 0
0 −1

]
and s1

=[
1 0
1 −1

]
. Then by compactness, one has

ε(C) := inf{d(vs0v−1,U)+ d(vs1v−1,U) : v ∈M−1
2 , ‖v‖‖v

−1
‖ ≤ C} > 0

for every C > 0. Here U denotes the unitary group of M2.
We shall need two families {E0

i : i ∈ ℵ1} and {E1
i : i ∈ ℵ1} of subsets of N

such that: (i) E k
i ∩ E l

j is finite whenever (i, k) 6= ( j, l); and (ii) these two families
are not separated, in the sense that there is no F ⊆ N such that both E0

i \ F
and E1

i ∩ F are finite for all i. The existence of such pair of families follows
from [Lu47]. Luzin actually proved much more: he constructed a single family
{Ei : i < ℵ1} of infinite subsets of N such that: (i) Ei ∩ E j is finite whenever
i 6= j ; and (ii) whenever X ⊆ ℵ1 is such that both X and ℵ1 \ X are uncountable,
then the families {Ei : i ∈ X} and {Ei : i ∈ ℵ1 \ X} cannot be separated (see
appendix B below for Luzin’s proof).
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The projections pk
i = Q(1Ek

i
) ∈ C(N) are mutually orthogonal. For each pair

(i, k), we define sk
i in C(N)⊗M2 by

sk
i = pk

i ⊗ sk
+ (1− pk

i )⊗ 1.

Let Γ :=
⊕

i∈ℵ1,k∈{0,1} Z/2Z and {ek
i } be its standard basis. Then the map ek

i 7→ sk
i

extends to a uniformly bounded representation π : Γ → C(N) ⊗ M2 such that
‖π‖ = max{‖s0

‖, ‖s1
‖}. We claim that π is not unitarizable. Suppose for a

contradiction that there is an invertible element v ∈ C(N)⊗M2 such that Adv ◦π
is unitary. As in the proof of Lemma 2 we may assume that v is positive and
find a representing sequence vm , for m ∈ N, of an invertible lift of v such that
‖vm‖‖v

−1
m ‖ ≤ ‖v‖‖v

−1
‖ for all m. Let ε = ε(‖v‖‖v−1

‖).
Now let F0

:= {m : d(vms0v−1
m ,U) < ε/2}, and note that this set is disjoint

from F1
:= {m : d(vms1v−1

m ,U) < ε/2}. Therefore we have i such that E0
i \ F0 is

infinite or such that E1
i \ F1 is infinite. If the former case applies, then

lim sup
n∈E0

i ,n→∞

d(vns0v−1
n ,U) ≥ ε/2,

contradicting the assumption that v unitarizes π . The case where E1
i \F1 is infinite

similarly leads to a contradiction. Thus, by Lemma 2, the preimage of spanπ(Γ )
in `∞(N,M2) is an amenable operator algebra which is not isomorphic to a C∗-
algebra. Its density character is equal to ℵ1 = |Γ |.

Let Γi be a countable subgroup of Γ and denote the separable algebra
Q−1(spanπ(Γi)) by Ai . Theorem 8 below shows that Ai is similar inside
`∞(N,M2) to an amenable C∗-algebra, with a similarity element vi satisfying
‖vi‖‖v

−1
i ‖ ≤ ‖π‖

2. Furthermore, since every amenable C∗-algebra is 1-amenable
by results of Haagerup [Ha83],Ai is ‖π‖4-amenable. NowA is the inductive limit
of the family (Ai) as Γi varies over all countable subgroups of Γ . Since each Ai

is ‖π‖4-amenable, a routine argument with approximate diagonals shows that A
is also ‖π‖4-amenable: for details see [Ru02, Proposition 2.3.17].

Finally, we explain how our example can be modified to have arbitrarily small
amenability constant. For 0 < t < 1, we keep s0

=

[
1 0
0 −1

]
but replace s1

with s1(t) =
[

1 0
t −1

]
in our original construction. Denoting the resulting algebra

byA(t), the previous arguments show thatA(t) is ‖s1(t)‖4-amenable, and ‖s1(t)‖
can be made arbitrarily close to 1.

We note that a set-theoretical study of the cohomological nature of gaps similar
to Luzin’s was initiated in [Ta95].
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3. Unitarizability of uniformly bounded representations

In this section, we develop a general study of (non)unitarizability. First, we
shall deal with separable C∗-algebras. Let A be a unital C∗-algebra and θ be a
∗-automorphism on A. An element a ∈ A is called a cocycle if it satisfies

|||a||| := sup
n≥1

∥∥∥∥ n−1∑
k=0

θ k(a)
∥∥∥∥ < +∞.

It is inner (or a coboundary) if there is x ∈ A such that a = x − θ(x). We recall
that the first bounded cohomology group (see [Mo01]) of the Z-module (A, θ) is
defined as

H 1
b (A, θ) = {cocycles}/{inner cocycles}.

When A is abelian and θ corresponds to a minimal homeomorphism of its
spectrum then H 1

b is trivial (see [Or00, Theorem 2.6]).
We note that every cocycle is approximately inner. Indeed, since an :=∑n−1
k=0 θ

k(a) satisfies an+1 = a + θ(an), the element xn := n−1 ∑n
m=1 am satisfies

‖xn‖ ≤ |||a||| and ‖a − (xn − θ(xn))‖ ≤ 2n−1
|||a|||. Suppose for a moment that

θ is inner, θ = Adu for a unitary element u ∈ A, and a ∈ A is a cocycle.
Then, t =

[
u au
0 u

]
is an invertible element in M2(A) such that tn

=

[
un anun

0 un

]
for

n ≥ 1. Therefore supn∈Z ‖t
n
‖ ≤ 1+ |||a||| and t gives rise to a uniformly bounded

representation πa of Z into A.

LEMMA 3. Let A, u, a, and πa be as above. Then the uniformly bounded
representation πa is unitarizable if and only if a is inner.

See [Pi01, Lemma 4.5] or [MO10] for the proof of this lemma.

PROPOSITION 4. Let A be a unital separable C∗-algebra and θ be a
∗-automorphism of A. Suppose that there are a (nonunital) θ -invariant
C∗-subalgebra A0, a state φ on A0, and a sequence of natural numbers n(k) such
that (φ ◦ θ n(k))∞k=1 converges to 0 pointwise on A0. Then, H 1

b (A, θ) 6= 0.

Proof. By a standard Hahn–Banach convexity argument, we construct an
approximate unit (hn)

∞

n=0 of A0 such that 0 ≤ hn ≤ 1, hn+1hn = hn , and
‖hn − θ(hn)‖ < 2−n for all n. We note that φ′(hn) → 1 for any state φ′ on
A0. Taking a state extension, we may assume that φ is defined on A. Since A
is separable, passing to a subsequence, we may assume that φk

:= φ ◦ θ n(k)

converges pointwise to a state, say ψ , on A.
Set k(1)= 1. By induction, one can find strictly increasing sequences (m( j))∞j=1

and (k( j))∞j=1 of natural numbers such that φk(i)(hm( j)) > 1− 2− j for every i ≤ j

https://doi.org/10.1017/fms.2013.6 Published online by Cambridge University Press
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and φk( j+1)(hm( j)) < 2− j for every j. Let

x = SOT-
∞∑
j=1

(hm(2 j) − hm(2 j−1)) ∈ A∗∗.

We extend θ and φ on A∗∗ by ultraweak continuity. One has a := x − θ(x) ∈ A,
since it is a norm-convergent series in A0. By a telescoping argument, a is a
cocycle.

Suppose for the sake of obtaining a contradiction that a is inner and x−θ(x) =
y − θ(y) for some y ∈ A. Then, y ∈ A and θ(x − y) = x − y. It follows that
φk( j)(y)→ ψ(y) and φk( j)(x − y) = φ(x − y). Hence the sequence (φk( j)(x))∞j=1
converges. However, for j ≥ 1,

φk(2 j)(x) ≥ φk(2 j)(hm(2 j) − hm(2 j−1)) ≥ 1−
1

22 j
−

1
22 j−1

and

φk(2 j+1)(x) ≤ φk(2 j+1)

( j∑
i=1

hm(2i)

)
+

∞∑
i= j+1

(1− φk(2 j+1)(hm(2i−1))) ≤
1
4
.

Hence, the sequence (φk( j)(x))∞j=1 does not converge, and we have a contradiction.

Examples of A0, φ and θ as in the statement of Proposition 4 are the ideal K
of compact operators on B(`2(Z)), any one of its states, and the bilateral shift on
`2(Z).

LEMMA 5. For every unital separable C∗-algebra A which is not of type I, there
is a unitary element u ∈ A such that H 1

b (A,Adu) 6= 0.

Proof. Let z be the bilateral shift on `2(Z) and take a self-adjoint element
h ∈ B(`2(Z)) such that z = exp(

√
−1h). Let C ⊂ B(`2(Z)) be the unital

C∗-subalgebra generated by K and h, and let φ0 be the vector state at δ0. Since
C is an extension of a commutative C∗-algebra by K, it is nuclear. By Kirchberg’s
theorem and Glimm’s theorem in tandem [Ki95, Corollary 1.4(vii)], there are a
unital C∗-subalgebra A1 of A and a surjective ∗-homomorphism π from A1 onto
C. Let g ∈ A1 be a self-adjoint lift of h and let us have u := exp(

√
−1g) ∈ A1,

which is a unitary lift of z. Then A0 = π
−1(K) is an Adu-invariant subalgebra and

the state φ = φ0 ◦ π satisfies φ ◦ (Adu)
n
→ 0 pointwise on A0. Hence the result

follows from Proposition 4.

Combining Lemmas 5 and 3, we arrive at the following theorem.
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THEOREM 6. For every unital separable C∗-algebra A which is not of type I,
there is a uniformly bounded representation of Z into M2(A) which is not
unitarizable.

Now, we shall deal with nonseparable C∗-algebras. Our approach uses model
theory of metric structures and the extension of Pedersen’s techniques [Pe88] as
presented in [FH13]. The following is [FH13, Definition 1.1], with a misleading
typo corrected.

DEFINITION 7. Given a C∗-algebra M, a degree-one *-polynomial with
coefficients in M is a linear combination of terms of the form axb, ax∗b
and a with a, b in M. A C∗-algebra M is said to be countably degree-one
saturated if for every countable family of degree-one ∗-polynomials Pn(x̄) with
coefficients in M and variables xm , for m ∈ N, and every family of compact sets
Kn ⊂ R, for n ∈ N, the following are equivalent (writing b̄ for (b1, b2, . . .) and
M≤1 for the closed unit ball of M).

(1) There are bm ∈M≤1, for m ∈ N, such that ‖Pn(b̄)‖ ∈ Kn for all n.

(2) For every N ∈ N there are bm ∈M≤1, for m ∈ N, such that

dist (‖Pn(b̄)‖, Kn) ≤
1
N

for all n ≤ N .

A type {Pn(x̄) ∈ Kn : n ∈ N} satisfying (1) is said to be realized in M and a
type satisfying (2) is said to be consistent with (or approximately finitely realized
in) M. Coronas of σ -unital C∗-algebras, in particular the Calkin algebra Q(`2)

and C(N)⊗M2, as well as ultraproducts associated with nonprincipal ultrafilters
on N, are countably degree-one saturated [FH13, Theorem 1.4]. In each of these
cases, given a consistent type, a realization b̄ is assembled from the approximate
realizations b̄n , for n ∈ N, and a carefully chosen, appropriately quasicentral
approximate unit en , for n ∈ N, as b̄ =

∑
n(en − en+1)

1/2b̄n(en − en+1)
1/2.

See [FH13] for details and more examples of countably degree-one saturated
C∗-algebras.

THEOREM 8. Let M be a unital countably degree-one saturated C∗-algebra.
Then, every uniformly bounded representation π : Γ → M of a countable
amenable group Γ into M is unitarizable. Moreover a similarity element v can
be chosen such that it satisfies ‖v‖‖v−1

‖ ≤ ‖π‖2.

Proof. The proof is analogous to the standard one (see [Pi01, Theorem 0.6]),
modulo applying countable degree-one saturation. Consider the type in variable
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x over M consisting of conditions ‖x − x∗‖ = 0, ‖x‖ ≤ ‖π‖2, ‖‖π‖2
− x‖ ≤

‖π‖2
− ‖π‖−2, and ‖π(s)xπ(s)∗ − x‖ = 0 for all s ∈ Γ .

We now check that this type is consistent. Let (Fn)
∞

n=1 be a Følner sequence of
finite subsets of Γ . Then,

hn =
1
|Fn|

∑
t∈Fn

π(t)π(t)∗,

are positive elements in M such that ‖π‖−2
≤ hn ≤ ‖π‖

2 and

‖π(s)hnπ(s)∗ − hn‖ ≤
|Fn 4 s Fn|

|Fn|
‖π‖2

→ 0

for every s ∈ Γ . Hence this type is consistent and by countable degree-one
saturation there is h ∈M which realizes it. Therefore we have h = h∗, ‖h‖ ≤
‖π‖2, ‖‖π‖2

− h‖ ≤ ‖π‖2
− ‖π‖−2, and π(s)hπ(s)∗ = h for every s ∈ Γ . It

follows that h is a positive element such that ‖π‖−2
≤ h ≤ ‖π‖2 and the invertible

elements h−1/2π(s)h1/2 satisfy

(h−1/2π(s)h1/2)(h−1/2π(s)h1/2)∗ = h−1/2π(s)hπ(s)∗h−1/2
= 1,

that is , h−1/2π(s)h1/2 are unitary.

Theorem 8 shows that the method used in the proof of Theorem 1 cannot be
used to produce a separable counterexample.
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Appendix A. A correction for [Ch13]

We take the opportunity to fill a small gap in [Ch13]. The main result of that
paper is only proved for commutative, amenable subalgebras of σ -finite, finite
von Neumann algebras. It is then stated in [Ch13] that the general case follows
from the σ -finite one because any finite von Neumann algebra M decomposes
as a direct product

∏
i Mi where each Mi is σ -finite. However, the example of

the present paper shows that similarity to a C∗-algebra is not preserved by taking
inductive limits, even with a uniform bound on the similarity elements, so more
justification is needed. Instead, we may argue as follows. Let A be an amenable
subalgebra of M and let Ai be its image under the projection M → Mi .
Applying the main result of [Ch13] to each Ai , we obtain a uniformly bounded
family vi ∈Mi such that viAiv

−1
i is a commutative C∗-subalgebra of Mi . Take

v to be the direct product of the vi . Then vAv−1 is an amenable subalgebra of the
commutative C∗-algebra

∏
i viAiv

−1
i , and hence by [Še77] it is self-adjoint.

Appendix B. A construction of Luzin’s gap

For the reader’s convenience we prove Luzin’s theorem. Following von
Neumann, we identify n ∈ N with the set {0, 1, . . . , n−1}. We construct a family
Ei , for i < ℵ1, of infinite subsets of N such that:

(1) Ei ∩ E j is finite whenever i 6= j ; and

(2) for every i and every m ∈ N the set { j < i : E j ∩ Ei ⊆ m} is finite.

The construction is by recursion. For a finite i let Ei = {2i(2k + 1) : k ∈ N}.
Assume that i < ℵ1 is infinite and the sets E j , for j < i , were chosen to satisfy
the requirements. Since i is countable, we can re-enumerate E j , for j < i as Fn ,
for n ∈ N.

Now let k(0) = 0 and k(n) = min Fn \ (k(n − 1) ∪
⋃

l<n Fl) for n ≥ 1. The
sequence {k(n)} is strictly increasing and k(n) ∈ Fl implies n ≤ l. Therefore
Ei = {k(n) : n ∈ N} is infinite and Ei ∩ Fn ⊆ {k(0), . . . , k(n)} is finite for all n.
Finally, for any m ∈ N the set {n ∈ N : Fn ∩ Ei ⊆ m} ⊆ {n : k(n) < m} is finite.

This describes the recursive construction of a family Ei , for i < ℵ1, satisfying
(1) and (2).

We claim that for any X ⊆ ℵ1 such that X and ℵ1 \ X are uncountable the
families {Ei : i ∈ X} and {Ei : i ∈ ℵ1\X} cannot be separated. Assume otherwise,
and fix F ⊆ N separating them. Since Ei \ F is finite for all i ∈ X , there is an
m ∈ N such that X ′ = {i ∈ X : Ei \ F ⊆ m} is uncountable. By increasing m if
necessary we can assure that Y ′ = {i ∈ ℵ1 \ X : Ei ∩ F ⊆ m} is also uncountable.
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Pick i ∈ Y ′ such that X ′′ = { j ∈ X ′ : j < i} is infinite. Then for each j ∈ X ′′

we have E j ∩ Ei ⊆ (E j \ F) ∪ (Ei ∩ F) ⊆ m. But this contradicts (2).
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