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Abstract

We compute the Chow groups and the Fulton–MacPherson operational Chow cohomology ring for
a class of singular rational varieties including toric varieties. The computation is closely related
to the weight filtration on the ordinary cohomology of these varieties. We use the computation to
answer one of the open problems about operational Chow cohomology: it does not have a natural
map to ordinary cohomology.

2010 Mathematics Subject Classification: 14C15 (primary); 14F42, 14M20 (secondary)

In 1995, Fulton, MacPherson, Sottile, and Sturmfels [13] succeeded in computing
the Chow group C H∗X of algebraic cycles and the ‘operational’ Chow
cohomology ring A∗X [12] for a class of singular algebraic varieties. The
varieties they consider are those which admit a solvable group action with finitely
many orbits; this includes toric varieties and Schubert varieties. In this paper,
we generalize their theorem that Ai X ∼= Hom(C Hi X,Z) to the broader class of
linear schemes X , as defined below. We compute explicitly the Chow groups and
the weight-graded pieces of the rational homology of those linear schemes which
are finite disjoint unions of pieces isomorphic to (Gm)

a
× Ab for some a, b. We

show that the Chow groups ⊗Q of any linear scheme map isomorphically to the
lowest subspace in the weight filtration of rational homology. Finally, we find
some special properties of toric varieties (splitting of the weight filtration on their
rational homology and existence of a map Ai X ⊗ Q → H 2i(X,Q) with good
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properties) which do not extend to arbitrary linear schemes, as is shown by an
interesting example (a surface with a cusp singularity). We formulate some open
problems about Chow cohomology in Section 8.

We define the class of linear schemes to consist of the schemes over a fixed field
k which can be obtained by an inductive procedure starting with affine space of
any dimension, in such a way that the complement of a linear scheme imbedded
in affine space is also a linear scheme, and a scheme which can be stratified
as a finite disjoint union of linear schemes is a linear schemes. (This class of
schemes is a slight variant of a class of schemes studied by Jannsen [16]; see
Section 2.)

Every scheme which admits an action of a split solvable group with finitely
many orbits is a linear scheme, since each orbit is isomorphic to (Gm)

a
× Ab

for some a, b. Some examples of linear schemes which do not have a solvable
group action with finitely many orbits are the intersection of two Schubert
varieties (studied by Deodhar and others in connection with the Kazhdan–Lusztig
polynomials), the discriminant hypersurface {∆ = 0} ⊂ Cn , and at least some
quotients of affine space by finite groups (these have interesting torsion in their
Chow groups).

Here are the main theorems.

THEOREM 1. We give explicit generators and relations for the Chow groups
of any scheme over a field k which can be stratified into finitely many pieces
isomorphic to (Gm)

a
× Ab.

In particular, Theorem 1 applies to varieties on which a split solvable group
acts with finitely many orbits. (See the end of Section 2.)

THEOREM 2. For any linear variety X which is proper over k, the Fulton–
MacPherson operational Chow ring A∗X [12] has

Ai X ∼= Hom(C Hi X,Z).

For a linear scheme X over the complex numbers, we can relate the Chow
groups to the weight filtration on the ordinary homology of X (Borel–Moore
homology if X is noncompact). (See [6] and [15] for the weight filtration on
Borel–Moore homology. They actually discuss the mixed Hodge structure on
cohomology with compact support, which is equivalent since H B M

i (X,Q) is dual
to H i

c (X,Q) for any complex scheme X . For any complex scheme, the weight
filtration of H B M

k (X,Q) is an increasing filtration with associated graded groups
in degrees −k to 0.)
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THEOREM 3. For any linear scheme X over the complex numbers, the natural
map

C Hi X ⊗Q→ W−2i H B M
2i (X,Q)

from the Chow groups into the smallest subspace of Borel–Moore homology with
respect to the weight filtration is an isomorphism.

The surjectivity of this map was proved by Jannsen [16].

THEOREM 4. For any scheme over the complex numbers which is stratified as a
finite disjoint union of varieties isomorphic to products (Gm)

a
× Ab, we give an

explicit chain complex whose homology computes the weight-graded pieces of the
Borel–Moore homology H B M

∗
(X,Q).

THEOREM 5. For each toric variety X, there is a natural grading of each group
H B M

i (X,Q) and H i(X,Q) which splits the weight filtration and is compatible
with products and mixed Hodge structures.

THEOREM 6. If X is a compact toric variety over the complex numbers, then
there is a natural isomorphism

Ai X ⊗Q
∼=

−−−−→ H 2i(X,Q) ∩ F i H 2i(X,C).

THEOREM 7. There is no functorial homomorphism A1 X ⊗Q→ H 2(X,Q) for
general complex varieties X, or even for normal projective linear varieties, which
agrees with the usual homomorphism for smooth X and which is well behaved in
families (see Section 7 for details).

As background for Theorems 6 and 7 we have the following. It was an open
problem for a long time to decide whether there was a natural map Ai X →
H 2i(X,Z) for all complex varieties X . This is true for smooth varieties, since
Ai X coincides with the Chow group of codimension-i cycles on X in that case.
In 1995, Bloch, Gillet, and Soulé [5] showed that there is a natural map from
Ai X ⊗ Q to gr2i

W H 2i(X,Q), which is a quotient of H 2i(X,Q) for X compact. In
fact it maps into Hodge filtration F i of this quotient. For compact toric varieties,
Theorem 6 lifts this map into H 2i(X,Q) ∩ F i H 2i(X,C); but Section 7 gives an
example of a linear variety Y (a surface with a single cusp singularity) for which
the map does not so lift. By analyzing a family of varieties containing Y , we can
see that there is no map Ai X ⊗Q→ H 2i(X,Q) with good properties in general.

An earlier version of this paper was written around 1996. A number of papers
over the past 15 years have referred to it, and so it seems reasonable to make it
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permanently available. Following a referee’s suggestion, I added some comments
on the relation between higher Chow groups and Voevodsky’s motivic homology
groups. I also added some papers to the bibliography which refer to the preprint
version of this paper, and which develop the ideas further [7, 10, 14, 17, 23].

1. Examples of toric varieties

In this section, we recall some examples of singular compact toric varieties
from Fulton [11], showing the basic phenomena which inspired some of the
general theorems in the rest of the paper: the Chow groups can have torsion, and
the homology can be bigger than the Chow groups, even rationally. These things
do not happen for smooth compact toric varieties.

A toric variety is described by a fan, which is an arrangement of rational
polyhedral cones in N ⊗ R for a lattice N ∼= Zn such that a face of a cone in
the fan is a cone in the fan, and the intersection of two cones is a face of each. Let
X be the compact toric surface corresponding to the fan in Z2 with edges through
the points (2,−1), (−1, 2), and (−1,−1). Then

C H1 X = Z⊕ Z/3,

as a result of the three points (2,−1), (−1, 2), and (−1,−1) all being equal
in N ⊗ Z/3 [11, p. 65]. Similar examples give toric surfaces with Z/n-torsion
in C H1 X for any n. For compact toric surfaces, C H∗X maps isomorphically to
H∗(X,Z).

Next, consider the fan with edges through the vertices (±1,±1,±1) of a
cube, in the sublattice of Z3 generated by these vertices [11, p. 105]. Then the
corresponding compact toric threefold has C H0 X = H0(X,Z) = Z, C H3 X =
H0(X,Z) = Z, and

C H1 X = H2 X = Z, H3 X = Z2, C H2 X = H 4 X = Z5.

Other examples (for a trivial one, take the product of this variety with itself) show
that even the even-dimensional homology can be bigger than the Chow groups.

2. Proof of Theorem 1

Proof. We use Bloch’s higher Chow groups [3]. Levine showed that these groups
satisfy a localization exact sequence for all separated schemes of finite type over
a field, generalizing Bloch’s proof in the quasi-projective case; see [4] and [21,
Theorem 0.7].

Let us note the comparison between higher Chow groups and Voevodsky’s
(Borel–Moore) motivic homology groups, although it will not be needed in
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this paper. Voevodsky’s motivic homology groups were initially defined when
the base field k admits resolution of singularities [22, Definition 16.20]. More
recently, Kelly generalized Voevodsky’s definition to any field, at the cost
of considering only motivic homology with a coefficient ring in which the
exponential characteristic of the field is invertible [18, Proposition 5.5.5]. These
motivic homology groups agree with Bloch’s higher Chow groups for separated
schemes of finite type over a field, under the same restriction on coefficients,
by the arguments of [21, Theorem 0.7], [22, Proposition 19.18], and [27,
Corollary 2].

Note that Bloch’s higher Chow groups C H i(X, j) have the functorial
properties of a (Borel–Moore) homology theory, despite being written with
a superscript. For example, for a singular scheme X , the groups C H ∗(X, 0) are
the usual Chow groups of X (indexed so that C Hi(X) = C H dim X−i(X, 0)). As a
result, the notation C H i(X, j) is only reasonable when X is equidimensional. In
general, for an equidimensional scheme X over k, we define motivic homology as

H M
a (X,Z(b)) := C H dim X−b(X, a − 2b).

If X is not equidimensional, then H M
a (X,Z(b)) makes sense from Bloch’s

definition, whereas C H i(X, j) does not. On the other hand, it always makes
sense to write

C H ∗(X, j) := ⊕b H M
2b+ j(X,Z(b)).

All the tori we mention will be assumed to be split, that is, isomorphic to
(Gm)

a over some base scheme. Also, it is important to understand the meaning of
the word ‘stratified’ in the statement of the theorem: this means that the scheme
X we are given is a finite disjoint union of locally closed subvarieties, here
assumed to be isomorphic to (Gm)

a
× Ab for various a, b, such that the closure

of an i-dimensional piece S, minus S, is contained in the union of the pieces of
dimension less than i .

For any scheme X over k, the motivic homology of Gm ×k X is given by

H M
a (Gm × X,Z(b)) = H M

a−2(X,Z(b − 1))⊕ H M
a−1(X,Z(b)).

This follows from homotopy invariance of the motivic homology groups together
with the localization sequence

· · · → H M
2i+1(U,Z(i))→ H M

2i (S,Z(i))→ H M
2i (X,Z(i))→ H M

2i (U,Z(i))→ 0

for S a closed subscheme of X with complement U . The last three groups in this
exact sequence are just the usual Chow groups of S, X , and U .
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In the notation C H ∗(X, j) discussed above, we have

C H ∗(Gm ×Z X, ∗) = C H ∗(X, ∗)
⊗

Z

Λ∗M,

where M ∼= Z is in degree (1, 1). Using this formula repeatedly, we can compute
the motivic homology of a general split torus T :

C H ∗(T ×Z X, ∗) = C H ∗(X, ∗)
⊗

Z

Λ∗M,

where the finitely generated free abelian group M = Hom(T,Gm) is in degree
(1, 1).

In the standard notation for motivic homology, this formula looks a little more
complicated: if T is a d-dimensional torus over a field k, then

H M
a (T,Z(b)) = ⊕ jΛ

j M
⊗

Z

H M
a−2d+ j(k,Z(b − d + j)).

Moreover, the same formula holds if T is a d-dimensional variety which is a
product T0 × Ad−r , where T0 is a torus of dimension r , and we define M =
Hom(T0,Gm). This follows from the homotopy invariance of motivic homology.

Now we can begin our analysis of the usual Chow groups of a k-scheme cut
into pieces T = (Gm)

a
× Ab. Write M(T ) for the finitely generated free abelian

group Hom((Gm)
a,Gm). Since we have a stratification of the scheme X , the

union X i of the pieces of dimension 6 i is closed (for all i), and the difference
X i − X i−1 is isomorphic to the disjoint union of the i-dimensional pieces Ti .
From the localization sequence for motivic homology, we get a spectral sequence
converging to the motivic homology of X of weight i ,

E1
pq = H M

p+q(Tp,Z(i))⇒ H M
p+q(X,Z(i)).

This spectral sequence has homological numbering, meaning that the differential
di has bidegree (−i, i − 1).

⊕H M
2i (Td−2,Z(i)) ⊕H M

2i+1(Td−1,Z(i))oo ⊕H M
2i+2(Td,Z(i))oo

⊕H M
2i (Td−1,Z(i)) ⊕H M

2i+1(Td,Z(i))oo

ll

⊕H M
2i (Td,Z(i))

The bottom diagonal (NW to SE) corresponds to the usual Chow groups
C Hi X = H M

2i (X,Z(i)), the diagonal above that to H M
2i+1(X,Z(i)), and so on.

The direct sums shown run over the sets of pieces Tr of a given dimension r .
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We now write this spectral sequence in more detail, using the computation
of the motivic homology of the pieces Ti

∼= (Gm)
a
× Ai−a . The computation is

expressed in terms of the motivic homology of the base field k, and so I will first
summarize some of the simpler results about these groups. First,

H M
a (k,Z(b)) = 0 if a < 2b or if a < b

by the definition of higher Chow groups. Next,

H M
2b (k,Z(b)) =

{
Z if b = 0
0 otherwise

H M
2b+1(k,Z(b)) =

{
k∗ if b = −1
0 otherwise.

These facts are all we need in order to compute the classical Chow groups
C Hi(X) = H M

2i (X,Z(i)) for the scheme X which can be cut into pieces
(Gm)

a
× Ab. Namely, they imply that H M

a (Tr ,Z(i)) is nonzero only if a > r + i
and a > 2i ; that is, the E1 term of the spectral sequence is concentrated in rows
> i , and on or above the diagonal corresponding to H M

2i (X,Z(i)) = C Hi X .
Moreover, the only nonzero group on this diagonal is ⊕Ti H M

2i (Ti ,Z(i)) = ⊕Ti Z.
It follows that the spectral sequence degenerates at E2 on this diagonal, so that

C Hi X = ⊕Ti H M
2i (Ti ,Z(i))/⊕Ti+1 H M

2i+1(Ti+1,Z(i))
= ⊕Ti Z/⊕Ti+1 (M(Ti+1)⊕ k∗).

To clarify this, we draw a picture of the spectral sequence below, using a few
additional facts about the motivic homology of k: H M

a (k,Z(0)) is Z if a = 0 and
zero otherwise; H M

a (k,Z(−1)) is k∗ if a = −1 and zero otherwise [3, Theorem
6.1]; H M

−2(k,Z(−2)) = K2k, H−3(k,Z(−3)) is the Milnor K -group K M
3 k, and

H M
−1(k,Z(−2)) is K ind

3 k := K3(k)/K M
3 (k). The bottom diagonal gives the Chow

group C Hi X :

0 0 0 ⊕Ti+2 K ind
3 k

⊕Ti Z ⊕Ti+1 (M(Ti+1)⊕ k∗)oo ⊕Ti+2 (Λ
2 M(Ti+2)⊕ (M(Ti+2)

⊗
Z k∗)⊕ K2k)oo

0 0

Clearly we can say more about this spectral sequence than just its degeneration
on the diagonal corresponding to the Chow groups; but we put this aside for now.
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Let us just mention that the d1 differential ⊕Ti+1(M(Ti+1) ⊕ k∗) → ⊕Ti Z is 0
on each copy of k∗, so that we can describe C Hi X just as ⊕Ti Z/ ⊕Ti+1 M(Ti+1).
This is a special case of the following lemma. Theorem 1 is proved.

LEMMA 1. Let S be a closed subscheme of a scheme X over k, let U = X − S,
and let Y be another k-scheme. Then the composition of the following product
map and boundary map is 0:

C H ∗U
⊗

Z

C H ∗(Y, 1)→ C H ∗(U × Y, 1)→ C H ∗(S × Y ).

Proof. We have a surjection C H ∗X → C H ∗U , which implies that
C H ∗X

⊗
Z C H ∗(Y, 1) → C H ∗U

⊗
Z C H ∗(Y, 1) is surjective. So it suffices to

show that the map from C H ∗X
⊗

Z C H ∗(Y, 1) to C H ∗(S×Y ) is 0. But this map
is just the composition of the product C H ∗X

⊗
Z C H ∗(Y, 1)→ C H ∗(X × Y, 1)

with the composition

C H ∗(X × Y, 1)→ C H ∗(U × Y, 1)→ C H ∗(S × Y ),

and this last composition is 0 (it is part of the localization sequence).

Addendum. Rosenlicht showed that a homogeneous space for a split solvable
group over a field k is isomorphic as a variety to (Gm)

a
× Ab for some a, b

[24, p. 119]. (A solvable group is said to be split over k if it is a successive
extension of the additive and multiplicative groups over k, Ga and Gm . Every
smooth connected solvable group over an algebraically closed field is split.)

It follows that the varieties considered by Fulton, MacPherson, Sottile, and
Sturmfels [13], that is, varieties over an algebraically closed field which admit
a solvable group action with finitely many orbits, are included among those
considered in Theorem 1. In particular, such varieties are linear schemes in the
sense defined below.

3. Proof of Theorem 2 and the Chow Künneth property for linear schemes

We begin by defining the class of varieties considered in the theorem. The class
of linear schemes over a field k is the class of schemes obtained by an inductive
procedure starting with affine space of any dimension over k, in such a way that
the complement of a linear scheme imbedded in affine space (in any way) is a
linear scheme, and a scheme stratified (cf. Section 2) into a finite disjoint union
of linear schemes is a linear schemes. The property of being a linear scheme
only depends on the underlying reduced scheme. This definition is inspired by
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Jannsen’s definition of a slightly broader class of schemes, which he called linear
varieties [16]. (In Jannsen’s similar inductive procedure, the complement of a
linear variety imbedded in any linear variety, not just in affine space, is called a
linear variety. In this paper, I will always use the phrase ‘linear scheme’ in the
narrower sense defined above.)

Fortunately, all the examples of Jannsen’s class of varieties which he mentions
do belong to this paper’s class of linear schemes, so it seems silly to worry
about the difference too much. The examples include complements in Pn (or An)
of a union of linear subspaces, successive blow-ups of Pn in linear subspaces,
and schemes stratified by such varieties, such as Schubert varieties and toric
varieties. Our interest is in singular schemes, but of course such smooth varieties
as Grassmannians and flag varieties are included.

We will deduce Theorem 2, that Ai X ∼= Hom(C Hi X,Z) for proper linear
varieties X over k, from the following two propositions.

PROPOSITION 1. If X is a linear scheme and Y is any scheme of finite type over
k, then

C H∗X
⊗

Z

C H∗Y
∼=
→ C H∗(X × Y ).

PROPOSITION 2. If X is a proper k-variety such that

C H∗X
⊗

Z

C H∗Y
∼=
→ C H∗(X × Y )

for all schemes Y of finite type over k, then the cap product maps Ai X →
Hom(C Hi X,Z) are isomorphisms.

We only outline the proof of Proposition 2, which is one of the main results
of Fulton, MacPherson, Sottile, and Sturmfels [13]. By definition, an element c ∈
Ai X is a collection of homomorphisms C HmY → C Hm−i Y , written z 7→ f ∗c∩ z,
for all maps f : Y → X and all integers m, which satisfy three compatibility
conditions: with proper pushforward, flat pullback, and intersection with a divisor,
whenever one has maps Y ′ → Y → X with Y ′ → Y proper, or flat, or the
inclusion of a Cartier divisor. The main step in the proof of Proposition 2 is,
given an abelian group homomorphism φ : C Hi X → Z, to construct an element
Cφ ∈ Ai X , assuming that X satisfies the Chow Künneth property. Thus, for every
map f : Y → X and every m, we have to construct a homomorphism from C HmY
to C Hm−i Y . This homomorphism is defined to be the composite
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C HmY → C Hm(X × Y ) = ⊕ j(C H j X ⊗ C Hm− j Y )
→ C Hi X ⊗ C Hm−i Y → Z⊗ C Hm−i Y = C Hm−i Y.

The maps here are clear except for the first one, which is induced by the inclusion
of Y into X × Y via the graph of f : Y → X . One checks that these maps (for
different schemes Y ) satisfy the compatibility conditions to give an element of
Ai Y , and that every element of Ai X is so obtained. (We need properness of X for
this last step, in order to have a degree map C H0 X → Z.)

We now turn to the proof of Proposition 1.
The higher Chow groups C H i(X, ∗) are defined as the homology of a complex

zi(X, ∗) of free abelian groups [3]. It will be convenient to consider, for varieties
X and Y , the homology of the complex zi(X, ∗)

⊗
Z z j(Y, ∗); call it C H i, j(X, Y,

∗). By the Künneth formula for chain complexes, we have

C H i, j(X, Y, 0) = C H i X
⊗

Z

C H j Y,

whereas for C H i, j(X, Y, 1) there is only an exact sequence

0→ (C H i X
⊗

Z

C H j(Y, 1))⊕ (C H i(X, 1)
⊗

Z

C H j Y )→ C H i, j(X, Y, 1)

→ TorZ
1 (C H i X,C H j Y )→ 0.

The point is that the product on the higher Chow groups is given by a map from
a subcomplex of zi(X, ∗)

⊗
Z z j(Y, ∗) with the same homology to the complex

zi+ j(X × Y, ∗); so the product gives a map

C H i, j(X, Y, ∗)→ C H i+ j(X × Y, ∗).

Consider the following two properties of schemes.
Weak property. A scheme X of finite type over k has the weak property (or:

‘satisfies the Chow Künneth property’) if the natural map

C H ∗X
⊗

Z

C H ∗Y → C H ∗(X × Y )

is an isomorphism for all schemes Y of finite type over k. (Be warned that we are
writing C H ∗X for the direct sum ⊕ j C H j X .)

Strong property. A scheme U of finite type over k has the strong property if it
satisfies the weak property and the map

⊕C H ∗,∗(U, Y, 1)→ C H ∗(U × Y, 1)

is surjective for all schemes Y of finite type over k.
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We will prove by induction on dimension that the complement of any linear
scheme imbedded in affine space satisfies the strong property and, simultaneously,
that any quasi-projective linear scheme satisfies the weak property. The latter
statement is the theorem we are trying to prove.

LEMMA 2. Affine space An satisfies the strong property.

Proof. Use homotopy invariance of the higher Chow groups.

LEMMA 3. Let S be a closed subscheme of a separated scheme X of finite type
over k, and let U = X − S. If X satisfies the strong property and S the weak, then
U satisfies the strong property.

Proof. We have the localization sequence

C H ∗(X, 1)→ C H ∗(U, 1)→ C H ∗(S, 0)→ C H ∗(X, 0)→ C H ∗(U, 0)→ 0

which comes from an exact triangle of complexes of free abelian groups, z∗(S,
∗) → z∗(X, ∗) → z∗(U, ∗). (As noted in Section 2, the total group C H ∗(X, j)
makes sense even if X is not equidimensional.) Therefore we can tensor this exact
triangle over Z with any complex of abelian groups, in particular with z∗(Y, ∗) for
a scheme Y over k, and we get another exact triangle. Taking homology gives a
long exact sequence, with product maps as shown:

C H ∗S
⊗

Z C H ∗Y //

��

C H ∗X
⊗

Z C H ∗Y //

��

C H ∗U
⊗

Z C H ∗Y //

��

0

C H ∗(S × Y ) // C H ∗(X × Y ) // C H ∗(U × Y ) // 0.

The first and second vertical arrows are isomorphisms, and so the third is also an
isomorphism. Continuing these sequences to the left, we have

C H ∗,∗(X, Y, 1) //

��

C H ∗,∗(U, Y, 1) //

��

C H ∗S
⊗

Z C H ∗Y //

��

C H ∗X
⊗

Z C H ∗Y

��

C H ∗(X × Y, 1) // C H ∗(U × Y, 1) // C H ∗(S × Y ) // C H ∗(X × Y ).

The first vertical arrow is surjective, and the third and fourth vertical arrows are
isomorphisms. Diagram chasing shows that the second map is surjective.

LEMMA 4. Let S be a closed subscheme of a separated scheme X of finite type
over k, and let U = X − S. If U satisfies the strong property and S the weak, then
X satisfies the weak property.
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Proof. As in the previous lemma, we have a map of long exact sequences:

C H ∗,∗(U, Y, 1) //

��

C H ∗S
⊗

Z C H ∗Y //

��

C H ∗X
⊗

Z C H ∗Y //

��

C H ∗U
⊗

Z C H ∗Y //

��

0

C H ∗(U × Y, 1) // C H ∗(S × Y ) // C H ∗(X × Y ) // C H ∗(U × Y ) // 0.

This time, the first vertical map is surjective, and the second and the fourth are
isomorphisms. Diagram chasing shows that the third map is an isomorphism.

That completes the proof of Proposition 1. Together with Proposition 2, this
implies Theorem 2.

4. Chow groups and ordinary homology (proof of Theorem 3)

For a scheme X over a field k, we can try to construct homomorphisms from
the motivic homology groups H M

a (X,Z(b)) to any reasonable homology theory
for algebraic varieties. This is possible at least after tensoring motivic homology
groups with Q, because they agree ⊗Q with the Adams-graded pieces of the K -
theory G∗X of coherent sheaves on X , from which Gillet has defined maps into all
reasonable homology theories. In particular, for X defined over a subfield k ⊂ C,
there is a natural map

H M
a (X,Q(b))→ W−2b H B M

a (X,Q) ∩ F−b H B M
a (X,C).

(See Jannsen [16, 8.4.3 and 8.8, pp. 127–128].) Moreover, the resulting map
H M

a (X,Q(b))→ H B M
a (X,Q) is compatible with the usual long exact sequences.

We will only use that there is a map from H M
a (X,Q(b)) to W−2b H B M

a (X,Q),
and therefore to W−2b/W−2b−1 = grW

−2b, which is compatible with long exact
sequences. For example, when a = 2b, this says that the usual Chow groups of
X , tensored with Q, map into the smallest weight subspace of the Borel–Moore
homology of X .

Consider the following two properties of schemes of finite type over a subfield
k ⊂ C.

Weak property. A scheme X over k satisfies the weak property if the natural
map

H M
2i (X,Q(i)) = C Hi X ⊗Q→ W−2i H B M

2i (X,Q)
is an isomorphism for all i .

Strong property. A scheme X over k satisfies the strong property if it satisfies
the weak property and, in addition, the map

H M
2i+1(X,Q(i))→ grW

−2i H B M
2i+1(X,Q)

is surjective.
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We will prove by induction on dimension that the complement of any linear
scheme over k imbedded in affine space satisfies the strong property and,
simultaneously, that any linear scheme satisfies the weak property. The latter
statement is the theorem we are trying to prove. This is exactly parallel to the
proof of the Chow Künneth property for linear schemes in Section 3.

LEMMA 5. Affine space An over k satisfies the strong property.

Proof. C Hn An
⊗ Q = Q maps isomorphically to W−2n H B M

2n (An,Q), and all the
rest of the Borel–Moore homology of An is 0.

LEMMA 6. Let S be a closed subscheme of a separated scheme X of finite type
over k, and let U = X − S. If X satisfies the strong property and S the weak, then
U satisfies the strong property.

Proof. We have a map of localization sequences:

H M
2i (S,Q(i)) //

��

H M
2i (X,Q(i)) //

��

H M
2i (U,Q(i)) //

��

0

W−2i H B M
2i (S,Q) // W−2i H B M

2i (X,Q) // W−2i H B M
2i (U,Q) // 0.

The first and second vertical arrows are isomorphisms, and so the third is also an
isomorphism. Looking further to the left in these sequences, we have

H M
2i+1(X,Q(i)) //

��

H M
2i+1(U,Q(i)) //

��

H M
2i (S,Q(i)) //

��

H M
2i (X,Q(i))

��

grW
−2i H B M

2i+1(X,Q) // grW
−2i H B M

2i+1(U,Q) // W−2i H B M
2i (S,Q) // W−2i H B M

2i (X,Q).

The first vertical arrow is surjective, and the third and fourth vertical arrows are
isomorphisms. Diagram chasing shows that the second map is surjective.

LEMMA 7. Let S be a closed subscheme of a separated scheme X of finite type
over k, and let U = X − S. If U satisfies the strong property and S the weak, then
X satisfies the weak property.

Proof. As in the previous lemma, we have a map of long exact sequences
H M

2i+1(U,Q(i)) //

��

H M
2i (S,Q(i)) //

��

H M
2i (X,Q(i)) //

��

H M
2i (U,Q(i)) //

��

0

grW
−2i H B M

2i+1(U,Q) // W−2i H B M
2i (S,Q) // W−2i H B M

2i (X,Q) // W−2i H B M
2i (U,Q) // 0

in which the first vertical map is surjective, and the second and the fourth are
isomorphisms. Diagram chasing shows that the third map is an isomorphism.
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The lemmas imply that any linear scheme over k satisfies the weak property.
That is, for any linear scheme, the Chow groups inject into ordinary homology
after tensoring with Q, and the image is exactly the smallest subspace in the
weight filtration. Theorem 3 is proved.

5. Rational homology of schemes which are disjoint unions of varieties
(Gm)a × Ab

Proof of Theorem 4. We will compute the Borel–Moore homology of X using the
spectral sequence associated to the filtration of X by closed subspaces X = Xn ⊃

Xn−1 ⊃ · · · ⊃ X0 ⊃ ∅, where X i is the union of all the pieces of dimension 6 i .
In fact, this is precisely analogous to the spectral sequence used in Section 2 to
compute the motivic homology of X .

The spectral sequence has the form

E1
pq = H B M

p+q(X p, X p−1;Z)⇒ H B M
p+q(X,Z).

It has homological numbering, meaning that the differential di has bidegree (−i,
i − 1). The E1 term is very simple:

E1
pq = H B M

p+q(X p − X p−1,Z)

= H B M
p+q

(∐
Tp,Z

)
,

where Tp runs over the set of p-dimensional pieces of X ,

= ⊕TpΛ
p−q M(Tp).

Here, M(T ) = H 1(T,Z).
Example: dim X = 3.

⊕T0 Z ⊕T1 M(T1)oo ⊕T2Λ
2 M(T2)oo ⊕T3Λ

3 M(T3)oo

⊕T1 Z ⊕T2 M(T2)oo

kk

⊕T3Λ
2 M(T3)oo

ll

⊕T2 Z ⊕T3 M(T3)oo

ll

⊕T3 Z

Here, the top row has weight 0, the next has weight −2, the next has weight
−4, and the bottom row has weight −6, as we will now explain for X of any
dimension.

https://doi.org/10.1017/fms.2014.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.15


Chow groups, Chow cohomology, and linear varieties 15

The weight filtration on H B M
∗
(X,Q) is known explicitly for X = (Gm)

a
×

Ab; namely, H k(Ti ,Q) is pure of weight 2k, so that Poincaré duality (with the
usual shift of weights, H B M

k (Ti ,Q) ∼= H 2i−k(Ti ,Q(i))) makes H B M
k (Ti ,Q) pure,

of weight 2(2i−k)−2i = 2(i−k). (The weight filtration is an increasing filtration
W∗ on H B M

k (X,Q) for any complex scheme X . The associated graded groups are
always concentrated in degrees −k to 0 [6].) Since all the differentials in the
spectral sequence ⊗Q must be strictly compatible with weights, the differentials
other than d1 are 0 after tensoring with Q. This degeneration gives an explicit
calculation of grW

∗
H B M
∗
(X,Q) as the homology of the chain complexes pictured

above. Theorem 4 is proved.

In particular, W−2i H B M
2i (X,Q) = ⊕Ti Q/⊕Ti+1 (M(Ti+1)⊗Q) is precisely what

we computed C Hi X to be, tensored with Q, as Theorem 3 predicts.

6. Splitting the homology of toric varieties, and its application to Chow
cohomology (Theorems 5 and 6)

One of the main open problems about the operational Chow cohomology ring
A∗X has been whether there is a natural homomorphism A∗X → H ∗(X,Z) for
all complex varieties X . This is true for smooth varieties, where A∗X is the usual
Chow ring of algebraic cycles, but in general the definition of A∗X is much more
abstract. In this section, we use Lieberman’s trick (originally applied to abelian
varieties, as in [9, p. 219]) to define a natural map A∗X ⊗ Q → H ∗(X,Q) for
compact toric varieties X . Section 7 shows that this would not be possible (with a
reasonable assumption on the map) for general schemes X , even linear schemes.
See Section 8 for further comments.

THEOREM 5. For each toric variety X, there is a natural grading of each group
H B M

i (X,Q) and H i(X,Q) which splits the weight filtration and is compatible
with products and mixed Hodge structures.

In fact, the argument gives a more precise statement with Q replaced by Z[1/k]
for a certain number k = k(i), but I will ignore this refinement.

Proof. The idea is very simple. A toric variety X is described by a fan, that is, an
arrangement of cones in a lattice Zk satisfying certain properties [11]. For each
positive integer n, there is an endomorphism of X corresponding to multiplying
the lattice by n. This gives an action of the multiplicative monoid of positive
integers, N>0, on any toric variety X . Considering the resulting action of N>0 on
H i(X,Q), we get a natural grading of H i(X,Q),

H i(X,Q) = ⊕H i
2 j(X,Q),
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where H i
2 j is the subspace of H i on which N>0 acts by n 7→ n j . Similarly

for Borel–Moore homology. The Chow group C Hi X ⊗ Q is simply the weight
−2i graded piece of H B M

2i (X,Q), which gives the splitting mentioned above. In
general, this grading is an explicit splitting of Deligne’s weight filtration for toric
varieties. From the definition, it is obvious that this extra grading on H ∗(X,Q) is
compatible with products.

In characteristic p > 0, the endomorphism of a toric variety corresponding to
p ∈ N>0 is the Frobenius endomorphism. So the N>0-action on toric varieties
means that they belong to the small class of varieties for which the Frobenius
endomorphism lifts from characteristic p to characteristic 0, for all primes p.

To justify my statements about the action of N>0 on H B M
i (X,Q) (not every

representation of the monoid N>0 is so simple), we look at the spectral sequence
converging to H B M

∗
(X,Q) which was described in Section 5. This is the spectral

sequence associated to the filtration of X by closed subspaces X = Y0 ⊃ Y1 ⊃

· · · ⊃ Yn ⊃ ∅, where Yi is the union of the torus orbits of dimension 6 n − i .
The monoid N>0 preserves this filtration of Y , so it acts on the spectral sequence,
and its action on the E1 term (which is just the direct sum of the Borel–Moore
homology of all the torus orbits) is very simple: n ∈ N>0 acts by ni on row
dim (X)− i .

This lets us reprove the degeneration (always ⊗Q) of this spectral sequence
in the case of toric varieties: the differential di moves i − 1 rows up, so by
N>0-equivariance of the differentials they are all 0 except for d1. Moreover, the
filtration on H B M

i (X,Q) coming from the spectral sequence has a unique N>0-
equivariant splitting, since the different groups contributing to H B M

i (X,Q) are
all of different weights with respect to N>0, and any extension of representations
of N>0 over Q of different weights has a unique splitting. This is an elementary
argument which we omit, the same as that used to define the Adams grading on
K -theory tensored with Q; see [1, p. 140], for example.

Finally, from the geometric origin of this splitting of H B M
i (X,Q), we see that

it gives a splitting of the mixed Hodge structure H B M
i (X,Q) as a direct sum of

pure Hodge structures of different weights. The weight −2 j part of H B M
i (X,Q)

is a direct sum of several copies of the Tate Hodge structure Q( j). Theorem 5 is
proved.

Proof of Theorem 6. Let X be a compact toric variety over C. Since C Hi X⊗Q
∼=
→

W−2i H B M
2i (X,Q) (Theorem 3) and Ai X ∼= Hom(C Hi X,Z) (Theorem 2), we have

a natural isomorphism Ai X ⊗ Q = grW
2i H 2i(X,Q). Since Theorem 5 gives an

explicit splitting of the weight filtration on H 2i(X,Q), it gives a homomorphism
Ai X ⊗ Q ↪→ H 2i(X,Q). In fact, we can describe the image just in terms of
the mixed Hodge structure on H ∗(X,Q). Theorem 5 says that the mixed Hodge
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structure on H k(X,Q) is a direct sum of pieces isomorphic to sums of the Q( j)
for various j . Whenever one has a mixed Hodge structure of this form, its splitting
into pure-weight pieces is unique and is given by

grW
2 j H k(X,Q) = W2 j H k(X,Q) ∩ F j H k(X,C) ⊂ H k(X,Q).

It follows that this must be the splitting given by Theorem 5. In particular, the
image of the homomorphism Ai X ⊗Q ↪→ H 2i(X,Q) defined above is exactly

W2i H 2i(X,Q) ∩ F i H 2i(X,C),

which is just H 2i(X,Q) ∩ F i H 2i(X,C) for X compact.

7. An example

We define a normal projective surface Y with one of the simplest nonrational
singularities, obtained by blowing down a nodal rational curve. Y is in fact a linear
variety. But the mixed Hodge structure on H 2(Y,Q) is a nontrivial extension of a
sum of the Q(−1) by Q(0), and the Bloch–Gillet–Soulé map

A1Y ⊗Q→ grW
2 H 2(Y,Q) ∩ F1grW

2 H 2(Y,C)

does not lift to H 2(Y,Q) ∩ F1 H 2(Y,C). By considering a family of varieties
containing Y , we show that there is no map A1 X → H 2(X,Q) with good
properties for general varieties X .

We now describe the example: it is probably the simplest surface with the
singularity given by blowing down a nodal rational curve to a point. We consider
a nodal cubic curve C in P2, and we blow up > 10 points in P2 to make the proper
transform C ′ of C have negative self-intersection number, so that we can hope to
blow C ′ down to a point. In order to make sure that the blown-down surface is
projective, we have to choose carefully which points on C to blow up.

Namely, let D be a curve of any degree d > 4 in P2 which intersects C
transversely, at smooth points of C . Let X be the surface obtained by blowing
P2 up at the 3d points of C ∩ D. Let C ′ and D′ be the proper transforms of C and
D. Their self-intersection numbers are given by

(C ′)2 = 9− 3d < 0,

(D′)2 = d2
− 3d > 0.

Moreover, C ′ and D′ are disjoint in X . So we can blow down the nodal rational
curve C ′ to get a singular projective surface Y (D′ gives a line bundle whose
multiples have enough sections on Y to show that Y is projective).
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Explicitly, if d = 4, then Y imbeds as the singular quartic surface

w(y2z − x2z − x3)+ f (x, y, z) = 0,

in P3, where y2z − x2z − x3
= 0 is the equation of the nodal cubic C and f is

the equation of D ⊂ P2. In this case, where d = 4, Y arises naturally in the study
of degenerations of K3 surfaces. For any d , Y is obtained by blowing down an
anticanonical curve in the rational surface X , and Y is Gorenstein with KY = 0,
but for d > 5 the singular point of Y is not a hypersurface singularity. We will not
need these observations, however.

The cohomology of Y is computed by the following exact sequence.

0→ H 1(C ′,Z) → H 2(Y,Z) → H 2(X,Z) → H 2(C ′,Z)
= Z = Z3d+1

= Z

Consider the line bundle L on the smooth surface X given by the difference of
two of the 3d exceptional divisors. Then [L] ∈ H 2(X,Z) restricts to 0 in H 2(C ′,
Z), but L itself is nontrivial on C ′: it corresponds to the difference of two smooth
points on C ′, which gives a nontrivial element of

Pic 0(C ′) = C∗.

In fact, by choosing the curve D generically, we can arrange that L will restrict
to an element of C∗ which is not a root of unity. Then L restricts to a nonzero
element of Pic C ⊗ Q, and so [L] ∈ Pic X ⊗ Q = H 2(X,Q) is not in the image
of Pic Y ⊗Q, though it is in the image of H 2(Y,Q).

Thus Y does not have as many line bundles as one might think. To show that
this corresponds to the nonsplitting of the mixed Hodge structure on H 2(Y,Q),
we will prove that Y satisfies the singular Hodge conjecture for line bundles:

PROPOSITION 3.

im(Pic Y → H 2(Y,Z)) = {x ∈ H 2(Y,Z) : xC ∈ F1 H 2(Y,C)}.

This is false for some varieties Y , in fact for the variety Y obtained by exactly
the construction above with a cuspidal cubic instead of a nodal cubic (in that case
H 1(C ′,Z) = 0, so the mixed Hodge structure on H 2(Y,Q) is trivial, but still,
since Pic 0C ′ = C 6= 0, the argument above shows that not all of H 2(Y,Q) comes
from line bundles). This counterexample to the singular Hodge conjecture for line
bundles was found by Barbieri-Viale and Srinivas [2].

Proof of Proposition 3. We have to prove that the singular Hodge conjecture is
true in our case, where C ′ is a nodal cubic. By the exponential sequence, we need
to show that F1 H 2(Y,C) maps to 0 in H 2(Y, O).
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We begin by computing H 2(Y, O) to see that it is not too big. (Namely, it is C.)
Look at the exact sequence on the smooth surface X ,

0→ OX (−C ′)→ OX → OC ′ → 0.

Since H i(X, O) = 0 for i > 0, we have that

C = H 1(S, O)
∼=
→ H 2(X, O(−S)) = H 2(Y, R f∗O(−S)).

Here, f : X → Y is the contraction map. The point is that R f∗O(−S) is directly
related to OY . In fact, f∗O(−S) is the ideal sheaf Ip ⊂ OY of the singular point
p ∈ Y , and the higher cohomology sheaves Ri f∗O(−S) are 0 for i > 0. To prove
the latter fact, notice that the canonical bundle KS of the nodal curve is trivial (S
is a degenerate elliptic curve), which means that

(K X + S)|S = 0 ∈ Pic (S).

But the Kawamata–Viehweg vanishing theorem implies that for a projective
birational morphism f : X → Y with X smooth, if L is a line bundle on X with
deg(L)|C > 0 for all curves C on X with f (C) = point, then Ri f∗(K X + L) = 0
for i > 0 [8]. It follows that Ri f∗O(−S) = 0 for i > 0 as claimed: R f∗O(−S) is
just the ideal sheaf Ip. So

H 2(Y, O) = H 2(Y, Ip) = H 2(Y, R f∗O(−S)),

where we computed the latter group to be H 1(S, O) ∼= C.
Having computed that H 2(Y, O) = C, we next need to show that

ker(H i(Y,C)→ H i(Y, O)) ⊂ F1 H i(Y,C)

for any i , which we will actually prove for an arbitrary compact variety Y . This
is easy once one understands Deligne’s definition of the Hodge filtration F∗

on H i(Y,C). Namely, one chooses a map (Yn) → Y from a simplicial scheme
(Yn) to Y such that the varieties Yn are smooth and compact, and all the face
maps as well as the map Y0 → Y are proper and surjective. This rather weak
assumption turns out to imply that the map H ∗(Y,Z) → H ∗((Yn),Z) (mapping
to the cohomology of the constant sheaf Z on the simplicial scheme (Yn)) is an
isomorphism. Since the varieties Yn are smooth and compact, we can compute at
least their cohomology with C coefficients using de Rham cohomology, so that

H ∗(Y,C) = H ∗((Yn),Ω
∗).

The Hodge filtration on H ∗(Y,C) comes from the obvious filtration of the de
Rham complex with F i corresponding to Ω j for j > i . In the case we want, this
means that

F1 H ∗(Y,C) = ker(H ∗((Yn),Ω
∗)→ H ∗((Yn), O)).
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But the map from H ∗(Y,C) to H ∗((Yn), O) factors through H ∗(Y, O). It follows
that

ker(H 2(Y,C)→ H 2(Y, O)) ⊂ F1 H 2(Y,C),

as we want.
But, in the case at hand, ker(H 2(Y,C) → H 2(Y, O)) is a subspace of

codimension 6 1 in H 2(Y,C), while F1 H 2(Y,C) has codimension 1 by the exact
sequence

0→ H 1(C ′,C)→ H 2(Y,C)→ H 2(X,C)→ H 2(C ′,C),

which is strictly compatible with the Hodge filtration. (The nodal cubic C ′ has
H 1(C ′,C) ∼= C all in F0, with F1

= 0, while the blow-up X of P2 has H 2(X,C)
all in F1.) It follows that

ker(H 2(Y,C)→ H 2(Y, O)) = F1 H 2(Y,C),

which proves the singular Hodge conjecture for line bundles on Y . Proposition 3
is proved.

Now our earlier analysis of the line bundles on Y gives information about the
mixed Hodge structure on H 2Y , thanks to Proposition 3. We showed that

im(Pic Y ⊗Q→ grW
2 H 2(Y,Q)) $ grW

2 H 2(Y,Q) ∩ F1grW
2 H 2(Y,C).

It now follows that the map

H 2(Y,Q) ∩ F1 H 2(Y,C)→ grW
2 H 2(Y,Q) ∩ F1grW

2 H 2(Y,C)

is not surjective. This means that the mixed Hodge structure on H 2(Y,Q) is
a nontrivial extension of Q(−1)3d by Q(0). (The convention is that the mixed
Hodge structure Q( j) has weight −2 j .)

Related to this, we can draw a conclusion about the Chow cohomology group
A1Y . The theory A1 does not see the line bundles C∗ ⊂ Pic (C ′). In fact, Kimura’s
computation of Chow cohomology [19] implies that A∗ of a singular variety
injects into A∗ of a smooth resolution (which is the usual Chow ring of a smooth
variety) with an explicit cokernel. As a result, for the nodal cubic C ′ (with
resolution P1), one checks that A1C ′ = H 2(C ′,Z) = Z. Also, A1 X = H 2(X,
Z). Kimura’s theorem applied to Y then says that

A1Y = ker(A1 X → A1C ′)
= ker(H 2(X,Z)→ H 2(C ′,Z))
= im(H 2(Y,Z)→ H 2(X,Z)).
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That is,
A1Y ⊗Q = grW

2 H 2(Y,Q),

which is all in F1, and the previous paragraph then shows that the map A1Y⊗Q→
grW

2 H 2(Y,Q) does not lift to

H 2(Y,Q) ∩ F1 H 2(Y,C).

THEOREM 7. There is no functorial homomorphism A1 X ⊗ Q → H 2(X,Q)
for general complex varieties X (or even for normal complex projective linear
varieties X) which agrees with the obvious map for X smooth and which is well
behaved in families in the following sense. If {Yb} is a family of varieties over a
base variety B such that the sheaf H 2(Yb,Q), b ∈ B, is locally constant, and if
xb ∈ H 2(Yb,Q) is a section of this sheaf over an analytic open set U ⊂ B, then the
set of b ∈ U such that xb is in the image of the supposed map A1Yb⊗Q→ H 2(Yb,

Q) is a countable union of analytic constructible subsets of U.

An analytic constructible subset means a finite union of differences between
closed analytic subsets. This property seems to be a reasonable thing to ask of
a map A∗X ⊗ Q → H ∗(X,Q). The analogous property is true for the Chern
character K0 X⊗Q→ H ∗(X,Q) and for the Bloch–Gillet–Soulé map Ai X⊗Q→
grW

2 H 2i(X,Q).

Proof of Theorem 7. The variety Y defined above depends on a choice of a curve
of degree d > 4 in P2. Fix d > 4, and let B0 be the space of curves of degree d in
P2 which meet the nodal cubic C ⊂ P2 transversely at smooth points of C . Then
the construction of this section gives a family of varieties {Yb} parameterized by
b ∈ B0. Let B be a connected component of the covering space of B0 with fiber
the symmetric group S3d , so that B parameterizes curves of degree D as above
together with an ordering of the 3d intersection points of the curve with the nodal
cubic C . The pulled-back family of varieties {Yb} over B has the advantage that
there is a natural element E1 − E2 ∈ A1Yb for all b ∈ B, corresponding to the
divisor E1 − E2 on the smooth resolution Xb of Yb, as we found earlier in this
section.

Suppose that there is a functorial homomorphism A1 X ⊗Q→ H 2(X,Q) as in
the theorem. Since it agrees with the obvious map for X smooth, the composition

A1 X ⊗Q→ H 2(X,Q)→ grW
2 H 2(X,Q)

must be the Bloch–Gillet–Soulé map (since, say for X compact, grW
2 H 2(X,Q) is

the image of H 2(X,Q) in the cohomology of a smooth resolution of X ).
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Since the homomorphism A1Yb ⊗ Q → grW
2 H 2(Yb,Q) which really exists is

an isomorphism for all b ∈ B, the subspaces Vb := im(A1Yb ⊗ Q → H 2(Yb,

Q)) have constant dimension (equal to 3d , in fact), and Vb is a splitting of
the weight filtration on the vector space H 2(Yb,Q). So our assumption on the
homomorphism A1 X → H 2(X,Q) implies that, over each open ball U ⊂ B, there
is one flat section xb ∈ H 2(Yb,Q) which is the image of E1 − E2 ∈ A1(Yb)⊗ Q
for all b ∈ U outside a countable union of lower-dimensional analytic subspaces.
By patching together these sections over different open balls of B, we find a
global flat section xb ∈ H 2(Yb,Q), b ∈ B, which lifts the flat section E1 − E2 of
grW

2 (Yb,Q).
The point is that there are special points b ∈ B for which E1−E2 ∈ grW

2 H 2(Yb,

Q) lies in the image of Pic Yb ⊗Q→ H 2(Yb,Q)→ grW
2 H 2(Yb,Q): this happens

whenever the difference of the first two points of C ∩ D represents a root of unity
in Pic 0(C) = C∗. (Recall that C is a fixed nodal cubic curve in P2, and that a point
of B determines a degree-d curve D together with an ordering of the 3d points
of C ∩ D.) Pick such a special point b, and observe that the global flat section
xb ∈ H 2(Yb,Q) differs at this point from the image of an element of Pic Yb ⊗Q,
thus from an element of H 2(Yb,Q) ∩ F1 H 2(Yb,C), by an element of H 1(Cb,

Q) = Q ⊂ H 2(Yb,Q). (See the earlier calculation of H 2(Yb,Q).) Since the sheaf
H 1(Cb,Q) is isomorphic to the constant sheaf Q over B, we can modify xb to
produce a global flat section yb ∈ H 2(Yb,Q) over b ∈ B which lifts E1 − E2 ∈

grW
2 H 2(Yb,Q) and which belongs to F1 H 2(Yb,C) at one point of B. But a flat

section of a variation of mixed Hodge structures over an algebraic base B which
is in F i at one point belongs to F i at every point, by Steenbrink and Zucker [25,
p. 517]. So the classes yb ∈ H 2(Yb,Q) belong to F1 H 2(Yb,C) for all b ∈ B. Our
previous proposition shows, however, that no lift of E1− E2 ∈ grW

2 H 2(Yb,Q) can
belong to F1 H 2(Yb,C) when the difference of the first two points of C ∩ D is not
a root of unity in Pic 0(C) ∼= C∗. We have a contradiction.

Thus there is no map A1 X ⊗ Q → H 2(X,Q) with the required properties.
Theorem 7 is proved.

8. Problems on Chow cohomology

We begin by describing some general questions about operational Chow
cohomology A∗X , mostly for compact complex varieties. Note that Voevodsky’s
motivic cohomology ring H a

M(X,Z(b)) is probably more useful than A∗X for
singular schemes X [26].

Operational Chow cohomology is defined to be, in a sense, the weakest of all
possible Chow cohomology theories: any reasonable Chow cohomology theory
will act on Chow (homology) groups, and so will map to A∗X . For example, there
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is a natural map from the Adams-graded pieces of algebraic K -theory, gr∗K0 X ⊗
Q, to A∗X ⊗ Q. As a result, it is not easy to define maps from A∗X to any other
sort of cohomology theory. In particular, the question of the existence of a natural
homomorphism A∗X → H ∗(X,Z) remained open until this paper.

Bloch, Gillet, and Soulé [5] showed that there is at least a natural map from
Ai X⊗Q to grW

2i H 2i(X,Q), which is a quotient of H 2i(X,Q) for X compact. If X
is a compact toric variety, we showed in Theorem 6 that this homomorphism lifts
uniquely to a homomorphism Ai X ⊗ Q→ H 2i(X,Q) ∩ F i H 2i(X,C) (which is
in fact an isomorphism). And of course there is a homomorphism Ai X ⊗ Q →
H 2i(X,Q) ∩ F i H 2i(X,C) for all smooth varieties X , since Ai X coincides with
the Chow group C Hn−i X of codimension-i algebraic cycles for X smooth. So the
positive results on this question for toric varieties should extend to all varieties
whose singularities are not too bad. Specifically, Fulton asks if there is a natural
homomorphism

Ai X ⊗Q→ H 2i(X,Q) ∩ F i H 2i(X,C)

for all varieties X with rational singularities. This is true for i = 1, since Kollár
and Mori [20] have proved that Pic X ⊗ Q ∼= A1 X ⊗ Q if X has rational
singularities, and Pic X obviously maps into H 2(X,Z) ∩ F1 H 2(X,C).

The normal surface in Section 7, with one of the simplest nonrational
singularities, shows that there is no map A1 X ⊗ Q → H 2(X,Q) with good
properties for general varieties X .

One can also ask for integral versions of these results. For toric varieties, and
more generally for spherical varieties, the map Pic X → A1 X is an isomorphism
(Brion), and so there is a natural homomorphism A1 X → H 2(X,Z). Both
statements fail if X only has rational singularities, as Alessio Corti found, but
one may expect that there is a finer class of singularities including the toric ones
which would imply these statements. It is tempting to guess more generally that
there is a natural homomorphism Ai X → H 2i(X,Z) for toric varieties at least.

In the same spirit, one can ask for an integral version of Theorem 3. Namely, is
the homomorphism C Hi X → H B M

2i (X,Z) a split injection of abelian groups, say
for toric varieties X? The answer is yes for smooth (but not necessarily compact)
toric varieties, by Franz [10, Corollary 1.3].
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