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Abstract

‘We introduce a holomorphic torsion invariant of log-Enriques surfaces of index two with cyclic quotient singularities
of type }‘(1, 1). The moduli space of such log-Enriques surfaces with k singular points is a modular variety of
orthogonal type associated with a unimodular lattice of signature (2, 10 — k). We prove that the invariant, viewed
as a function of the modular variety, is given by the Petersson norm of an explicit Borcherds product. We note that
this torsion invariant is essentially the BCOV invariant in the complex dimension 2. As a consequence, the BCOV
invariant in this case is not a birational invariant, unlike the Calabi-Yau case.
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1. Introduction

The analytic torsion, which is a certain combination of the determinants of Hodge Laplacians on
differential forms, is an invariant of Riemannian manifolds defined by Ray and Singer [40] as an analytic
analogue of the Reidemeister torsion, the first topological invariant that is not a homotopy invariant. It
was proved independently by Cheeger [1 1] and Miiller [38] that the analytic torsion and the Reidemeister
torsion agree on closed manifolds (Ray-Singer conjecture). Ray and Singer [4 1] also introduced a version
of the analytic torsion for complex manifolds, usually referred to as the holomorphic torsion. The
holomorphic torsion has found significant applications in Arakelov theory, canonical metrics and mirror
symmetry. Unlike its real analogue, it depends on the geometry and complex structure of the underlying
complex manifold [6] (the anomaly formula), which gives rise to interesting functions on moduli spaces.
In this paper, we focus on this aspect of holomorphic torsion: that is, its connection with modular forms.

In fact, Ray and Singer already noticed the remarkable connection. Using Kronecker’s first limit
formula, Ray and Singer [4 1] computed the analytic torsion for elliptic curves and found it to be given in
terms of the Jacobi A-function, a modular form of weight 12 on H/SL(2, Z). Their result has since then
been extended to higher genus Riemann surfaces by Zograf [51], McIntyre-Takhtajan [35], Kokotov-
Korotkin [28] and Mclntyre-Park [36]; Zograf and MclIntyre-Takhtajan studied the analytic torsion of
Riemann surfaces with respect to the hyperbolic metric, while Kokotov-Korotkin and Mclntyre-Park
studied it with respect to the (degenerate) flat metric attached to an abelian differential of the Riemann
surface.

In dimension two, motivated by string duality, the second author [43] studied the case of 2-elementary
K3 surfaces —that is, pairs consisting of a K3 surface X and a holomorphic involution: : X — X (acting
nontrivially on holomorphic two forms) — and introduced an (equivariant) holomorphic torsion invariant
for those surfaces. By the global Torelli theorem for K3 surfaces, the moduli space of 2-elementary
K3 surfaces of fixed topological type is a modular variety of orthogonal type, so the holomorphic
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torsion invariant is viewed as a function on such modular varieties. On orthogonal modular varieties,
Borcherds [8] constructed a class of automorphic forms with remarkable properties as singular theta
lifts of elliptic modular forms. These automorphic forms are called Borcherds products. It is shown
that the holomorphic torsion invariant of 2-elementary K3 surfaces is given by the Petersson norm of a
certain series of Borcherds products [45], [30].

If ¢ is fixed point free, then the quotient Y = X/t is an Enriques surface whose holomorphic torsion
invariant is given by one of the most remarkable Borcherds products, the Borcherds ®-function of
rank 10. In this paper, we extend this result to a class of singular rational surfaces called log-Enriques
surfaces introduced by D.-Q. Zhang [47]. As in the case of Enriques surfaces, a log-Enriques surface
Y is expressed as a quotient Y = X /¢, where X is a K3 surface with rational double points called the
canonical covering of Y, and ¢ is an anti-symplectic involution on X free from fixed points outside the
singular points. To be precise, our log-Enriques surfaces are those of index two in the sense of Zhang
[47]. To obtain a nice moduli space, we restrict ourselves to the case where X has only nodes as its
singular points. A log-Enriques surface with this property is called good in this paper. Then a good
log-Enriques surface can admit at most 10 singular points, any of which is a cyclic quotient singularity
of type %(1, 1). It turns out that the moduli space of good log-Enriques surfaces of k singular points is
again a Zariski open subset of a modular variety of orthogonal type of dimension 10 — k attached to
a unimodular lattice of signature (2, 10 — k). Let us write M, for this modular variety. When k = 8§,
we have M‘gdd and Mg"", according to the parity of the unimodular lattice of signature (2,2). For
simplicity, we write Mg for Mgdd and MZ"™" when there is no possibility of confusion. For a good
log-Enriques surface Y with k singular points, we write @ (Y) € My for the isomorphism class of Y.
Interestingly enough, M, can be identified with a Zariski open subset of the Kihler moduli of a Del
Pezzo surface V of degree deg V = k, the modular variety given by KM (V) = Qg (v z)/O*(H(V,Z)),
where H(V,Z) is the total cohomology lattice of V, OF(H(V,Z)) is its automorphism group and
Qp (v z) is the domain of type IV attached to H(V,Z). (See Theorem 2.10.)

Analogously to the Enriques lattice, the Del Pezzo lattice H(V, Z) admits a reflective modular form
®y on Qy(v,z) for O*(H(V,Z)) of weight degV + 4, which is nowhere vanishing on the Zariski
open subset corresponding to M and characterises the Heegner divisor of norm (—1)-vectors [44].
In addition, @y is the denominator function of a generalised Kac-Moody algebra with explicit Fourier
series expansion by Gritsenko and Nikulin [22], [23]. (See Section 8§ for more about @y .)

On the other hand, even though they are rational surfaces, every log-Enriques surface Y admits a
Ricci flat Kidhler orbifold metric [27]. Let 7(Y) denote the analytic torsion of Y in the sense of X. Ma
[32] (suitably normalised by volume; see Section 8.1, especially Theorem 8.3 and Theorem 8.4 for the
precise definition). Then our main result says that 7(Y) is given by some power of the Petersson norm
of the Borcherds product @y, .

Theorem 1.1. There exists a constant Cy. > 0 depending only on k such that for every good log-Enriques
surface Y with k singular points,

7(Y) = Cill @y (@ (¥)|I74,

where V is a Del Pezzo surface of degree k.

It is important to note that our torsion invariant is essentially the complex 2-dimensional analogue
of the BCOV invariant (See [3], [19], [17], [20]). In higher dimensions, Bershadsky, Cecotti, Ooguri
and Vafa [3] introduced a certain combination of holomorphic torsions, called the BCOV torsion,
and predicted the mirror symmetry at genus one as an equivalence of the BCOV torsion and certain
curve counting invariants at genus one. The corresponding holomorphic torsion invariant of Calabi-Yau
threefolds, called the BCOV invariant, was introduced by Fang, Lu and the second author [19], who
verified some predictions in [3]. Very recently, the BCOV invariant is extended to Calabi-Yau manifolds
of arbitrary dimension by Eriksson, Freixas i Montplet and Mourougane [17], who have established the
mirror symmetry at genus one for the Dwork family in arbitrary dimension [ 18]. The notion of the BCOV
invariant is further extended to a certain class of pairs by Y. Zhang [49], who, together with L. Fu, has
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established the birational invariance of the BCOV invariants [50], [20]. According to mirror symmetry,
the BCOV invariants correspond to the topological string amplitudes whose modular properties are
important features. In the final section, we will interpret Theorem 1.1 in terms of the BCOV torsion so
that the BCOV invariant of good log-Enriques surfaces is expressed as the Borcherds product @y, an
infinite product of expected type in mirror symmetry. As log-Enriques surfaces are rational, the BCOV
invariant is not a birational invariant in this case.

We remark that the equivalence of the analytic torsion of Ricci flat Enriques surfaces and the
Borcherds @-function [43] may be viewed as the limiting case k = 0. Since 7(Y) is the analytic torsion
of a resolution of Y with respect to a degenerate Ricci flat metric, our theorem may be viewed as a two-
dimensional analogue of the theorems of Kokotov-Korotkin [28] and McIntyre-Park [36], as mentioned
above. Because of the isomorphism between the complex structure moduli of good log-Enriques surfaces
and the Kahler moduli of Del Pezzo surfaces, in view of mirror symmetry at genus one as mentioned
above, it may be worth asking if the Fourier coeflicients of the elliptic modular form appearing in the
infinite product expansion of @y are interpreted as some counting invariants of Del Pezzo surfaces.
We also remark that by Theorem 1.1 and the recent result of S. Ma [29], the analytic torsion of good
log-Enriques surfaces is obtained from the Borcherds ®-function of rank 10 by manipulating quasi-
pullbacks successively. See Section 8.3 for the details.

Our method of proof, which should have independent interest and which carries out the program
proposed in [44, Question 5.18] for 2-elementary K3 surfaces, is to de-singularise the double covering
of ¥ via the Eguchi-Hanson instanton to obtain a 2-elementary K3 surface (X, 6) and study the limiting
behaviour of the (equivariant) analytic torsion of (X, 0), as well as other constituents of the invariant
7(X,0) of (X,0), as X degenerates into the orbifold double covering X of Y. As a result, the ratio
(Y)/7(X,0)'/? may be viewed as the (equivariant) analytic torsion of the Eguchi-Hanson instanton
(compare Theorem 7.12). In [5], Bismut computed the behaviour of Quillen metrics when the exceptional
divisor is blown down to a smooth point. In this paper, we study the same type of problem, where the
blowing-up of C? will be replaced by the Eguchi-Hanson instanton. We remark that Theorem 1.1 would
be proved in the same way as in [43] by making use of the fundamental theorems for Quillen metrics
such as the curvature formula, anomaly formula and embedding formula [4], [6], [7], [31], whose
extensions to orbifolds were obtained by X. Ma [32], [33], if we could understand degenerations of log
Enriques surfaces. On the other hand, it would be difficult to understand the geometric meaning of the
ratio 7(¥)/7(X, 6)"/2 by this method. In the final section, we will observe that 7(Y)/7(X, 6)'/2 is the
key factor in the exact comparison formula for the BCOV invariants for certain Calabi-Yau orbifolds.

This paper is organised as follows.

In Section 2, we recall log-Enriques surfaces and study their moduli space. In Section 3, we recall
the notion of analytic torsion and also the holomorphic torsion invariant 7(X, 0) for 2-elementary K3
surfaces [43]. In Theorem 3.2, we will give an explicit formula for the analytic torsion of a K3 surface
with respect to an arbitrary Kihler metric. In Section 4, we recall the Eguchi-Hanson instanton and
construct a family of Kéahler metrics {y¢ s} on X converging to an orbifold metric with uniformly
bounded Ricci curvature. In Section 5, we study the behaviour of some constituents of the invariant
T()? ,0) with respect to the metric y. s as € — 0. In Section 6, we derive some estimates for the heat
kernels of (X, Ye.5)- In Section 7, we determine the behaviour of (equivariant) analytic torsion of (X, 0)
with respect to the metric y¢ s as € = 0 and 6 — 0. In Section 8, we introduce a holomorphic torsion
invariant for good log-Enriques surfaces and prove the main theorem. In Section 9, we study the relation
between the invariant 7(Y) and the BCOV invariant.

2. log-Enriques surfaces
2.1. log-Enriques surfaces
Following D.-Q. Zhang [47], [48], we recall the notion of log-Enriques surfaces (of index 2) and its

basic properties.
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Definition 2.1. An irreducible normal projective complex surface Y is called a log-Enriques surface if
the following conditions are satisfied:

(1) Y is singular and has at most quotient singularities except rational double points. In particular, Y
has the structure of a compact complex orbifold.

(2) The irregularity of Y vanishes: that is, H' (Y, Oy) = 0.

(3) Let Ky be the canonical line bundle of Y in the sense of orbifolds. Then

Ky # Oy,  K$*=Oy.

Remark 2.2. For p € SingY, there exist a neighbourhood U, of p in Y, a finite group G, ¢ GL(C?)
and a Gp-invariant neighbourhood V of 0 in C? such that (Up,p) = (V/Gy,0). Then Ky |y, is defined
as (V x C)/Gy, where the Gy-action is given by g - (z,{) = (g - z, det(g){).

Remark 2.3. Logarithmic Enriques surfaces in this paper are those of index two in Zhang’s papers [47],
[48]. We only deal with log-Enriques surfaces of index two in this paper.

If a smooth complex surface satisfies conditions (2), (3), then it is an Enriques surface. For this
reason, we impose that log-Enriques surfaces are singular. Then a log-Enriques surface is rational [47,
Lemma 3.4]. By Zhang [47, Lemma 3.1], every singularity of a log-Enriques surface Y is the quotient
of a rational double point by Z/2Z and hence non-Gorenstein. Indeed, if p € SingY, then there exists
by (1) an isomorphism of germs of analytic spaces (¥, p) = (C2/G,0), where G ¢ GL(C?) is a finite
group. By (3), the image of the homomorphism det: G 3 g — detg € C* is 1. If Gg := kerdet C G,
then Gy ¢ SL(C?) is a normal subgroup of G of index 2, so that (X,0) = (C?/Gy,0) is a rational
double point. If p: (X,0) — (Y, 0) denotes the projection induced by the inclusion of groups Gy C G,
then p induces an isomorphism of germs (X/(G/Gy),0) — (Y,0), where G/Gy = {+1} = Z/2Z. By
[47, Lemma 3.1], (X, 0) is a rational double point of type A,_; for some n. Since the homomorphism
det’: G — C* is trivial, K?z is a holomorphic line bundle on Y in the ordinary sense.

2.2. The canonical double covering

Let Y be a log-Enriques surface, and let & € HO(Y, Kf?z) \ {0} be a nowhere vanishing bicanonical
form on Y in the sense of orbifolds. The canonical double covering of Y is defined as

X :={(y,¢) €Ky; é®& =5} C Ky,

which is equipped with the projection p: X — Y induced from the projection Ky — Y. Thenp: X — Y
is a double covering, which ramifies only over SingY. (Since Ky , = C/%1 for p € Sing(¥), p~'(p)
consists of a single point.) The canonical involution 1: X — X is defined as the nontrivial covering

transformation:

L(y’ 5) = (y’ _é:)
Since the ramification locus of p: X — Y is Sing X, we have X* = Sing X and that ¢ has no fixed points
on X \ Sing X.

Let 7: X — X be the minimal resolution, and let §: X — X be the involution ~induced by the
canonical involution ¢. The involution 8 is also called the canonical involution on X. We have the
following commutative diagram:

X X Y =X/t
gl Ll lid 2.1
X — X —— Y =X/t
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Here the projection p: X — Y ramifies only at Sing Y. In what follows, we denote by X* and XY the
sets of fixed points of ¢ and 6, respectively. Since ¢ has no fixed points on X \ Sing X, 6 has no fixed
points on X \ 77! (Sing X). Hence X \ 7~ (Sing X) ¢ X \ X?. In other words, X? c n~!(Sing X).

Lemma 2.4. In the commutative diagram (2.1), the following hold:

(1) X is a K3 surface with rational double points, and
X' =Sing X = p~(SingY), Clpox,kg) = 1

2) (f, 0) is a 2-elementary K3 surface. Namely, 6 acts nontrivially on holomorphic 2-forms on X.
Moreover, there exists an integer k € {1, ..., 10} such that

X =E .. UE, E; =P

The pair ()? ,0) is called the 2-elementary K3 surface associated to Y.
Proof. See [47, Lemma 3.1, Th. 3.6] for (1) and [48, Lemma 2.1] for (2). ]

Lemma 2.5. Let Y, Y’ be log Enriques surfaces with canonical double coverings p’: X' — Y’ and
p: X — Y, respectively. Let ¢: Y' — Y be a birational holomorphic map. Then the following hold:

(1) ¢* induces an isomorphism from HO(Y, K?z) to HO(Y’, K?,Z).
(2) ¢(SingY’) c SingY.
(3) o lifts to a holomorphic map f: X' — X of canonical double coverings.

Proof. (1) Let E € H(Y,K3?) \ {0} and & € HO(Y’,K?) \ {0}. Then ¢*E is a bicanonical from
on Y’ \ (SingY’ U ¢~!(SingY)), and 2 is nowhere vanishing. We get ¢*E/Z’ € O(Y’ \ (SingY’ U
0 1(SingY¥))) = O(Y’"\ ¢! (SingY)) = O(Y \ SingY) = O(Y) = C, where the first and third equalities
follow from the normality of Y’ and Y and the second equality follows from the Zariski Main Theorem.
Hence ¢*E = ¢ &’ with some ¢ € C\ {0}, and ¢* is an isomorphism.

(2) Let 0 € SingY’. Assume ¢(0) € Y \ SingY. There exist a neighbourhood U of ¢(0) and a
nowhere vanishing canonical form € H°(U, Ky). We can express E|y = F - n®2, F € O*(U). Since
¢*Z and ¢*F are nowhere vanishing on ¢~ (U), so is ¢*n®2. Hence ¢*n is nowhere vanishing. Since
any singular point of Y’ is non-Gorenstein, we get a contradiction. Thus ¢(0) € SingY.

(3) Since ¢*ZE is nowhere vanishing on Y’ \ ¢! (Sing ¥), ¢ has no critical points on ¥” \ ¢~!(SingY).
Since the restriction of ¢ to Y’ \ ¢~!(SingY) is a closed map, ¢: Y’ \ ¢~'(SingY) — Y \ SingY
is an étale covering of degree one: that is, an isomorphism. ¢ induces a holomorphic map f: X’ \
(p") "¢~ (SingY) — X \ p~'(SingY) such that p o f = @ o p’. Since p~'(y) consists of a unique
point for any y € SingY, f extends to a map from X’ to X by setting f(x") := p~'(¢(p’(x"))) for
x’ € (p") ¢! (SingY). By construction, p o f = ¢ o p’. By this equality and the bijectivity of the map
p: Sing X — SingY, f is continuous. Since f is holomorphic on a Zariski open subset, f: X’ — X is
holomorphic by the normality of X’. O

2.3. The good model of a log-Enriques surface

The group Z/4Z acts on C? as the multiplication by i = V—1: that is, i(z1, z2) := (iz1,iz2). We define
the cyclic quotient singularity of type }1(1, 1) by

(C?/(i),0).
Its minimal resolution is the total space of the line bundle Op1 (—4)

w . (OPI(_4), E) - (C2/<i>’0)a
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where the exceptional divisor E = @~ 1(0) is a (—4)-curve: that is, EZ = —4.

Definition 2.6. A log-Enriques surface Y is good if Y has only cyclic quotient singularities of type
1

Let Y be a log-Enriques surface, p: X — Y be its canonical double covering and 7: X — X be the
minimal resolution. Then X and X are equipped with the canonical involutions ¢ and 8, respectively. Let
E = 77! (Sing X) be the exceptional divisor of 7: X — X. Then E > X = II¥ | E; with 1 < k < 10.
Since E; is a (=2)-curve of X, it is a (—4)-curve of X /6, and its contraction produces a cyclic quotient
singularity of type %(1, 1).

Definition 2.7. The good model of a log-Enriques surface Y, denoted by Y%, is defined as the contraction
of the disjoint union of (—4)-curves X? in X/, where (X, 6) is the 2-elementary K3 surface associated
toY.

Another construction of Y from Y is as follows [47, Th. 3.6], [48, Lemmas 1.4 and 2. 1]. Let Y be
the minimal resolution of Y with exceptional divisor D C Y. Let Y* be the blowing-up of Y at Sing D.
Then the proper transform of D consists of disjoint (—4)-curves, say Di,...,Dy. Then Y* = X/ and
Y" is obtained from Y* by contracting the D;s. (Notice that ¥ and Y* are not log Enriques surfaces.) As
is verified easily, the composition of the rational map Y# --> Y* and the blowing-down Y* — Y extend
to a holomorphic map from Y to Y.

By construction, Y% has at most cyclic quotient singularities of type }1(1, 1). If Y is a good log-
Enriques surface, then Y =Y :

Proposition 2.8. Ler Y be a log-Enriques surface. If there is a birational holomorphic map from a good
log-Enriques surface Y’ to Y, then Y’ = YP.

Proof. Let X b (respectively, X”) be the canonical double covering of Y'Y (respectively, Y”), and let
Xt (respectively, X’) be the minimal resolution of X% (respectively, X’). The birational morphism
Y’ — Y induces a birational morphism ¢ : (X’,¢’) — (X,t) by Lemma 2.5 (3), and this ¢ in-
duces an isomorphism f: (X,0) > (X,0) = (X1, 6), by the minimality of K3 surfaces. Hence
(X160, (X")?) = (X4/6, (X%)?9). Since the - projection X'/6” — Y’ (respectively, X4/6 — YY) is ob-
tained by contracting every component of (X”)¢" (respectively, (X")?) to a cyclic quotient singularity
of type 7 L(1, 1), f induces an isomorphism from Y’ to Y. O

By Proposition 2.8, every log-Enriques surface has a unique good model. By Zhang [47, Th. 3.6],
[48, Th.4, Cor. 5, Lemma 2.3], one can associate to a log-Enriques surface another log-Enriques surface
with a unique singular point in the canonical way. So log-Enriques surfaces of this type form another
class to be studied. Because of the uniqueness (up to a scaling) of the Ricci-flat ALE hyperkidhler metric
on the minimal resolution of A;-singularity, in this paper, we focus on good log-Enriques surfaces.

In the rest of this section, we study the moduli space of good log-Enriques surfaces. Throughout
this paper, we mean by lattice a free Z-module of finite rank equipped with a nondegenerate integral
symmetric bilinear form. We often identify a lattice with its Gram matrix.

2.4. 2-elementary K3 surfaces and log-Enriques surfaces

A pair (Z, ) is called a 2-elementary K3 surface if Z is a K3 surface and ¢: Z — Z is a holomorphic
anti-symplectic involution. For a 2-elementary K3 surface (Z, ¢), we define

H*(Z,2)* = {l € H*(Z,Z); /*(]) = 1},

which is equipped with the integral bilinear form induced from the intersection pairing on H>(Z,Z).
Then H?(Z,Z) is isometric to the K3-lattice (compare [1])

Lgs3:=Ue U UeEg(-1) @ Eg(-1),

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.66

8 Xianzhe Dai and Ken-Ichi Yoshikawa

where U = (? (1)) and Eg(—1) is the negative-definite even unimodular lattice of rank 8 whose Gram
matrix is given by the Cartan matrix of type Eg. If r denotes the rank of H>(Z,Z)*, then H>(Z,Z)*
(respectively, H>(Z,Z)") has signature (1,7 — 1) (respectively, (2,20 — r)). For a 2-elementary K3
surface (Z, 1), the topological type of Z* is determined by the isometry class of the lattice H>(Z,Z)".

Let Y be a good log-Enriques surface, and let (32 , 0) be the corresponding 2-elementary K3 surface.
Hence (X/6,X%) — (Y, Sing(Y)) is the minimal resolution of the cyclic quotient singularities of type
%(1, 1) of Y. We set

k :=#Sing(Y)

and define Ay as the unimodular lattice of signature (2, 10 — k) (except when k = 8, which requires
modification). Under the identification with a lattice with its Gram matrix, we have

(L 0 (L 0O B
Ak—(o —]10—k) (k #8), Ag—(o _Iz)orUeaU (k =8).

According to the parity of Ag, we set A% := I, ® —I; and AS*" := U @ U. Since X¢ consists of
smooth Eational curves, we deduce from Nikulin [39, Th. 4.2.2] that there is an isometry of lattices
«: H*(X,Z) = Lg3 with

a: HH(X,Z)” = Ay (2). (2.2)

Here Ay (2) stands ~for the rescaling of Ay, whose bilinear form is the double of th~at of Ay. An isometry
of lattices ar: H*(X,Z) = L3 satisfying equation (2.2) is called a marking of (X, 8). We set

My = Ar(2)*,

where the orthogonal complement is considered in the K3-lattice Lk 3. A 2-elementary K3 surface (Z, ¢)
is of type M if its invariant lattice H>(Z, Z)* is isometric to M.
We define

Q= {[n] e P(Ar ® C); (n.1m) =0, (n,77) > O}

Then Q. consists of two connected components Q; and €, , each of which is isomorphic to the bounded
symmetric domain of type IV of dimension 10 — k. Let O (Ay) be the automorphism group of Ay, and
let O"(Ag) € O(Ay) be the subgroup of index 2 consisting of elements preserving Q. We define the
orthogonal modular variety associated with Ay by

My = Qi /O (M) = Q/OF (Ag).

When k = 8, we define /\/lgdd = Qg/ O(Agdd) and Mg"" := Qg /O (AG™"). When there is no possibility
of confusion, we write Mg for Mgdd and M.

Since 6 acts nontrivially on HO(X, Q%), we deduce the inclusion from the Hodge decomposition
H(X, Q%) c H3(X,C)". Since H(X, Q%) is a complex line, it follows from the Riemann-Hodge
bilinear relations that

@ (X,0,a) = [a(H(X, Q%)) € Q.

The point @ (X, 6, @) €  is called the period of (X, 0, ). We define the period of (X,6) as the
O(Ay)-orbit of w(X, 6, a): that is,

T(X,0) = 0(Ay) - [a(H(X, Q%)) € My.
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By [43, Th. 1.8], the coarse moduli space of 2-elementary K3 surfaces of type My is isomorphic via
the period map to the analytic space M} := My \ Dy, where Dy is the discriminant divisor

Di=( ) ah/0ome,  dt={nl € Qs (n,d) =0},
dely, d*=-1

2.5. The period mapping for log-Enriques surfaces

Definition 2.9. The period of a good log-Enriques surface Y with k singular points is defined as the
period of the corresponding 2-elementary K3 surface (X, 6):

T(Y) :=w(X,0) € M.

When k = 8, we define the parity of Y as that of the lattice Ag defined by equation (2.2).

Theorem 2.10. The period mapping induces a bijection between the isomorphism classes of good log-
Enriques surfaces with k singular points (and fixed parity when k = 8) and M.

Proof. Let Ny be the isomorphism classes of good log-Enriques surfaces with k singular points (and
fixed parity when k = 8). By [43, Th. 1.8], we can identify M with the isomorphism classes of 2-
elementary K3 surfaces of type My, via the period mapping. We define a map f: Ny — /\/l‘,; by setting
fy) = ()?, 0), where ()? ,0) is the 2-elementary K3 surface associated to Y. Similarly, we define a
map g: M¢ — N by sending (Z, ) € M to the surface obtained from Z/o~ by blowing down Z7.
Since Z7 consists of k disjoint (—2)-curves, its image in Z /o consists of k disjoint (—4)-curves so that
g(Z, o) is a good log-Enriques surface with k singular points. Since g = f~! by [48, Lemmas 1.4 and
2.1], f is a bijection. O

Since the (locally defined) family of 2-elementary K 3 surfaces of type M} associated to a holomorphic
family of good log-Enriques surfaces with k-singular points is again holomorphic, the period mapping
for any holomorphic family of good log-Enriques surfaces with k-singular points is holomorphic. In
what follows, we regard M7 as a coarse moduli space of good log-Enriques surfaces with k singular
points (and fixed parity when k = 8).

3. Analytic torsion for K3 surfaces and 2-elementary K3 surfaces
3.1. Analytic torsion

Let Z be a compact complex orbifold of dimension n, and let -y be a Kéhler form on Z in the sense of
orbifolds. Let ¢: Z — Z be a holomorphic involution, and assume that ¢ preserves y. Let AOZ’q be the
space of smooth (0, g)-forms on Z in the sense of orbifolds. Let O, = (0 + 0*)? be the Hodge-Kodaira
Laplacian acting on AOZ’q. Let

Ly(s) = Z A7 dim E(4;0,)
Aeo(04)\{0}

be the spectral zeta function of O,, where E(A;0,) is the eigenspace of O, corresponding to the
eigenvalue A. Similarly, let

LOO:= Y AT T[ClEus,]

Aeo(Tg)\{0}

be the equivariant spectral zeta function of O. Since (Z,y) is a Kihler orbifold, ¢, (s) and £, (s)(¢)
converge absolutely when Rs > dim Z, extend to meromorphic functions on C and are holomorphic at
s = 0. After Ray-Singer [41] and Bismut [4], we make the following:
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Definition 3.1. The analytic torsion of the Kihler orbilod (Z, ) is defined as

T(Z,7) = expl- ) (-1)7q £;(0)].

q=0

The equivariant analytic torsion of (Z, ¢, y) is defined as

12,(Z,7)(1) = expl= )" (~1)79 £, (0) (V)]
q=0

3.2. Analytic torsion for K3 surfaces

Theorem 3.2. Let Z be a K3 surface, letj € HY(Z,Kz) \ {0}, and let y be a Kiihler form on Z. Then
the following formula holds:

“(Z.y) = exp[—i / 1og{'7“7 Yol(z, ”}cz(z,w ,

24 220 il

where ¢;(Z,y) denotes the ith Chern form of (TZ,y) and ||7]||i2 = fZ nAT.
Proof. Let w be a Ricci-flat Kihler form on Z such that

w?

Sr = NATL 3.1)

Since the L2-metric on H*(Z,Oz) = H°(Z,K,)" is independent of the choice of a Kihler metric on
Z, we get by the anomaly formula for Quillen metrics [6]

7(Z,y) Vol(Z,y) 1
27z w) VOl(Z,a))) 24/C‘C2(TZ v, w), (3.2)

where ¢1¢2(TZ; y, w) is the Bott-Chern secondary class [6] such that
—ddc1cr(TZ;y,w) = c1(Z,y)ca(Z,y) — c1(Z, w)cr (Z, w).

Since ¢1(Z,w) = 0 by the Ricci-flatness of w and ¢ (L; h, k") = log(h/h’) for a holomorphic line
bundle L and Hermitian metrics 4 and &’ on L, and since

c12(TZ;y,w) =ci1(TZ;y,w)er(Z,y) + c1(Z,w)c2(TZ;y, w)

by [21], we get by equation (3.1)

2

2!
iﬁ)cxz, ». 33

2
cie2(TZyy,w) = ci(TZ;y, w)ea(Z,y) = IOg(%)Cz(Z, y) = log(z
Since Vol(Z,y)/Vol(Z, w) = Vol(Z, 7)/||r]||L2, we get by substituting equation (3.3) into equation (3.2)
T(Z,V)) Vol(Z,y)| 1 nAl
log( =-log|l ————=|-=— [ log c2(Z,y)
©(Z,0) Iz, | 24Jz 2/2'

1 nAl Vol(Z v)
=—= [ 1 Z,y),
%), Og{ o e, | Y

(3.4)

where we used the Gauss-Bonnet-Chern formula for Z to get the second equality.
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Since w is Ricci-flat, the Laplacians Og and O, are isospectral via the map A()),’0 5f— fne A()},’z.
Hence, for the Ricci-flat metric w, we get the equality of meromorphic functions

Zo(s) = £2(s) (3.5)

Since the Dolbeault complex is exact on the orthogonal complement of harmonic forms, we get the
equality of meromorphic functions

$o(s) = £1(s) + £a(s) = 0. (3.6)

By equations (3.5) and (3.6), we get
7(Z,w) = 1. 3.7
The result follows from equations (3.4) and (3.7). m]

3.3. Equivariant analytic torsion for 2-elementary K3 surfaces

Let Z be a K3 surface, and let ¢: Z — Z be an anti-symplectic holomorphic involution. Let Z* = 11,C,
be the decomposition into the connected components. By Nikulin [39, Th. 4.2.2], every C,, is a compact
Riemann surface unless Z* = 0.

Let y be an -invariant Kihler form on Z, and let 5 € H*(Z,K,) \ {0}. Let

M = H*(Z,Z)*
be the invariant sublattice of H>(Z, Z) with respect to the t-action. We define

14— (M) . .
™ (Z,1) :=Vol(Z,y) 7 12,(Z,y) (1) A (Z,1,y) VOU(Z*, |z )T(Z", ¥|z¢),

where we define

1291z = [ [7(Car¥lc,),  Vol(Z',¥lz0) = [ [ Vol(Car¥lc,)
a

a

and

1 AT Vol(Z, .
Ay (Z,1,y) = exp[—/ log{u . M} c1(Z',ylz) |-
Zl.

8 il e,

ZL
As before, c1(Z*,y|z:) is the first Chern form of (TZ*,y|z:).
Theorem 3.3. The number tp(Z, 1) is independent of the choice of an t-invariant Kéihler form on Z.

Proof. See [43, Th. 5.7]. ]

For an explicit formula for 7y, as a function on the moduli space of 2-elementary K3 surfaces, see
[43], [45], [30]. By Theorem 3.2, we can rewrite T (Z, ¢) as follows:

14-r (M)

TM(Z’ L) = VOI(Z’ 7) 4 T(Z’ V)TZQ (Z’ 7)(0 VOI(ZL9 7|Z‘)T(ZL’ YIZ‘)
1 / WA Vol(Z,y)
=7 [ log ————rc2(Z,y)
2 ), {yz/zz il

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press

(3.8)
X Ay (Z,1,y) exp



https://doi.org/10.1017/fms.2022.66

12 Xianzhe Dai and Ken-Ichi Yoshikawa

4. A degenerating family of Kihler metrics

Let Y be a good log-Enriques surface. For an orbifold Kéhler form y on ¥, we write Vol(Y,y) = /Y y2/2!
for the volume of (Y, y). We set

k = #Sing(Y) € {1,...,10}.
Let ()? , 0) be the 2-elementary K3 surface associated to Y such that
X% = Upesing(v) Ep, E, =P,
Let
m: (X,X%) — (X, Sing X)
be the blowing-down of the disjoint union of (—2)-curves. Then
p =n(Ep).

In this section, we construct a two-parameter family of Kéhler metrics {y¢ s} on X converging to an
orbifold Kéhler metric on X, which is obtained by glueing the Eguchi-Hanson instanton at each p and
a Kihler metric on X. In the subsequent sections, we study the limiting behaviour of various geometric
quantities of (X, Ye.s) to construct an invariant of the log-Enriques surface Y.

4.1. Eguchi-Hanson instanton

For € > 0, let F(z) be the function on C2 \ {0} defined by

Fe(z) :=+|z|]|* + €2 + € log

llzlI?
Vizll*+ €2 +€
On every compact subset of C? \ {0}, we have lim_,o F¢(z) = ||z]|*>. Forall € > 0 and ¢ > 0,
Fe(62) = 6°F 5-2(2).

Let T*P! be the holomorphic cotangent bundle of the projective line, and let E ¢ T*P! be its zero
section. Let

I1: (T*P'E) — (C?/{x1},0)
be the blowing-down of the zero section. Since

€dllzll* A dllzl? N [ R[S

4 2 4 2 4 2 +Ea§log”Z”2
VizZlF+ e +eilzl*+€2 Azt + e +e

i00Fc(z) =i

is a positive (1, 1)-form on (C? \ {0})/+1 satisfying

(i00Fc)?

o = (V=1)%dz; AdZ) A dzp A dZa,

its pull-back to 7*P!

yEH = T (i03F,)
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extends to a Ricci-flat Kéhler form on T*P! for € > 0, called the Eguchi-Hanson instanton. We write
yEH for 7]151'[. The coordinate change z > +/ez on C? induces an isometry of Kihler manifolds

(T*P',yPH) = (T°P!, ey®H), 4.1
When € = 0,
i00F, = i8d)|z||>

is the Euclidean Kihler form on C?/{+1} and y(])”:H = IT"{i0dFy(z)} = IT*(id0||z]|?) is a degenerate
Kihler form on T*P!.
Let wrs be the Fubini-Study form on P! such that

[wrs] = ¢1(Opi(1)).
By the definition of F, we get

yEH|g = eIl (idd 1og ||z]|*) & = 27€ wrs.

4.2. Glueing of the Eguchi-Hanson instanton

4.2.1. A modification of the Eguchi-Hanson instanton
Let B(r) c C? be the ball of radius > 0 centred at 0 € C?, and set

V(r) := B(r)/{x1}.

LetI7: (V(r), E) — (V(r),0) be the blowing-up at the origin. Then V(co) = C?/+1 and V(o0) = T*P".
For z € (C?\ {0})/+1 and € > 0, we define

E(z,€) = Fe(2) - lI2lI*.

Since the error term E(z, €) is a C® function on (V(4) \ V(1)) x [0, 1] with E(z,0) = 0, there is a
constant Cy for all £ > 0 with

sup  |0YE(z,6) < Cre. (4.2)
zeV (H\V (1)

Let p(f) be a C* function on R such that 0 < p(f) < 1 on R, p(t) = 1forz < 1 and p(z) = 0 for
t > 2. We set

9 (2) = pllzl) Fe () + {1 = pllzID} 1zlI* = lzlI* + p(llz]l) E(z €)
and we define a (1, 1) form on V(o) \ {0} by
Ke i= i85¢5.

Since ¢ (z) = Fe(z) on V(1), k¢ extends to areal (1, 1)-form on 7*P!, which is positive on V(1). Since
de(2) = 1211 + p(llzll) E(z,€) on V(2) \ V(1), there exists by equation (4.2) a constant €(p) € (0, 1)
depending only on the choice of the cut-off function p such that k¢ is a positive (1, 1)-formon V(2)\V (1)
for0 < € < €(p). As aresult, {k¢ Yo<c < (p) is a family of Kéhler forms on 7*P! such that k. = idd||z||*
on T*P'\ V(2).

We have the following slightly refined estimate for the error term E(z, €). Set

E(z) = E(z,1) = E1(2) + E2(2),
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where
|1z

E1(2) = Vllzll* + 1 - |lz]* = NESreh
Z|I*+ 1+

E>(z) =log

1
Viizll* + 1+ 1z]1?

Then for any nonnegative integer k, there exists a constant C > 0 such that
(i) [0XE1(2)] < Cie(1+[|z[)~ ) for all z € V(e0) \ {0}

(i) 0XE>(2)| < Cr(1+ ||z[))=3*0) for all z € V(o0) \ V(2);

(iil) |0XE2(z)| < Cillz|I™* forall z € V(2) \ {0}k > 1; Colog ||z||? for k = 0.

From these inequalities, we get

Crllzll™ (k = 1;Cologllzll* k = 0) (Yz € V(2)\ {0}),

Cr (1 +||z[))~ 0 (Vz € V() \V(2). (43)

|0XE(2)] < {

Since E(z,€) = EE(\LE, 1) = eE(\/L'?) and hence 3fE(z, €) = 61‘%(6§E)(\%), we get by equation
(4.3)

Crellzll™ (k = 15 Coe(log ||z||* +log €), k = 0) (Vz € V(2) \ {0}),

Cre2 (Ve + [|z])~20) VzeVieo\ V@) Y

IHZI‘E(Z, e < {

Here, to get the estimate on V(2) \ {0}, we used the fact €2 (e +]z]|)~***) < €]|z|| ™% on V(2) \ V(2+€).
Replacing €(p) by a smaller constant if necessary, we may assume by equation (4.4) the following
inequality of Hermitian matrices for all 0 < € < €(p) and z € V(o0) \ V(2):

1 0%E(z, €
5(51'1') < (05 + #Zj)) < 2(6i5). 4.5)
Moreover, for ||z|| < 2,
0E(z, €)| < Cellzl| . (4.6)

Lemma 4.1. There exist constants Cy, C, > 0 such that the following inequality of (1, 1)-forms on T*P!
hold for all 0 < € < €(p):

EH EH
Crye <ke < Coyc'.

Proof. (Step 1) On V(1), we have k. = yZH. On V(2) \ V(1), it follows from equation (4.2) that there
exist constants C1, C, > 0 independent of € € (0, €(p)] with C1yE! < k. < CryEH. Combining these
two estimates, we get C;yEH < k. < CyEH on V(2).

(Step 2) We compare k. and Y21 on T*P' \ V(2). On T*P' \ V(2), we have k. = yt!. By equation
(4.5), we have 1yEH < yBH < 29EH on 7P\ V(2). Since ke = 51 on T*P' \ V(2), We get the desired
estimate on 7*P' \ V(2). This completes the proof. O

4.2.2. A family of Kahler metrics on X _
Since E, is a (—2)-curve on X, there exist a neighbourhood U, of E, in X and an isomorphism of pairs

Wo: (Up, Ep) = (V(1), E).

We may and will assume that y,, extends to an isomorphism between an open subset of X containing
U, and V(4). We write V(r), for V(r) viewed as a neighbourhood of p € Sing(X). In what follows, we
identify V (r), with ;' (V(r)p).
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Let y be a #-invariant Kéhler form on X in the sense of orbifolds, which has a potential function on
every V(4),. By modifying the potential of y on each V(4), (compare [43, Proof of Lemma 6.2]), there
exists a Kéhler form y( on X in the sense of orbifolds such that

YolX\Upesmeiy V(2 = V> Yolv(2), = i0d]Izl>  (¥p € Sing(X)). (4.7)

In particular, ||z]|> € C®(V(2)p) is a potential function of yy on every V(2),. Since ¢¢(z) = llzI1?
near dV(2)p, we can glue the Kihler form ke on Upesing(x) V(2)p and the Kéhler form yo on X \

UpeSing(X) V(Z)p by setting

_ ) Ke On UpeSing(X) V(z)p’

Ye = = (4.8)
Yo on X \ Upesing(x) V(2)p-

By construction, {ye }o<e <e(p) is @ family of #-invariant Kéhler forms on X.
Lemma 4.2. The family of Kiihler forms {y¢}o<e<e(p) O X satisfies the following:

(1) For allp € Sing(X), yolv (2, = i89||z||*.

(2) Forall p € Sing(X), 75|V(1)p = l//;yEH.

(3) On X, y¢ converges to *yq in the C*-topology.

(4) There exist constants C,C’ > 0 independent of € (but depending on p) such that |Ric(y¢)ly, < C-€
on Upesing x V(2)p and |Ric(y¢)ly, < C’on X.

Proof. By construction, (1), (2), (3) are obvious. Let us see (4). Since yEH is Ricci-flat and since
ke = yEH on V(l)p, we get Ric(ke) = Ric(yEH) = 0 on \7(1),). On V(Z)p \ V(l)p, we get
[Ric(ye)ly. = IRic(ke)le, < C - € by equation (4.2). This proves the first estimate. Since ye = o
on X \ Upesing(x) V(Z)p, we get the second estimate. O

4.2.3. A two-parameter family of Kiihler metrics on 7*P!

For later use, we introduce another small parameter 6 > 0. Instead of glueing in the Eguchi-Hanson
instanton in the region V(2) — V(1), we now do it in the region V(26) — V(8). This is effected by
replacing the cut-off function p(t) by ps(t) = p(’g) in defining the Kéhler potential ¢, for the Kéhler
metric y. such that ps(¢) = 1 fort < § and ps(¢) = 0 for + > 26. This gives us the family of real
(1, 1)-forms on 7*P!

Ke, s = iaa(be,&,
where

e,6(2) = llzl” + pslIzIDE (z, €).

To verify the positivity of k¢, s, we see the relation between ¢, and ¢ s. Since F (0z) = 6°F, 152(2)s
we get E(6z,€) = 62E(z, €/6%). Since ¢¢.1(2) = ¢e(2) and e 5(2) = 6 2>+ p(EHEG - 2, ),
this implies that

be.5(2) =60 )52(2/0).

Hence if 0 < €/6° < €(p), then k.5 = id0¢.. s is a positive (1, 1)-form on T*P'. In what follows, we
define ¢ s for €,5 € (0,1] with 0 < €/6% < €(p). Then {ke.6}0<e/52<e(p), €,6¢(0,1] is @ family of
Kihler forms on T*P'. Moreover, the relation ¢ 5(z) = 62¢, /52(z/6) implies that the automorphism

of T*P! induced from the one z — z/6 on V(co) yields an isometry of Kihler manifolds (T*P', k. 5) =
(T*P!, 52K6/52) such that

(V(26), ke,5) = (V(2), 6%k 52)- (4.9)

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.66

16 Xianzhe Dai and Ken-Ichi Yoshikawa

Lemma 4.3. There exist constants Cy, Cy > 0 such that the following inequality of (1, 1)-forms on T*P!
holds for all €,6 € (0,1] with 0 < €/6% < €(p):

Cike < ke, 5 < Coke.

Proof. (Step 1) By Lemma 4.3 (Step 1), we get C1yEH < k. < CryEH on V(Z). By equation (4.9) and
the relation 6273{52 = yEH  this implies the inequality C1yE! < k¢ s < CoyEH on V(26). Hence we get
C1C2_1KE <Kes < CQCI_IKE on V(Zé).

(Step 2) Next we compare k. s and ke on T*P' \ V(26). By definition, we have k¢ 5 = y&H on
T*P' \ V(26). Let H, be the automorphism of 7*P" induced from the automorphism z — Vez of
V(o) = C?/+1. Then H, is an isomorphism from T*P! \ V(26/+/€) to T*P! \ V(26) inducing the
isometries

(TP \ V(26), ") = (T"P' \ V(26/Ve), ey™), (4.10)
(T*P'\ V(26), yE1) = (T*P' \ V(26 /Ve), eyt™). (4.11)

Since €/6%> < €(p) and hence /e > 1/+/e(p), we have the inclusion T*P! \V(f/—‘é) c T*P'\

V(2/+e(p)). By equation (4.4), there exist constants C;, C} > 0 such that C]y"H < yEH < CjyEH on
T*P' \ V(2/+/e(p)). This, together with equations (4.10) and (4.11), yields the inequality C]yE" <
y(];:H < CéyEH on T*P! \ V(26) for all €,6 € (0,1] with 0 < €/62 < e(p). Since Ke,s = y(];:H on
T*P' \ V(26), we get Cl'yEH < Kes < CéyEH on T*P' \ V(26). By Lemma 4.1, this implies the
inequality C{'ke < ke,6 < C)'ke ON TP\ V(Zé), where C{’,C)’ > 0 are constants independent of
€,6 € (0,1] with 0 < €/6% < €(p). This completes the proof. O

4.2.4. A two-parameter family of Kiihler metrics on X
Modifying the construction in equation (4.8), we introduce a two-parameter family of 6-invariant Kahler
forms on X by

ine(x) V(s
Ve = {Kf,é on UpeSmg(X) ( )P (412)

- Yo onX\ UpeSing(X) V(z)v
for e, 6 € (0,1] with 0 < €/6% < €(p).

Lemma 4.4. There exist constants C1,C, > 0 such that the following inequality of (1, 1)-forms on X
hold for all €,5 € (0,1] with 0 < €/6% < €(p):

Cive £ Ve, s £ Coye.

Proof. On Upesing(x) V(Z)p, the result follows from Lemma 4.3. On X \ Upesing(x) 17(2)p, the result is
obvious since y¢, s = Y = yo is independent of €, ¢ there. O

Lemma 4.5. There exists a constant C3 > 0 such that the following estimate holds for all €,6 € (0, 1]
with 0 < €/6% < €(p):

IRic(Ye,5)ly. , < C3(e57* +1).

Proof. Since ye, s = y0 on X \ Upesing(x) V(Z)p, it suffices to prove the estimate on (pesing(x) V(Z)p.
Since y¢ s = i0d|z||? is a flat metric on Upesing(x) \7(2)p \ \7(26)p, it suffices to prove the estimate on
Upesing(x) 7(26),). By equation (4.9), we get on each ‘7(26)p

Ric(ve,6)lye.s = IRIC(6%Y /52y, = 6 2IRic(y e s2)ly,,,0 < 672C(e]6%) = Ces™,
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where we used Lemma 4.2 (4) to get the inequality |Ric(75/62)|7’5/52 < C(€/6%) on V(Zé)p. This
completes the proof. O

Fix a nowhere vanishing holomorphic 2-form
neH(X,Kg) \ {0}.

Since (11 _1)*(n|v(1)p) is a nowhere vanishing holomorphic 2-form on V (1), \ {0}, there exists by the
Hartogs extension theorem a nowhere vanishing holomorphic function f,(z) on B(1) such that

TN (v 1y,) = fo(2) dz1 A dzo
and f,(—z) = fp(2). Since ye,5s = ye On 17(6)p and hence

(H_l)*(yi,5/2!)|v(5)p\{o} = (i00F¢)? /2! = (i)>dz) A dZ) A dzy A dZa,
we get the equality of functions on 17(6)p

nAT

* 2
= =7 /(2" (4.13)
Vesl 215 ),

In particular, we have the following:

(i) On each V(e)p, the volume form of y_s is independent of € € (0, €(p)].
(ii) f(0) is independent of 6 € (0, 1] and the choice of the cut-off function p.

Since y¢,s converges to yo outside Upesing(x) V(é)p, we get the continuity

lim Vol(X, ye.s) = Vol(X, 7). (4.14)
€ >

4.3. Ricci-flat Kihler form on the blowing-down of X?
Recall that

(X, X% - (X, Sing X)
is the blowing-down of the disjoint union of (-2)-curves X9 = Uyesing x Ep. Then p = m(Ey). Under the
identification yr, : (Up, Ep) = (V(1)p, E), m: X — X is identified with the blowing-down I7: T*P! —
C?/{«1} on each V(1),.
By [26], there exists a Ricci-flat orbifold Kéhler form w,, on X such that
ﬂ*w%/Z! = AT.
By equation (4.13), we have
70y Vesly (s, = TG

Since the right-hand side is independent of € € (0, 1), we get by putting € — 0

2 2 2
W 1Yol (), = 1561

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.66

18 Xianzhe Dai and Ken-Ichi Yoshikawa

Hence we get the following relation by regarding 17 as a nowhere vanishing holomorphic 2-form on both
X and X

nAn nATg
oy = /O = —=(»).
Ye.s! g, Yo

5. Behaviour of some geometric quantities under the degeneration

In this section, we study the behaviour of the second Chern form, the Bott-Chern term, and the analytic
torsion of the fixed curves when y. s converges to the orbifold metric .

5.1. Behaviour of the second Chern form as ¢ — 0

Proposition 5.1. For any 6 € (0, 1], one has

. = 3
lim m.c2(X,ve,5) = c2(X,70) + = E Op
e—0 2 -
peSing(X)

as currents on X, where 0y is the Dirac §-current supported at p. In particular,

1 1
- Y = —(16 - k).
3 J, 200 =5506-8

Proof. Let h € C*(X). By the definition of the Kéhler form y._s, we have

'/;”*h’CZ(Y/)’Eﬁ) :/ _ h-cz(X,ye,5)+ Z h(p) 5 cz(i,'ye’é)
X X\Upesing(x) V (8)p peSing(X) V()
;.1
_y / 7 {h = h(p)} - 2 (X, ve.0).
peSing(X) V(8

Fora > 0, let 7,(z) := az be the homothety of C2 and let 7, : T*P' — T*P! be the biholomorphic
map induced by T,,. Then T, induces an isometry of Kihler manifolds

Te: (V(e2), € y™) = (v(1),y).
Under the identification T*P! \ E = V(c0) \ {0}, we have the following estimates
[y™ () —iddllzl?|| < c (1 +l1zID~, llea (TP, y* N (D) < (1 + 1zl

for ||z|]| > 1 by equation (4.3), where C > 0 is a constant and the norm is with respect to yEH.
Since there is a constant C’ > 0 with |h|v(5)p(z) - h(p)| < C'lz|l/ (1 + ||z]]) on V(6),, we get

/_ (7 h = h()} - 2K, ye.s)
V(6)y

- / 7" (hly (o), — h(p)} - 2(T"P,y2H)
V(6

(5.2)

‘/~ » Tin*{hly (5, — h(P)} - co(T*P', ¥
V(6ve )

C EH\2
S / Cl \/E”Z” . - (y ) S CN\/E N O (6 — O),
visye ) T++elzll T+]zll® 2!
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where C”” > 0 is a constant. By equations (5.1) and (5.2), we get
lim [ 7*h-c2(X,ye.s) =/ h-c2(X,y0)
e-0Jx X\Upesing(x) V (0)p
+ Z h(p) / ] (TP, VEH) (5.3)
peSing(X) TP

- [hatons Y ae [ e,

«pl
peSing(X) TP

where we used the vanishing of ¢, (X, yo) on V(6), to get the second equality. Setting /2 = 1 in equation
(5.3) and comparing it with the formula [27, p.396 1.5], we get

1 3
(TP yE) = y(PY) = — = =, (5.4)
/T*P‘ 2 7 X VZ 1
The first assertion follows from equations (5.3) and (5.4).
Since #Sing(Y) = k, we get by the first assertion
= 3 3
2 [ aaY,y0)= [ c2(X,y0) = [_c2(X,¥e5) = 3 Op =24 - Ek'
Y 2 2 peSing(X) X
This proves the second assertion. O
5.2. Behaviour of the Bott-Chern terms as € — 0
Proposition 5.2. For any § € (0, 1], one has
. AT Vol(X,yes) | =
lim [ log )27 TI' : 5 2 ea(X.ve.0)
€0 Jx Ve /2! lInlly,
nAn  Vol(X, ) 3 Vol(X, y0)
= [0 2T 0+ 3 Y e 150
x %2 iz, pededny I,

Proof. Since ye s converges to yo outside (Upesing(x) \7(6)p, and since Vol(f,ys,(;) converges to
Vol (X, yp) as € — 0, we get the convergence

AT Vol(X, ~
DY / tog] AT VlXve |z )
V(&)

‘/X;\UpeSing(X) V (6)1)

2 2
peSing(X) ye,é/Z! ||77||L2
AT Vol(X, vy ~
. ~ 772 n' ( 2‘)/) c2(X, y0)
X\Upesing(x) V (6)p ')’0/2~ ||77||Lz
i * v VOI(XV?’)/E,(S) >
+ lim Z /; {logn | fo(2)Pca(X, ye.s) +log — I ==c2(X,¥e.5)

0, e T o, Il

AT Vol(X, o)
:/ log )72 77‘ 27 c2(X, y0)
X\Upesingx) V (8)p 70/2- ”U”Lz

=Y log(lfp(O)Izw

2
peSing(X) ||77”L2
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as € — 0, where the last equality follows from Proposition 5.1. Since ¢2(X, y0) = 0on Uyesing(x) V (0)ps
we get the result. O

Corollary 5.3. For any § € (0, 1], one has

==

o Vol(X,70) |
tim lim r(%,ye.0) = | | {|fp<0>|2¥}
€ pesmg(x) ||r]||L2

1 AT Vol(X,
——/log 772 7, Yolt 2)/0) c2(X, v0)
24 Jx 70/2! ||TI||L2

X exp

In particular, the limit lim s lim¢_q T()?, Ye.s5) is independent of the choice of p.

Proof. By Theorem 3.2 and Proposition 5.2, we get the desired equality. The independence of the
double limit lims_,0 lime 0 7(X, Ye,s) from p is obvious because the right-hand side is independent
of the choice of p. O

Define the Fubini-Study form on E, by

* J 2
wrs (Ey) = 1T (Z—Balog||z||2)
T Ey

Then for p € Sing(X), we have
Ye.slE, = € wrs(Ey)

and an isomorphism of Kahler manifolds (E,, wrs(Ep)) = (P, wrs).

Proposition 5.4. For any 6 € (0, 1], one has

1
ZVOI(X”}/O) !
Il

l{I})AM(§90’yE,5): 1_[ {|fp(0)|

peSing(X)

Proof. Since vy 5| E, = € wrs(Eyp), and since wgs (Ep) is Kihler-Einstein, we get
c1(X? ye.slgo)lE, = X (PY) wrs(Eyp) = 2 wrs (Ey).

Since (17 A ﬁ)/()/i,(s/Z!)h;p = | f»(0)|? by equation (4.13), we get

~ 1 AT Vol(X,
AM(X’H"}’E,&):eXp[_ﬁ log{ nan_ Vol ys"s)}
X9

Cl(jzg’ 75,5')?0)]

8 Vi /2! 7117 %o
1 Vol()?,yf,(;)
=exply D / IOg{pr(O)I2—2 wrs (Ep)
| pesing(x) VF> iz I,

— Vol(X,ye 1(X, i
—ewly log{lfp(O)IZM} - 1] {mmnzM}

2 2
pESing(X) ||77||L2 peSing(X) ||77”L2

as € — 0, where we used equation (4.14) to get the last limit. This completes the proof. O
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5.3. Behaviour of the analytic torsion of the exceptional divisors
Proposition 5.5. For any § € (0,1] and p € Sing(X), the following equality holds for all € €
(0,6%€(p)]:

VO](EI)’ 76,6|EP)T(Eps 76,5|Ep) _ 61/3
Vol(P!, wgs) 7 (P!, wrs) '

Proof. We recall a formula of Bost [9, Prop. 4.4]. Let (Z, g) be a compact Kéhler manifold of dimension
d, and let 1 > 0 be a constant. By [9, (4.2.4)], we get

7(Z,1g) i ,
log( T Z. )) ( Z( 1)'(d - i) h* (Z)+/ZTd (TZ))log/l, (5.5)

where the characteristic class Td'(E) is defined as follows (compare [9, Prop. 4.4]). If &(i=1,...,r =
rk(E)) are the Chern roots of a vector bundle E, then

e~ éi
Td'(E) := Td(E s
() ”Z(, )
Since
Lo x (1 e\ 1 )
Td'(x) = 1—e‘x(x 1_e_x)—2+6x+0()c)

and hence /P] Td’(TP') = 1/3, we get by equation (5.5) applied to (Z, g) = (P!, wrs)

(Ep. Ye.sl5,)/T(P! wps) = 7(P', e wrs) /T(P!, wps) = /7. (5.6)

Since
Vol(Ey, ¥e,slE,) /Vol(P!, wrs) = Vol(P', € wrs)/Vol(P', wrs) = e, (5.7
the result follows from equations (5.6) and (5.7). ]

6. Spectrum and heat kernels under the degeneration

In this section, we prove a uniform lower bound of the kth eigenvalue of the Laplacian and also a certain
uniform exponential decay of the heat kernel for the degenerating family of metrics y¢ 5.

6.1. Uniformity of Sobolev inequality

In order to study the limit of the analytic torsions (X, Ye.5) and 1z, (X, Ye.5)(0) in the next section,
we need to establish a uniform Sobolev inequality. First, we consider our model space (T*P!,yEH),
the Eguchi-Hanson instanton. Here yE! is the Ricci-flat Kihler metric constructed in Section 5.1 on
V(o) = T*P'. Note that for 0 < € < 1, under the identification ® : (R*- B(p))/{x1} = V(o) =K
outside a compact neighbourhood K = V(p) - V(oo) of the zero section of T*P! induced by the
identification (C2=B(p))/{£1} = V(c0)=V(p) = V(c0)=V(p), one has

" (Y =6 +0(r™Y)
uniformly in € by equation (4.4).
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Lemma 6.1. There is a constant C such that for all 0 < € < 1, the following hold:
(1) Forall f € CF(V()),
1AL (o) yty = ClF 2 o) )
(2) Similarly, for all @ € Ag’Z(V(OO)),
Hell (7 (oo ) < Clldel2 @ (o) -
(3) Forall a € Ag’l(V(OO)),

e < *(19el?

.
L4 (V (o) yEM) L2(F (o) ey T 1192l )

L2(V (c0),yEM)

Here all norms are defined with respect to the metric yEH.

Proof. Since (\7(00),7];}[) = (V(o0), ey®H) by equation (4.1), and since the inequalities (1), (2), (3)
above are invariant under the scaling of metrics y*H — ey™H, it suffices to prove (1), (2), (3) for yEH. In
the rest of the proof, all norms are defined with respect to y*H. Identifying a function in Cy (V(c0)=K)
with the corresponding +1-invariant function on R* with compact support via ®, we deduce from the
Sobolev inequality for R* that

1A (@ ooy < 2CNdF N2 oy VS € €5 (V(o0)=K),

where C is the Sobolev constant for R*. By an argument using partition of unity, there is a constant
Ck > 0 such that

||f||L4(V(m)) < CK(“df“LZ(V(m)) + “f“LZ(K))s Vf € CSO(V(OO))
Assume that there is no constant D > 0 such that
1F 2k < Plldfllz oy VF € C(V(e0)).

Then for any n € N, there is a function f;, € C(‘;"(V(oo)) such that

1
Ifnll2ky = 1. Mldfallp2 @ (o)) < e

Therefore, we have
||fn||L4(\7(oo)) < CK(l + 1/]’1) < 2Ck.

Passing to a subsequence if necessary, it follows that the sequence f, has a weak limit fo € L*(V(0))
with dfe = 0 as currents on V/(eo). This implies that in L*(V(0)), fw = 0. On the other hand, let K’ be
a sufficiently big compact subset of V(c0), whose open subset contains K. Now, for any compact subset
K’ c V(0), there is a constant Cg, > 0 such that

1/2

1fillz2 ey < VOIK) Pllfull gy < Cx = V2Ck VoI(K").

Hence, by the Rellich lemma, we may assume (by again passing to a subsequence if necessary) that f,
converges to fx, strongly in L?(K’). Since K ¢ K’ and hence the convergence f, — fi in L?(K) is
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strong, we see that || feollz2(k) = limp—eo || fullz2(k) = 1. This is a contradiction. Hence there exists a
constant D such that || f]|2(x) < D||df||L2(‘7(oo)>. By setting C = CK(1 + D), we have

||f||L4(‘7(00)) < C”df”y(V(m))'

This proves (1). _ _
(2) is an immediate consequence of (1), and the isomorphism C;°(V(e0)) > f + f77 € Ag’z(V(OO)),
which commutes with the operations involved. To see (3), let a € Ag’l (V(OO)). Then by (1),

1/2
2 4 <2 2 .
o2 o (/V(oo) ! dx) =€ /V(oo) el e

Using Kato’s inequality, we have

/~ |d|a/||2dx§/~ |Va|?dx.
V (0) V (e0)

Now the Bochner formula [34, (1.4.63)] gives (%* + 5*5)a = V*Va since (V(c0), yEH) is Ricci flat.
Our result follows. O

Lemma 6.2. There is a constant C such that for all €,6 € (0,1] with €62 < €(p), and all a €
Ayt (V(0)), 0< g <2,

2 < 2( T2 T2 )
oy 7 e gy S C N0 G ) ) H 19 @25 (o) ) )

where the norms and 3* are defined with respect to the metric k. ;.
Proof. By Lemmas 4.1 and 4.3, there exist constants C, C; > 0 such that

ClyEH < Ke,s5 < CzyEH 6.1)

forall €,6 € (0, 1] with €672 < €(p). Here €(p) is defined in Section 4.2.1, in the discussion following
equation (4.2). Hence there is a constant C3 > 0 such that

-1 2 2 2
NN 5 o)y <ML (5 ) ) = 3NN )y ©2)

1149112 a2 a.12
51012 ey < N0 () k) = CoNOXME () ©3)

for all €,6 € (0, 1] with €572 < €(p) and @ € Ay (V()).

Let A¢.s (respectively, A¢) be the Lefschetz operator defined as the adjoint of the multiplication by
ke.s (respectively, yEH). Since 3 = +il¢, 50 for (0, g)-forms by the Kéhler identity, there exists by
equation (6.1) a constant C4 > 0 such that

LB 2 = 12 =% 1
Callo @l ) oy < N9 @l (o, ) < Co0 2 )y, ©4

By Lemma 6.1 (3) and equations (6.2), (6.3) and (6.4), we get the result. m]

For the minimal resolution X and the family of Kihler metrics Ye,s constructed in Section 5.2 using
the Eguchi-Hanson instanton, we have
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Proposition 6.3. There is a constant C such that for all €,6 € (0,1] with €672 < e(p), and all
ae A% (X),0<qg<2,

2 2(13 112 =% 12 2
allly s <C ( oall?, = +1[0 al, - +llall?, - ),
I ”L“(X,Ye,é) I ”L2(X,75,6) I ”LZ(X,%,(S) I ||L2(X976.6)
where the norms are defined with respect to the metric y¢ .

Proof. Since ye s = Ke,s 0N Upesing(x) V(é)p, the result follows from Lemma 6.2 and an easy partition
of unity argument. O

6.2. A uniform lower bound of spectrum

Let 07 ; = (3 + 0)* (respectively, O0f) be the Hodge-Kodaira Laplacian of (X,y.,s) (respectively,
(X, o)) acting on (0, g)-forms. Let /lz, 5 (k) (respectively, /lg(k)) be the kth nonzero eigenvalue of the
Laplacian DZ 5 (respectively, Dg). Then the nonzero eigenvalues of EIZ 5 are given by

0<A? () =a? ()< <2 (k) <29 ((k+1) <+

and the set of corresponding eigenforms {goZ ¢ s keN. We set /lz 5(0) = 0 and list the corresponding
eigenforms gog s (here we abuse the notation as there would be dim H(X, Q;ZZ) many of them) so

that {goz,f, s} reo forms a complete orthonormal basis of Lg”q&()? ), the L?-completion of A%4 (X) with
respect to the norm associated to y. 5. Since

(o)

-t _(k *
K s(tx,y) =Y e eeWel (el ()
k=0

we get

o0 o .
K )| D e e ®ipl @Il 0

k=0

N NP 6.5
< (e M Wlpl J@PPPY e Wigl ooyt O

k=0 k=0

= \/trKZﬁ(t,x,x)\/trKZ’é(t, V,5).

Proposition 6.4. If g = 0,2, then there are constants A,C > 0 such that for all €,5 € (0,1] with
€672 < e(p), and x,y € X, t > 0, the following inequality holds:

0<

KY (1., y)| < AeCledT 4N (72 Ly, (6.6)

Moreover, for all (€,6) € (0,1] with €672 < €(p), and for all t > 0, g > 0, the following inequality
holds:

Tre™ %o < Vol(X, ye,5)AeC(€O D (172 4 1), 6.7)

Proof. (Case 1) Let g = 0. By Proposition 6.3, the Sobolev constant is uniform for €, € (0, 1] with
€672 < €(p). By [10, Thms. 2.1 and 2.16], there are constants A > 0, B > O such that for all €, 6 € (0, 1]
with €672 < e(p),andx,y € X, 1t > 0,

0<K? (t,x,y) < AeP'r2. (6.8)
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Let g = 2. By Lemma 4.5, the Lichnerowicz formula and [24, p.32 1.4-1.5], we have
K9 j(t,x,y)] < e'Rveolo KO (1 x, y)| < eCleOT 4D ALB (172 4 1), (6.9)

For t+ < 1, we get equation (6.6) by equations (6.8) and (6.9). For ¢+ > 1, since tr KZ 6(t,x,x) is a
decreasing function in ¢, we deduce equation (6.6) from equations (6.5), (6.8) and (6.9) and the inequality

KZ’S(t,x,y)} < \/trKZ,d(l,x,x)\/trKZ’a(l,y,y) < 2eC(€67D) 4B

s = [z tr K2 4(1,x,x) dx, we get equation (6.7) from equation (6.6).

(Case 2) Let g = 1. Since 3, (-1)9Tr e = 0forall 7 > 0, equation (6.7) for g = 1 follows from
equation (6.7) for g = 0, 2. This completes the proof. [

Since Tre

Write A2 (k) for /lz’l (k).

Lemma 6.5. There is a constant A > 0 such that for all € € (0,€(p)] and g > 0,
AL =a>0. (6.10)

Proof. Since dimX = 2 and hence AL(1) = 22(1) or AL(1) = 22(1), it suffices to prove equation
(6.10) for g = 0,2. Assume that there is a sequence {€,} such that e, — 0 and A% (1) > Oasn — o
for ¢ = 0 or 2. By the same argument as in [42, p.434—p.436] using the uniformity of the Sobolev
constant (compare Proposition 6.3), there is a holomorphic g-form ¢ on X \ Sing X, which is possibly
meromorphic on X, with the following properties:

(i) The complex conjugation wj’ ., converges to ¢ on every compact subset of X \ Sing(X) as~ n — oo,
(i) ||l¢ll;2 =1 and 7y L HO(X, QZ?) with respect to the degenerate Kihler metric 7y on X.

Since Sing X consists of isolated orbifold points, it follows from the Riemann extension theorem that
Y extends to a holomorphic g-form on X in the sense of orbifolds. When ¢ = 0, ¢ is a constant. When
q = 2, since X has canonical singularities, 7%y is a holomorphic 2-form on X. In both cases, the
condition 7*y L HO(X, QZ?) implies ¥ = 0, which contradicts the other condition |[y||;2 = 1. This
proves the result. m}

Lemma 6.6. There is a constant I’ > 0 such that for all €,6 € (0, 1] with €672 < €(p)] and g > 0,

/l‘é,d(l) > >0.

Proof. Firstly, we prove the inequality when g = 1. Since X is a K3 surface and hence ker |:11E s =0, we
get by equation (6.10)

 +lIaal? 6.11)

for all @ € A%! (f ), where we used the coincidence of the d-Laplacian and the d-Laplacian for Kiihler
manifolds to get the equality in equation (6.11). By Lemma 4.4, there exist constants C; > 0 such that
for all @ € A%!(X),

cilell? < Cillall;

LZ(X ) — || ||L2(X LZ(X )

;' loall? 9 S < ldal? < Cil|dal?

L2(X,y L2(X,y L2(X,y¢)"

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.66

26 Xianzhe Dai and Ken-Ichi Yoshikawa

Combining these inequalities and equation (6.11), we get for all @ € A%! ()? )

-1 2 2 3112 ax 112
Crdlalls g, ) < Cl0al g, ) = C‘(”M”L%i,ye,ﬁ) + 1o “”LZ(Y,yeﬁ))' (©.12)

The result for g = 1 follows from equation (6.12). Since 8_5005 s(1)and 5*9025 5 (1) are nonzero eigenforms
of ol s wegetd’ <Al ;(1) <22 ((and A’ <al 4(1) <ai 4(D). O

Theorem 6.7. There are constants A, C > 0 such that for all k € N, €, 6 € (0, 1] with 67> < €(p) and
q >0,

AL (k) > Aem3C(eTHD g1/2,

Proof. By Proposition 6.4, we get for all €, € (0, 1] with €672 < e(p) and ¢ € (0, 1]

k )

Ze—m‘g,a(i) < ho’q()?) + Z (D) _ Ty o106 < A’Cles™+1) 2,

i=1 i=1

where A’ is a constant such that AVol(X, Ye.s) < A’. Since /1’//12 s (k) < 1by Lemma 6.6, substituting
t:= '/ (k) in this inequality and using A7 ;(i)/A% (k) < 1fori < k, we get

ko A0 v -2
ke < Ze 500 o p7,Cle674+1)
< < 7 .
i=1 /15,6(]()

We get the result by setting A := (A”)~1/217e=1/2, O

Corollary 6.8. Let C and A be the same constants as in Theorem 6.7, and set A(R) := Ae 3CR and
Y(R) = X e IARK oy for all €,6 € (0,1] with €672 < €(p) and t > 1, the following
inequality holds:

0 < T — 1%4(X) < W(es™ +1) e 3A+ed™r,

Proof. Since A7 ;(k) =2 A(%ihl)(lc]/2 + 1) by Theorem 67, we get Y, e Yes® <
e~ tA(e5741)/2 PP et esTHDE P(es™+1) e A€ /2 for s > .

We also need an estimate for the heat kernel Kz,a,oo(t’ x,y) of (V(OO), Ke,s)-

Proposition 6.9. There are constants A’,C’ > 0 such that for all €,6 € (0,1] with €672 < €(p),
x € V(c0), t > 0and q > 0, the following inequality holds:

K7 (t,x,y)] < A7eC (€7D (172 4,

€,0,0
Proof. When g = 0, the result follows from Lemma 6.2 and [10, Thms. 2.1 and 2.16]. Let ¢ > 0. Since

IRic(ye.s)| < C(e67* + 1) by Lemma 4.5, we deduce from [24, p.32 1.4-1.5] and the Lichnerowicz
formula for DZ 5 that

C(56‘4+1)tK0

€,0,00

0 < |K? (t,x,y) < A eCled™ =2

€,0,0

(t,x,y)| < e

This proves the result for # < 1. Since equation (6.5) remains valid for KZ s.00 (1, X, y) by the fact that
K (t,x,y) is obtained as the limit R — oo of the Dirichlet heat kernel of V(R), the result for t > 1

€,0,00
also follows. This completes the proof. O
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7. Behaviour of (equivariant) analytic torsion

In the previous sections, the additional parameter ¢ is pretty harmless, and the results still hold in its
presence. This parameter will play a more essential role in this section. Indeed, we shall prove the
following:

Theorem 7.1. There exist constants Cy(k), C1(k) > 0 depending only on k = #Sing(Y) such that
lim lim 7(X, y¢,5) = Co(k) - 7(X, o),

lim lim €77, (X, ye,5)(8) = C1(k) - 72, (X, o) (0).

7.1. Existence of limits

By Corollary 5.3, the first limit exists and is independent of the choice of a cut-off function p. For the
second limit, we have

Proposition 7.2. For any 6 € (0, 1], the number
k/3 - -
€°72,(X, ¥e,6)(0)VOl(X, Ve, 5)

is independent of €,6 € (0,1] with 0 < €672 < €(p). In particular, for any & € (0, 1], the following
limit exists as € — 0

lim0 P17, (X,ve.5)(6),
€ —

and the limit is independent of 6 € (0, 1] and the choice of a cut-off function p.

Proof. (Step 1) Let go, g1 be 6-invariant Kihler metrics on X. Let Tdg (TX; g0, 1)) be the Bott-
Chern class such that

—dd°Td(TX; g0, 1) = Tdo(TX, g0) — Tdg(TX, g1).

By Bismut [4, Th. 2.5],

Tz, (i’ go)(@)VO]()?, 80)
7z,(X, g1)(0) Vol (X, g1)

/;ze Td(TX: 80, 81)- 7.1

Since

~ 1 ~ ~ 1 =
Tde(TX; g0, 1) ") = gcl(TX)l)}HCI(TXQ)(gOagl) - ﬁcl(TXO)z(go,gl)

by [43, Prop. 5.3], we have the following equality of Bott-Chern classes:

— — 1 - ~ 1 =
Tdy(TX; g0, 1)V = gcl(TX)|§eC1(TX9)(go,g1) - Ecl(TX9)2(g0,g1)
1_ = - . o
= §01(TX;go,g1)IgQC1(TX",g1) +geTy, 80)|zeC1(TX"; 80, 81)

1~ ~ _
- 501(TXH;go,gl){m(TXe,go) +c1(TX%, g1)},
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where [21, Eq. (1.3.1.2)] is used to get the second equality. For a holomorphic line bundle L and
Hermitian metrics hg, 41 on L, we have

c1(L; ho, hy) =1log(ho/hy)

by [21, Eq. (1.2.5.1)]. (Our sign convention is different from the one in Gillet-Soulé [21]. Our
c1(L; hg, hy) is =c1(L; hg, hy) in [21].) Hence
81 5('9)

_ 1~
c1(X% g1) + gcl(X, g0) log(g_o

— = 1 det g
Tde(TX;g0.g1) ") = -1
o 80, 81) 3 og det g

1 80
12 g(g1 <o
mod Im d + Im 4.

X0

){qo?ﬂgo) rer(X%. g} 72)

(Step 2) We set go = ye,s and g1 = y¢(p) in Step 1. Since go = ye, s is Ricci-flat on a neighbourhood
of X9, we have

Cl(i,ye,é)l)}‘e =0.
Since the volume form of EH instanton iddF, is the standard Euclidean volume form

(i00F¢)?

T i’dzi AdZ) Adz A d7

and since y¢.s = id0F¢ on V(6),, we get

( det Ye,s )
detye(p)

g0 \Ve/?!

(P!, e wrs) and (Ei, Ye (o) lE;) = (P, €(p)wrs).

X0

13

If E; = P! is a component of XY, then (E;, Ye,slE)
Hence

%0 €p)

Ye,s
Ye(p)

Altogether, we get

= =S 1 Ye,o
Tdo(TX:; Ve 5. Ve(p) " = —/ —log(—’
-/Xi” ‘ ® xo0 12 Ye(p)

Lot ele)) [, (o) - Loale/ )

jf{)){cl(iea')/e,é)+cl(§9’76(p))}
. . (7.3)

o ko e

x(X7) = -7 log )’

where we used the fact X = E| 11 --- 1 Ey, k = #Sing X, E; = P. This, together with equation (7.1),
yields that

6k/3TZ2 (5{7 76,5) (H)VOI(X, 75,5) = E(p)k/:iVOl(is Ye (p)) TZ, (gs YE(p))(a)
is independent of €, € (0, 1] with 0 < €672 < €(p).
(Step 3) Let x be another cut-off function to glue Eguchi-Hanson instanton to the initial Kéhler form

Yo on X (compare Sections 5.2.1 and 5.2.3). Then there exists e(x) € (0, 1) such that the function
¢ s(2) = llzII> + xs(llzIDE(z, €) on V(o) \ {0} is a potential of a Kihler form on T*P! = V(co) for
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any €,6 € (0,1] with 0 < €672 < e(y). Let Y. s be the families of Kahler forms on X constructed in
the same way as in equation (4.12), using .  := i66_¢'€ 5 instead of k¢ s. By Step 2, we get

Py, (X, 7. 5)(OVOI(X, ¥, 5) = e(0)PVol(X, 7L () 72, (X, ¥L () (0)

for any €,0 € (0,1] with 0 < €62 < €(y). To prove the independence of the limit
lime_o €377,(X, ye.5)(0) Vol (X, ye.s) from the choice of p, we must prove

€(p)*PVol(X, Ve (1) T2 (X, Ye () (0) = () PVol (X, v () 12, (X, 7., )(0).  (T4)

We setgo = Ye(p) and g1 =y 0 in equation (7.2). By the same computation as in equation (7.3), we get

= v k. €e(x)
Tdo(TX; Ve (), Vi) = =21 :
-/X;" o( Ye(p) 75(/\,)) 3 og e(p)
This, together with equation (7.1), yields equation (7.4). This completes the proof. O

7.2. A comparison of heat kernels

Recall that KZ’ s(t,x,y) denote the heat kernel of the Hodge-Kodaira Laplacian D; *% for the Kihler

metric y¢.s on X, and K{(t,x,y) the heat kernel of the Hodge-Kodaira Laplacian Dg for the Kihler
metric yp on X. For 0 < r < 4, let

Vr = U V(r)p, fr =X - Vr.
peSing(X)

Define Vi to be Vj extended by k copies of the infinite cone (C?> — B(4))/{x1}. The metric ye,(g|‘74

q
€,0,0

similarly extends to a Kéhler metric v’ ; on Veo. We denote by K (¢,x,y) the corresponding heat

kernel on Vm. Similarly, we have the corresponding X, V;-, Vo on X, with X,. identified with fr. Note
that V is just k copies of the infinite cone.

‘We first established some uniform estimates on the heat kernel K Z P (t,x,y),improving on Proposition
6.4 when the points are in specific regions.

Theorem 7.3. There are constants A, C depending only on the Sobolev constant and dimension such
that, for all €,6 € (0, 1] with €672 < e(p) and 0 < q < 2, we have

4 572 ~ —~
|KZ(t,x,2)| < AeCUresd )6_46_32t, Vx € X35, z€ Vas, t>0.
Similarly, we have Vx € )?35, zZ € ‘725, t>0,
1KY (1, x,2)| < AcCU+e0™ 6758 |d% K9 (1,x,2)] < AeCUTe0 ™) 55~ 4r
€ ,-xyz — e e ’ 576 € 7X,Z — e e s

Here d, d*; 5 could act on either the x or z variable. Finally, for 0 < r < 26, x € )?35, z € \72(” =
Vzé - Vr, andi € N,

. 2
|V‘KZ s(t—s5,x,2)| <C(,0, r)eW%

for a constant C(i, 8, r), depending on i, 8, r. Here V' denotes the ith covariant derivative with respect
to the metric y ¢ s acting on either variable.
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Proof. Throughout the proof, we fix x € 5535, Z € ‘725, t > 0. Since the Ricci curvature of y. s is
bounded by Lemma 4.5, the Sobolev estimate, together with the Moser iteration technique combined
with the finite propagation speed argument as in Cheeger-Gromov-Taylor [ 13], gives the uniform estimate

_ 52
|K9(t,x,2)] < AeCU+€0™) 574057

Indeed, the finite propagation speed technique gives us the L? estimate

_s%
||KZ(I, ) .)||L2(B6/4(X)XB§/4(Z)) < ce ot

for some uniform constant c. Now Moser iteration as in [13][pages 16-26], together with semi-group
domination [24], yields the desired estimate.
For the estimate on dK?(t,x,7), d; 6KZ(t,x, z), let n(r) be a smooth cut-off function that is

identically 1 for |r| < §/8 and identically O for |r| > /4 and |5’| < 1—56. We will continue to denote by
7 its composition with a distance function (either d(x, -) or d(z, -)). Note then

||(d+dz,5)z[7’]l(g(l‘, ) ')]”22(36/4(X)><36/4(Z)) = ”(d)z[nKZ(t’ ) ')]l|i2(35/4(x)><35/4(z))
% 2
+ ”(de,&)z [UKZ([’ ) .)]||L2(B,5/4(X)><B§/4(Z))’
from which we deduce

I(d), [KZ(Ln‘)]||L2(35,8(x)x36,8(z)) < ||(d+d2,5)z[TIKZ(t,',')]||L2(36/4(x)x35,4(z))

16
+ ?HKZ(L s Me2(Bys(x)xBsjs(2))

< I(d + d ) IRt -2 (5 B (2)

2
+ KHKZ(L M8y (xBss(2) -

Now the same finite propagation speed technique gives

" _8%
l(d+d¢ s): [K&(z,-, ')]||L2(B(;/4(x)><35/4(z)) <clemia,

which in turn gives

32 &%
(). [K&(z,-, ')]||L2(B§,8(x)x35/8(z)) < (C'+C?)€ 2.

The same method as above then yields

2

-4 S
[(d), [K2(t,x,2)]| < AeC1+€0 5507 5m,

The others can be proven in exactly the same way.
_ Finallz, for O~ < r < 26, we note that the curvature tensor and its derivatives of y, s are bougded in
Vas.r = Vas =V, by a constant depending on ¢, r. Moreover, the injectivity radius of y. s in Va5, is

bounded away from zero by a constant depending on d, r. Hence, by the elliptic estimate combined with
the argument as before, we have, for x € X35, z € Vos, =Vas —V;-,andi € N,

i 2
IVIK? (1 =s,x,2)| < C(i,s6, r)e” 3%

for a constant C(i, §, r) depending on i, &, r. O
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Theorem 7.4. There are constants A, C depending only on the Sobolev constant and dimension such
that, for all €,6 € (0, 1] with €572 < €(p) and 0 < q < 2, we have

_ 2 ~ —~
IK? j(1.5,y) = K& (t.x,y)| < A€+ 60 T vol(0Xas). Va.y € Xas, 1> 0,

Furthermore, ¥x,y € X35, 1> 0, we have the pointwise (although not necessarily uniform) convergence
ase — 0,

K? s(t,x,y) = KJ (t,x,y) — 0.

Proof. For 0 < r < 4, we apply the Duhamel principle [11, (3.9)] to K (t,x,y) — Kl (t,x,y) on X,
to obtain

t
KZ,a(t,x,y)—Kg(t,x,y):_/o /f [(3r+Dg)KZ,6(t_S’x’Z) N oKy (.29)
t
+/ /‘ K¢ 5(t = s,x,2) A xdK (5,2, )
0o Jox,
t
et [C ] ek s gz
0 Jox, |
t
+(—1)4q+1/ /~ sK{ 5(1 = 5,x,2) Nd"K{ (5,2, y)
0 Xy

t
+/0 /655 d*Kz’é(t—s,x,z)/\*Kg(s,z,y).

Now fix x,y € X3. First we let r = 26. Then the first term on the right-hand side goes away, and
we are left with only boundary terms. By Theorem 7.3, and noticing that similar estimates hold for the
orbifold heat kernel

2 —_~ —_~
K (t,x,2)| < C67% ™%, VxeXss, z€Vag, 150, (7.5)

as well as its derivatives, we deduce then that
- 2 —
IK? s(t,x,y) = K (1, x, )| < AeCU+€67™) 579 =T vol (0 Xns).

To prove the pointwise convergence, we let » < 26 and denote \72 S = \725 - 17,. Then the Duhamel
principle becomes

K? s(tx,y) = K{(t.x,y) = _/ot /VM,,[(‘Q’ + 00K 5(1 = 5.3, 2) | A KT (5,2,7)
+/0t/a§r Kzgé(t—s,x,z)/\*ng(S,Z,J’)
_,_(_1)4qr+1/0t/a)z *dKZ’é(t—s,x,z)/\Kg(s,z,y)
+ (=1)ta+! /ot/a)z «K? 5(t=s5,x,2) Nd"K{ (5,2, ¥)

t
+'/0 /ai d"K? (1= 5,x,2) A*KJ (5,2, 7).
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We use the relation (9, + Oj)K? s(1 - 5,x,2) = (5] - Of 5)Kq s(1 = 5,x,2) to control the first

integral. Since ye,s5 = i00¢c s, pe.5(2) = Izl + ps(IZIDE(z, €), ps(t) = p(t/6), p( ) € C*(R) on
Va5, and since E(z, €) is a real analytic function on Vi ;2 X [0, 1) with E(z,0) = (Dq - Dq 5)

is a second order differential operator with coefficients in C °°(V35’r 12 % [0, E(p)éz)). Hence there is a
constant Co(d, r) > 0 depending on ¢, r but not on € such that for all (z, €) € V35 /2 X [0, €(p)d?),

(0 — 07 DK 41~ 5.2.2)| < eCo(6.r) Y [VEK (1 = 5.x.2)].
k<2

(This can also be deduced from equations (4.2), (4.4) and (4.6).) _
_ By the second statement of Theorem 7.3 applied to the right-hand side, we have, for x € X35, z €
Vas,rs

2
0 +8DK? ;1 = s,x,2) = (0 0% JK? ;(t = 5,x,2)| < €C(6,r)e”

for a constant C (6, r) depending on &, r but not on e. _
Combining with the uniform estimates in Theorem 7.4, we obtain, for x, y € X3,

2 2 —_~
K9 j(1,%,) = K& (1,x,y)| < e1C"(8,r)e” 1o + C”(5)te” T vol (8K, ).

2 —~
Now for any r7 > 0, we take r sufficiently small so that C”(6)te‘%r vol(0X,) < ’2—7 Then we take €

sufficiently small such that ezC’(5,r)e” % < I Hence
|KZ,5(l,x, y) = Kl (t,x, )| <n.
This proves the pointwise convergence. O

Remark 7.5. Since we have the Ricci curvature lower bound, the pointwise convergence of the heat
kernels should also be a consequence of some general spectral convergence results due to Cheeger-
Colding [12] for the case ¢ = 0, Honda [25] for the case g = 1 and Bei [2] for ¢ = n = 2. See also [16].

Theorem 7.6. There is a constant C depending only on the Sobolev constant and dimension such that,
ford <1,

IKE(1,%,y) = K& _(1,%,y)| < Ce" W vol(8V4), Vx,y € Vag, 1> 0.
Proof. The Duhamel principle [11, (3.9)] applied to Kg (t,x,y) — Kg’oo (t,x,y) on V4 gives us
t
KE () — K9 (1,3,7) = / / K (5,%,2) A +dKE (1 = 5.2,)
0 Jov,
t
et [ ik nK (- 5.2)
0 vV, ’

t
+ (=)t / / *Kg(s,x, ) A d*K&m(l‘ -5,2,5)
0 A

t
+// d*Kg(s,x,z)/\*Kgm(t—s,z,y).
0o Jov,
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Thus we obtain, for x,y € V35,0 < 1, using the estimate 7.5, except with the ¢ there replaced by a
fixed constant, say 1/4, as well as a similar estimate for Kg Stx,y),

K (1.x,) = K¢, (1.3, )] < Ce™ T vol (V). a

Our final task here is to compare the heat kernel K Z s(t,x,y) with K Z .00 (1, X, y), the heat kernel
on Voo, when x,y € 735.

Theorem 7.7. There are constants A, C depending only on the Sobolev constant and dimension such
that, for all €,6 € (0, 1] with €67 < €(p) and 0 < q < 2, we have

K 5(6,5,9) =K 5 (6, 9)] < AeC0+0 D e v0l(3Va), Y,y € Vag, 1> 0.

€,0,00

Proof. The proof follows the same line as above. We apply the Duhamel principle to K Z s(tx,y) =
K Z 5.00(1>X,y) on V, and use the heat kernel estimate in Theorem 7.3 as well as the analogous estimate
for KZ 5.0 (1, X, y) to obtain the desired estimate. O

7.3. Partial analytic torsion

Recall that in Section 4.1, for a compact Kéhler orbifold (Z, y) of dimension n,

1 (o]
L= Y A dmED,) = —— / 51 Tr(e~1% LY dr
'(s) Jo 4
Aeo(Ty)\ {0}

with P; the orthogonal projection onto the orthogonal complement of ker O, and (the logarithm of) the
analytic torsion

n

InT(Z,y) == ) (~1)7q £, (0) = =£;.(0),

q=0

where
ir(s) = L /thTr (Ne™™P*) dt
'(s) Jo * ’

Here O denotes the Hodge-Kodaira Laplacian on A%*(Z), P+ the orthogonal projection onto the
orthogonal compliment of ker 0 and Tr, the supertrace on A%*(Z): that is, the alternating sum of the
traces on each degree and N the so-called number operator, which simply multiplies a differential form
by its degree.

By the Lidskii theorem,

Trg(Ne ""PY) = [ trg(NK(t,x,x)P*(x,x)) dx

S—

n

-1)4 K, (t,x,x)P%(x,x)) dx,
> )q/Ztr< S (1,3, ) PE (3, 1)) dx

where K (¢, x,y), K4 (t,x,y) denotes the heat kernel of 00, O, respectively, P+ (x, x) the Schwartz kernel
of P+ and try (abusing notation) also the pointwise supertrace.
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At this point, it is convenient to introduce what is called ‘partial analytic torsion’ in [14]. For a
domain D C Z, we define

(P7(s) = % /0 T /D try (NK (1, x,%)P* (x, x)) dx dt
and
(D, Z,y) = ( ) (0). (1.6)
Clearly
Int(Z,y) =Int(D,Z,y) +Int(Z - D, Z,7). 71.7)

Similarly, we can define the equivariant version 7z, (D, Z,y)(6) for 6-invariant domain D C Z. That
is, we define

1o
(Pl (s) = — / ! / tr (NK (1, x, 0x) P+ (x, 6x)) dx dt
’ I'(s) Jo D
and

In7z,(D, Z,)(6) ==(¢77 ) (0). (7.8)
Then the discussion applies to the equivariant version as well.
7.4. Limit of partial analytic torsion 1
Theorem 7.8. For 0 < § < 1, we have

1iH})1nT(5('35,Y, Ye,s) =In7(X35, X, v0)
€

and
lig}) In7z,(X35, X, ¥e.5)(0) = In77,(X35, X, %0) ().

Proof. (Step 1) Let

00

tI'S(NKe,(S(t,x,X)) ~ Z af’d(x) ti_z

i=0

be the pointwise small time asymptotic expansion, and write

X”X( ) = O] [/ A 1/36 try(NKe 5(t, %, x) P 5(x,x)) dx dt

+/O tS_I/}w[tr (NK 5(t,x,x)) — Z &0 (x) 1] dx dt

1 €,0

a.’(x 1

ey [ 4 ) 4 [0S0 (x) - try (NP 5 (x,))] x|,
Py Xy S+Hi—2 s Xas
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where P s(x,x) is the Schwartz kernel of P_s, the orthogonal projection onto ker O_s. We obtain

In7(Xsg, X ye.s) = — / ! / (VK e 5 (10, 2) P 5 (e,) de di
1 X3s

1 2
- / 1! /~ trg (NKe s(t,x,x)) — Z af"s(x) 772
0 X35 i=0

1

Z[( P d +I7 (1)/ as 6(x) trg (NP 5(x, x))] dx
0 Y X3

L

dx dt

and snmlarly for In7(X35, X, y0). Since the asymptotic expansion depends only on the local data, we
have a®° (x) = a’(x) on X34. Hence

In7(X35, X, ve,6) — In7(X36, X, ¥0)

—/ til/; trs[NKE,,s(t,x,x)Pi’é(x,x)—NKo(t,x,x)Pé(x,x)]dxdt
X35

| | (7.9)
_/ t‘/~ [trs (NK e, 5(1,%,%) = NKo(1,x,)) | dx dt
0 X35

=T'(1) [ trg(NPe s(x,x) — NPy(x,x)) dx.
X3s

We estimate each term on the right-hand side.
(Step 2) Let ¥(+) > 0 and A(+) > 0 be as defined in Corollary 6.8. By Corollary 6.8,
‘/~ |trs(NKe s(t,x,x)PL 5(x,x))|dx < Z g (Tre Pes — p%4(X))
X35 | q>0
1
<W(es™+1) exp[—im(ea*“ +1)]

forall €,6 € (0, 1] with €672 < e(p) and t > 1. Hence for any v > 0, there is T’ = T’ (v) > 0 depending
only on v such that for all €, € (0, 1] with € < min{e(p)d>,6*},and T > T”,

/ ! / |trs (NKe,5(t,x,x) P 5(x,x))|dx dt < ¥(2) / A2 oy, (7.10)
T }?35 ’ T t

and similarly for the same term involving Ky. By Theorem 7.4 and Lebesgue dominated convergence
theorem, there exists €y > 0 such that

T
/ ! /~ trg[N(Ke 5(t,x,x)) — Ko(t,x,x))] dx dt| < v (7.11)
whenever € < €. Similarly,
1
/ ! / trg [N(Ke s(t,x,%)) = Ko(t,x,x))] dx dt| < v (7.12)
0 X35
whenever € < ¢.
On the other hand,
trg (NKG,(;(t,x,x)Pi’(s(x,x)) =trg(NKe s(t,x,x)) —trg(NP¢ s(x,x)) (7.13)
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and similarly for K. Recall ker0p = kerde s =C-1® C- 7. Forx € X35, We get

2 nAmf

try [N(Pé,é(xax) - PO(x,x))] =
Inll7, \ vZ /2!

nAf _
(x) - i (x)) =0, (7.14)

because ye, s = yo on Xi. It follows from equations (7.11), (7.13) and (7.14) that

<. (7.15)

T
[ ] eIk sxPE p(0) = Kook 0P ) de
Substituting equations (7.10), (7.11), (7.12), (7.14) and (7.15) into equation (7.9), we get

In7(%s, %o 7e.0) = In7(Xs5, X, 70)| < 3

whenever € < €. Since v > 0 can be chosen arbitrarily small, this finishes the proof of the first formula.
To prove the result about the equivariant torsion, we follow the same line of argument, except with a
simplification, since # has no fixed points in X3s. Indeed,

Inz, (Koo, X, 7.6)(6) = - / ! / tty(NK e (1,3, 6x) P 5 (x, ) dic di
1 X35

1
- / 1 / trg(NK¢ (2, x,0x)) dx dt
0 X35

—T'(1) [ trg(NPe s(x,6x)dx

X3s
and
In7z,(X35. X, ve.5) () = In7z, (X35, X, 70) (1)
=_ / 1! /~ try [NKe,5(t,x,0x) P 5(x,0x) — NKo(t,x, 0x) Py (x, 0x) | dx dt
1 X35 ’
s (7.16)
- / t [ [trs (NKe,5(t, x,0x) = NKo(t,x,0x))| dx dt
0 X3s
-TI"(1) | trg(NPe¢,s(x,0x) — NPy(x,0x)) dx.
X3s
Now we proceed as before. O

7.5. Limit of partial analytic torsion I1
To relate In7(X35, X, y0) to In7(X, yp), by (7.7), it suffices to show

Theorem 7.9. We have

gin}) Int(V35, X, v0) =0, (lsimOlnTZz(Vw,X, ¥0) (1) = 0.

Remark 7.10. This is closely related to [15], where analytic torsions on orbifolds defined from conical
singularity pointview are shown to be the same as the ones defined from orbifold singularity pointview.
Proof. Again, the proofs for both formulas work the same, so we only present the first one. Moreover,

the argument works for any orbifold singularity, but we will work with the cyclic quotient singularity

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.66

Forum of Mathematics, Sigma 37

of type %(1, 1) in our situation. First of all, by the same kind of argument as above, using Theorem 7.6
and vol(V35) — 0 as § — 0, one has

lim 1 Vis, X, = 1lim InT(V35, Voo, ko).
lim n7(Vss, X, 0) lim n7(Vss Ko)

Now the right-hand side can be explicitly computed since the heat kernel is explicitly known. Indeed,
as V., is just k copies of C2/Z,, the (orbifold) heat kernel of (V., ko) on the (0, g) forms is k(Z) n=2
in our case) copies of

1 x—x'|? _ o2

Ko(t,x,x’) = W e +e 4

In terms of the polar coordinates x = (r,y),y € S>"71,

1 2
Ko(t,x,x) = ——— L+e .
olt-%.0) (4m)n/2( )
Thus
%
Ko(t’x’ x)d'x = Cn(snt_n/z + dn / t fn_l _§2d§7
Vis 0
where ¢, = %, d, = (42’#, Wy = vol(S"‘l),

The second term has different asymptotic behaviours for # — 0 and t — oo. Since

36

S (o] (o]
/ el s = / el €dg - | e lefag,
0 0

35
/2

by some elementary inequality, it is a constant d;, = d, fooo Enle¢ zdf plus an exponentially decaying
term as ¢t — 0 (or one could just invoke the known asymptotic for the complementary error function for
a large argument). On the other hand, it is also straightforward to see that as t — oo, the second term is
o).

Set

Ls(s) = %/0 t“(/vw Ko(l,x,x)dx)dt

= ! 1 s=1 ® s—1
= ﬁ[/o t (/Vm Ko(t,x,x)dx)dt+/1 t (/VM Ko(t,x,x)dx)dt],

where the first term is defined through analytic continuation from a region where the real part of s is
sufficiently large, whereas the second term is defined through analytic continuation from a region where
the real part of s is sufficiently negative. Therefore

1 L 1 c,o" d’
: Ko(t,x,x)dx |dt = n
r(s)/o ! (/v35 o(t.x. ) x) e s—n2 TTG+)

dn ‘/' l '_1 (o] _1 _§2
t & e dédt,
I'(s) Jo

2

‘u
Sk

1
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and

1 ® s—1 __L Cn(sn
ﬁ./l t (‘/‘/3§Ko(t,x,x)dx)dt— ) s—nf2

36
dn /1 s—l/‘lﬁ n—1 —.{—'2
+ t & e dédr.
L'(s) Jo 0

Thus,
! © 2 ! Pl 2
43(0)=—d;,r'(1)—d,,/0 ! y gnlem¢ d§dt+dn/0 flfo & lem ¢ dedr.
a7z

By a simple change of integration, we arrive at

(o)

’ ’ 36 n—1_-&2 0 36 n—1_-&2
GO =~diT (V) —dy | 20 e vdy | 2m e e e
0

36

This has a logarithmic divergence (2d;,In36) as 6 — 0, but
7 S n
In7(Vss, Veor 70) = =kZ5(0) Z(—l)qq(q) =0
=0

by combinatorial formula since n > 2 (in fact equal to 2 in this case). The proof for the partial equivariant
torsion is almost the same. We just need to insert the action of the involution € into the heat kernel,
which will result in only the d,, terms similar to the above formulas. O

Corollary 7.11. We have

lim lim In T(§35, Y, ’)/6’5) =In T(X, ’)/0),
0—0e—0
}}2}) l“l%) In77,(X36, X, ¥e.5)(0) = In1z7,(X,70)(1).

Proof. Since Int(X,y)) = Int(X3s,X,70) + Int(V35,X,7) and Intz,(X,y0)(t) =
In7z, (X35, X, v0) (1) + In17,(V35, X, ¥0) (1) by equation (7.7), we get by Theorem 7.9

(1511_2) In7(X35, X,v0) = In7(X, y0), éi_)m0 In1z,(X35, X, 70) (1) = In1z,(X, y0) (1),

which, together with Theorem 7.8, yields the result. O

7.6. Limit of partial analytic torsion II11
On the other hand, we have

Theorem 7.12. The following equalities hold:

lim lim In7(Vss, X, ye5) = k InCEH(p),
6—-0 e—0

lim 1im n[ 7z, V35, %, 7,6)(0)| = k In € (p),
—0 e—

where the constants C(])EH (p), CFH (p) depend only on the cut-off function p.

At this stage, the constants C5" (p), CI*(p) may depend on p. The fact that they are independent of
p will be postponed to the next subsection.
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7.6.1. An integral expression of 7(V34, X, Ye,s) and 1z, V36, X, Ye.5)(0)
For the proof of Theorem 7.12, as before, we compute

Int(Vss, X, ye.s) = - / = / try(NK e (1,3, ) PE 5 (e,) dx di
Vis
[ f (VK altoxo) - D €00
Vis i=0

_Z/V “l G )dx r(1)/ [ $0(x) — trg (NPe s (x, X))]
i=0 V36

dx dt

where af"s(x) are the coefficients of the pointwise small time asymptotic expansion for
try(NK¢ 5(t,x,x)) described in the proof of Theorem 7.8. Similarly,

lnTZZ(Vg5,)?,yE’§):—/ t’lﬁ trs(NKe,(;(t,x,G(x))Pi’é(x,H(x)))dxdt
1 Vis

1 1
- [P ]L wvkesexoen as- Y i [ bet ez
0o I |J%s P E

+Lb5’6(2)dz+r/(1)[é bf’é(Z)dZ_‘/v;w trs(NPe,ﬁ(xve(x)))dx]

with bf"s(x) the coefficients of the pointwise small time asymptotic expansion for
try (NKe 5(2,x,0(x))). We study the behaviour of each term on the right-hand side as € — 0 and

0 — 0. For this, we set
s (NK e 5.00(1,, %)) = )" af® (x) 172

1
d
I(€,6;p) :=—/ —t/_
0o I JV@ae) ey
—2/ d +r(1)/ 9 (x) dx,
V (36) i-2 (36)

1 1
dt .
J(€,6;p) ::—f — / trg(NKe s5.00(t,x,0(x))) dx — E t“l‘/bf"s(z)dz
o I'|J/vae) i=0 E

+/Ebg’é(z)dz+1“’(l)/Ebf"s(z)dz.

2
dx

Since K¢ 5,00(t,x,y) = 4K (t,x,) is k-copies of the heat kernel of (T*P!, . s), I(€,5; p) and

€, 6 )
J(€,0; p) depend only on €,6 € (0,1] with €6~ ~2 < €(p) and the cut-off function p. Since Vss is
k-copies of V(36), we have

=~ = “ dt
e Xoyen) == [ F [ wOKestrPt jx0) ds
1 Vis ’

1
dt
- / at / 0y {NKe.5(1,3,%) = NK .6 00(t,,3) }dx
o I Jv,

_F,(l) . trS(NPE,5(-x7x))dx+k'I(eaé;p)
Vis
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and similarly

~ = < dt
In7z,(Vas, X, ¥e.s5) :—/ T,/‘ try(NKe,5(2,%,0(x)) P¢ 5(x,0(x))) dx
1 Vis

1
_ / 0 / e {NKe,5(1,%, 6(x)) = NKe,5,00(1,,6(x)) ydx
0 t Vzé

-I'(1) [ tr{NPe s5(x,0(x))}dx+k-J(e 6;p).
Vis

7.6.2. Limit of the first integral
Proposition 7.13. The following equality holds:

< dt
lim lim/ —/ trg(NKe s5(t,x,x)PL 5(x,x)) dx = 0.
6—0€—0 Jy 1 ‘736 ’ ’

The same is true for the first integral in the expression of In 1z, (\735, X, Ye.5)

Proof. Let v > 0 be arbitrary. As in the proof of Theorem 7.8 Step 2, there is T = T'(v) > 0 depending
only on v such that

/ t_I[ |trs(NK6,5(t,x,x)Pt’6(x,x))‘dxdt<v (7.17)
T Vis

forall e, € (0, 1] with e < min{e(p)d?, 6*}, which will be assumed throughout the proof. By Theorem
7.1,

T
/ ! /~ trg [N{Ke s(t,x,%)) — Ke_s.00(t,x,x)}] dx dt| < C(T) Vol(Vg(g), (7.18)
1 Vis

where C(T) is a constant depending only on 7. By equation (7.14), we get

2n AR AT/Y2|| e .
[ trs[N(PE,(s(x,x)]dx=/~ AL e oG (7.19)
Vis Vis ||77||L2 ”U”L2

By equations (7.13), (7.18) and (7.19), we get

T
/ t‘1/~ trg [N{Ke,s5(t,%, %) P¢_5(x,X) = Ke 5,00(1,%,%)}] dx dt
1 Vs

In A 71/l 720
< {C(T) + 22V 1o 7Y vol (V).
Il
By Proposition 6.9, there is a constant A > 0 such that
T B _
/ ! /_ |Ke5.00(t,x, )| dx dt < Ae€ €O *DT Jog T - vol(Vs4) (7.21)
1 Vis
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for all €,6 € (0, 1] with € 62 < €(p). By equations (7.20) and (7.21), we get

T
‘/ ! /~ trs[NKe,5(t,x,x) Py 5(x,x)] dx dt| < C(T) vol(V35), (7.22)
I Vis |
=~ IS
where C(T) = C(T) + (2% + Ae*“T)logT. Since v > 0 can be chosen arbitrarily small, by
L
taking into account that vol(V3s) goes to zero as § — 0, the result follows from equations (7.17) and
(7.22). o

7.6.3. Limit of the second integral
Proposition 7.14. The following equality holds:

1
dt
lim lim / — try{NKe 5(t,x,x) = NKe¢ 5,00 (8, x,%) }dx = 0.
6—0 €e—0 0 t ‘736

The same is true for the second integral in the expression of In 1z, (V35, X, Ye.5)

Proof. The proof is the same as above, using the estimate of Theorem 7.7. Indeed, we have, for all
€,6 € (0,1] with e < min{e(p)62, 5*}, that there is a constant C > 0 such that

|trs{NKE,6(t’x’x) _NKe,é,w(t’xvx)}l <Ct

for all (x,7) € V34 X (0, 1]. Hence

1
dt ~
/ 7/; tre{NKe 5(t,%,X) = NKe¢ 5,00(t,x,%) }dx| < CVol(V3s,7e,5)- (7.23)
0 Vis

By the fact that
lim lim Vol(V3s, Ye.s) = lim Vol(Vss, Y0) = 0,
(51 OEIO (3 E,) (510 (3 0)

we get the result. o

7.6.4. Proof of Theorem 7.12
By equation (7.14), we get

lim lim trgy(NPe s(x,x)) dx = lim lim trg(NPe s(x,0(x))) dx = 0.
6—0 €—0 Vis 5—0 €—0 Vss

From Propositions 7.13 and 7.14, it follows that
lim lim In7(V3s, X, =k lim lim I(e, &; p),
lim lim n7(Vzs, X, ¥e,s) lim lim (e,0;p)
- - 1
lim lim In|e*/3 X =k lim i :p) + = Inel.
51210 611)% n|e" 1z,(Vas, X, ve.5)| =k 613}) 513}) J(€,0;p) + 3 ne
Since the right-hand side depends only on the choice of p, we get the result by setting
1
InC:H(p) = lim lim /(e 5; p), InCiH(p) = lim lim [J(e, 5.p) + 31 e] .
This completes the proof, provided that these double limits exist. This will be addressed in what follows.

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.66

42 Xianzhe Dai and Ken-Ichi Yoshikawa

Remark 7.15. C(])EH (p), respectively g f‘H (p), is renormalised (respectively, equivariant) analytic torsion
for the asymptotically conical space V(c0) = (T*P', yEH).

7.7. Proof of Theorem 7.1

Since
In7(X,ve.5) =In7(X36. X, ¥e.5) +In7(V35, X, ¥e.6)
and
In7z,(X,ve,s) = In12,(X35. X, ve.5) +In72,(Vas, X, Ve 5)

by the definition of partial (equivariant) analytic torsion, we get by Corollary 7.11 and Theorem 7.12

lim 1in})1m(>?, Ye.5) =In7(X, %) +k InCH(p), (7.24)
-0 e—

lim lim In| "7z, (X, yf,é)] = In1z,(X,y0) + k InCEH(p). (7.25)
—0 e

As the double limits on the left-hand side of equations (7.24) and (7.25) exist by virtue of Corollary 5.3
and Proposition 7.2, so do the double limits in defining In C(';:H (p) and InC FH (p).
On the other hand, again by Corollary 5.3 and Proposition 7.2, the double limits

lims_,0lime_01n T(f, Ye.s) and lims_,o lim¢_0 ln[ekﬂ‘z‘zz(f,yé,(s) are independent of the choice

of p. Hence C(])EH(p) and C?H(p) in equations (7.24) and (7.25) are in fact independent of p. This
completes the proof of Theorem 7.1.

8. A holomorphic torsion invariant of log-Enriques surfaces

In this section, we introduce a holomorphic torsion invariant of log-Enriques surfaces and give its
explicit formula as a function on the moduli space.

8.1. A construction of invariant

Theorem 8.1. There is a constant C (k) depending only on k = #Sing(Y) with

5
Vol(Y, vo) } 10

1 (X.6) = C(k)Vol(Y.y0) T t(Y.30)*x [ | {|fp<0>|2 .
7135y,

peSing(X)
1 n A Vol(Y,yo)
E/log T > c2(Y,y0) |-
Y 7()/2 ”r]”LZ(y)

Here f, is defined in the discussion immediately preceding equation (4.13).

X exp

Proof. Since M+ = Ar(2), we have w = %. By its independence of the choice of 8-

invariant Kihler metric on X L TM ()? ,0) is given by

-~ = = bk = =
(lsl—% EIB})T(X’ 76,5)TZ2 (X’ 76,5)(0) VOI(X’ 76,5) 4 VO](X(.)’ 76,5|)?9)T(X9’ 76,5|5(~9)

- 1 AT Vol(X,ye.s) -
<A (R0 ve0) e 5 [ 1ogg SET L BT ey R,y
X ye,zS : n L2(X)
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= lim hm{e*T(X Ye.)12,(X.7e.6)(O)Vol(X.ye.6) T}

60 e—
xlim im [ ] € $Vol(Ep. ye,se,)T(En Ye,olr,) x lim lim Ay (X.6.7c.0)

peSing(X)

1 AT Vol(X,ye =
X lim lim exp| — /log Z . (X e.0) c2(X,¥e.s) |-
6-0e—0 |24 Jx Ve sl?! IIUIILZ(X)

By equation (4.14), Propositions 5.2, 5.4, 5.5, Corollary 5.3 and Theorem 7.1, we get

1 (X, 0) = (CERCEMYE 2(X y0) 74, (X, y0) (1) {2VO(Y, y0)} F

|2 Vol(X, o) } i

7112 x,

x {Vol(P!, wrs)7(P', wrs) }* x 1—[ {|fp(0)

peSing(X)

1 AT Vol(X,
/1Og nz 7 Vol(X,y0) e (Xv0) |-
24 %5/20 Il

X exp

Since
(V.70 = (X707 (X0 (0. Vol(X.v0) /10182, = VOI(¥.70)/lInl122 -
and since X is a double covering of Y, we get the result by setting
C(k) = 2{27 CEHCPHVOI(P!, wes) T (P!, wes) }. (8.1)

This completes the proof. O

Theorem 8.2. Let y be a Kdihler form on Y in the sense of orbifolds. Then the following equality holds:

_3
(,4)%7 32 1 a)z
Pl ™ expy—55 / log

Proof. Letp € Sing(Y), and let (U,,0) C (C2,0) be an open subset that uniformises the germ (Y, p).
We have an isomorphism (Y, p) = (CZ/Fp, 0) of germs, where I'y, = Z/4Z = (i), such that w,, and v lift
to Kihler metrics on U, Following Ma [32], we define Y* as the union Y := ¥? HY” 1YY", where Y" =
{p" }pesing(v) and the germ (Y*", p'") is equipped with orbifold structure (Y, p’") = (C?/(i*),0).

Recall that the characteristic class Td*(TY) supported on the singular locus of Y appears in the
Riemann-Roch theorem for orbifolds, for which we refer the reader to, for example, [32]. By the anomaly
formula for Quillen metrics for orbifolds [32], we get

(Y, y)Vol(Y,y) 1—[
(Y, wy)Vol(Y, wy) -

v

(Y, 7)}

peSing(Y)

(Y, y)Vol(Y, y) 1/ ~3 1/~
I = [ Td (173, — TY;y,
(T(Y,a)q)Vol(Y,wn) 7 Jys T Iy wn)+og | aea(Tly.op)
= ©0 (8:2)
Td

1
- — | TUpy,0,) (n)+—/cwz(TY;%wn)(z’Q).
, 24 J,
v

1 (
4 peSing(Y) v=1 ¢
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Here, for 6 € R and a square matrix A, we define ( )H(A) = det(m) and (Td/e)g is the

Bott-Chern secondary class associated to (Td/e),(A) such that for any holomorphic vector bundle E
and Hermitian metrics &, A’ on E

—ddc( (E;h, h') = (T—d) (—LR(E h)) (Td) (—LR(E h))
€ € /o €Je

2 27i
Similarly, ¢jc; is the Bott-Chern secondary class associated to the invariant polynomial ¢ (A)c2(A)
such that for any holomorphic vector bundle E and Hermitian metrics &, h’ on E

—dd°cic(E; by h') = c1(E, h)ca(E, h) — c1(E, h)c(E, ).

For A = diag(4;, A5), we have

iV

Td 1
(?);(A) - (1 _l‘—v)Z{l - 1 _i*VCl(A) +0(2)}

Thus we get
3 [— (0,0)
Td
> ( (TUp 7, wp) | (®) = Z (1 7 A1(TUsy.0,) ()
v=1 4 (8.3)
5.
= G Ty, 0,)(7) = 2 log (/77 9
On the other hand, by the same computations as in equation (3.3), we get
e (TY;y, w,) 3 = - log(w%/yz) 2 (TY, ). (8.4)
Substituting equation (8.3) and equation (8.4) into equation (8.2), we get the result. O

Theorem 8.3. For every Ricci-flat log-Enriques surface (Y, w), one has
Vol(Y, ) T 1 (Y, w) = C(k) ™ 7 (X, 0)?,

where C(k) is the same constant as in Theorem 8.1.

Proof. We put y = g in Theorem 8.2. Then we get by Theorem 8.1

(¥, @) Vol(Y, w,) = 7(¥, y0) Vol (¥, 7o) ¥ Vol (¥, y0)

2
<[] ( )(p)}n exp 214/10(5(“’ )Cz(Y )
Y0

peSing(X)
|2V01(Y yo)}”

191, s,

= C() ™t (X, 02 Vol(V,70) ¥ x [ ] {pr(O)

peSing(X)
1 A7 Vol(Y,
X exp ——/log 772 77' (7, 50) (Y, y0)
24 Jy o2t M7y,
<[] ( )(p)}nexpl JE ( 2/2,)@@ -l
peSing(X)

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.66

Forum of Mathematics, Sigma 45

Since | f,(0)|* = [7 A7/ (v5/2)](®) = [w3, /751 (p), we get
(Y, wy)Vol(Y, wy)

|2 VOl(Y )/0) )

= C() ™ (X.0)*Vol(Y.30) ¥ x| ] (pr(O) Vol D)
wWp

peSing(X)

S T ey e e R

peSing(X)

i (VOI(Y.90) \T3F [ 16—k (Y,
= C(k) "1 (X, 0) 1 Vol (Y, m(%) exp[_ Ly (\\/];((;ZO)))]
9 77 N 77

= C(k) "3 (X, 0)2Vol(Y, w,y) ¥,

where we used the second assertion of Proposition 5.1 to get the second equality. This proves the
result. O

Theorem 8.4. Let y be a Kihler form on Y in the sense of orbifolds, and let & € HO(Y, K?z) \ {0} be
a nowhere vanishing bicanonical form on Y. Then

5
3
2
- vo/2!
(@) = v Vol v 121,51 [] ( = )( )
peSing(Y) =
X exp| — ! /log A= c2(Y,y)
24 2/2'

is independent of the choices of y and E, where |Z| := VE ® Z is the Ricci-flat volume form on Y

induced by =. In fact,
T (¥) = Ck) ™ T (X, 0)2.
Proof. Let w be a Ricci-flat Kihler form on Y in the sense of orbifolds such that w?/2! = |Z|. Since

Vol(Y, w) = ||Z||.1(y)» we get by Theorem 8.3

Vol(Y, w)7(Y, w) = Vol(Y, a)) 5 Vol(Y, a)) s 7(Y,w)=C(k)” 1||:|| ™ (X, 9)% (8.5)

LI(Y)

Let & € HY(X,K %) be a nowhere vanishing holomorphic 2-form on X such that (p o 7)*5 = £%2,
Since w = wg: that is, w?[2! = & A€ = |E|, we get by Theorem 8.2

(Y, y)Vol(Y,y) _ |Z] ’ 1 15|
T(Y,(L))VOI(Y,Q)) - 1_[ (72/2y)(p) exp[ 24./Y"10g( 2/2')C2( y):| (86)

peSing(Y)

Comparing equation (8.5) and equation (8.6), we get

T(Y.)Vol(Y.y) = C(k)™' tar (X, 6)? ||:||L1<y [ (|E| )(m

2
peSing(Y) Y /2!
—i'/log =] Y,y |.
24 Jy 72/2!
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From equation (8.7), we get 74 (Y) = C(k) 1) ()? ,0)'/2. Since the right-hand side is independent of
the choices of y and &, so is 74 (Y). This completes the proof. O

8.2. Del Pezzo surfaces and an explicit formula for the invariant vy

In this subsection, we give an explicit formula for 74 as an automorphic function on the Kédhler moduli
of Del Pezzo surfaces. Let 1 < k < 9. We define the unimodular Lorentzian lattices L and U(-1) as

1 0 10 01
Ly := (0 —Ig_k) (k #38), Lg := (0 _1) or (1 0),

U(-1) = (_01 _01).

We fix an isometry of lattices Ay = U(—1) & L and identify Ay with U(—1) & L.
Let V be a Del Pezzo surface of degree k: that is,

k=degV = / c1(V)2.
v

Then V = Blg_; (P?) is the blowing-up of P? at 9 — k points in general position when k # 8. When
k =8,V = Xqor X, where £, = P(Op1 @ Opi (1)) is the Hirzebruch surface. Notice that £y = P! x P!
and £; = Bl; (P?). When V # X, H>(V, Z) endowed with the cup product pairing is isometric to Ly by
identifying H, E1, . .., E9_; with the standard basis of Ly, where H € H 2(V, Z) is the class obtained
from the hyperplane class of H>(P?,Z) and E;(i = 1,...,9 — k) are the classes of exceptional divisors.
Similarly, H(V,Z) endowed with the Mukai pairing is isometric to Ay. In what follows, we identify Ly
(respectively, Ax) with H>(V, Z) (respectively, H(V,Z)) in this way.

Recall that the type IV domain Q associated with Ay was defined in Section 2.4. We identify
Qpy (v,z) with the tube domain H>(V,Z)®R + iChav z) C H?(V, C) via the map

HAV.Z) 9 R+iChiy ) 2y = [exp()] = | (1.5.3*/2)| € Qurv 2, 8.8)

where Cp2(y z) == {v € H?(V,R); v? > 0} is the positive cone of H>(V, R). Through the isomorphism
given by equation (8.8), O(H(V,Z)) acts on H*(V,R) +iCp2(y 7).

Let Ky C Cy2(y gz be the Kéihler cone of V: that s, the cone of H 2(V,R) consisting of Kihler classes
on V. Let Eff(V) ¢ H?>(V,R) be the effective cone of V: that is, the dual cone of the Kihler cone Ky .

Definition 8.5. Define the infinite product ®y (z) on H*(V,Z) @ R+i Ky by
(I)V (Z) = eni(q(V),z) 1—1 (1 _ 62”1'(0,2))%((0)(“2)
a€cEff(V)
% H (1= ™ B2 B4,

BEER(V), B/2=c; (V)/2mod H2(V ,Z)

where {cg)) (DYiez, {cg) (D) }1ez+k 4 are defined by the generating functions

O 1 121)%, (D" Wy n(47)304,41/2(7)F
2,0 = ey 2 0 =S T

lek+z
2
Here 0 1e/2(7) := Tpez ¢ and (1) := ¢"/** [1,50(1 — ¢").

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.66

Forum of Mathematics, Sigma 47

Let CI+12 .2 be the connected component of Cp2(y 7 that contains Ky, and let QF, .2 be

the component of Qz (v z) corresponding to H 2(V,R) +iCt via the isomorphism given by

H2*(V,Z)
equation (8.8). By Borcherds [8, Th. 13.3] (compare [44]), @y (z) converges absolutely for those
z € H*(V,R) +i Ky with 3z > 0 and extends to an automorphic form on QJ;_I(V z) for O*(H(V,Z)) of
weight deg V +4 with zero divisor div(®y) = X jep (v z), a2=—1 d* under the identification H?(V,R) +
PO+ ~ O+
lCHZ(V,Z) = QH(V,Z)'

Recently, an explicit Fourier series expansion of @y (z) is discovered by Gritsenko [22, Cor. 5.1].
It is also remarkable that @y is the denominator function of a generalised Kac-Moody algebra, whose
real and imaginary simple roots are explicitly given by the Fourier series expansion of @y [23, §6.2,
Th. 6.1 Eq. (6.1), (6.10)]. In this sense, the series of Borcherds products @y associated to Del Pezzo
surfaces is quite analogous to the Borcherds ®-function of rank 10.

We define the Petersson norm of @y (z) by
[®v (D) := (Iz, IV |y (o),

where z € H>(V,R) +i C;ﬂ(v 7 Then | @y ||? is an O* (H(V, Z))-invariant C* function on QE(V 7

Hence ||®y ||? is identified with a C* function on M eg v in the sense of orbifolds.

Theorem 8.6. Let 1 < k < 9. There exists a constant C (k) > 0 depending only on k such that for every
2-elementary K3 surface (X, 6) of type My := A (2)4,

™ (X, 0) = C(k) @y (T(X, 0))[I72,

where k = degV.
Proof. See [44, Th. 4.2 (1)] and [45, Th. 0.1]. O

Theorem 8.7. Let 1 < k < 9. Then there exists a constant Cy > 0 depending only on k such that for
every good log-Enriques surface Y with #Sing(Y) = degV,

Taegv (¥) = Caegv | @y (T(X)) |74,

Proof. We set k = degV. When k = 2, we define V = % when Y is of even type and V = X; when Y is
of odd type. Let (X, 6) be the 2-elementary K3 surface of type My associated to Y. By the definition of
the period of Y, we have @ (Y) = @ (X, 0). Hence

@y (F(Y))|| = [|®y (T(X, ). (8.9)
By Theorems 8.4, 8.6 and equation (8.9), we get

% (Y) = C() "t (X,0)'17 = C (k)™ C (k) | @y (T (X, 0)|7/*

— 8.10
= C(k)™'C(k) |y (T(Y))|I7/4. ®10

Setting Cy := C(k)‘15(k) in equation (8.10), we get the result. O

8.3. The quasi-pullback of Dy
We define the Kédhler moduli of V by

KM(V) = (HA(V,R) +iCppyy )0 (H(V,Z)) = Qj;, 4) /0 (H(V,Z)).

Since H(V,Z) = Agegv, we have KM(V) = Mgeg v, where the orthogonal modular variety M was
defined in Section 2.4. Let 7r: V := B1,(V) — V be the blow-up of V at p, and let E := 771 (p) be the
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exceptional curve of . Then we have a map of cohomologies n*: H(V,Z) — H (\7, Z), which induces
the canonical identification

H(V,Z) = n*H(V,Z) = {[x] € H(V,Z); ([E],x) = 0}.

Since [E] is a norm (—1)-vector of H2(V, Z), this implies that JCM (V) is identified with a component
of the Heegner divisor of norm (—1)-vectors of KM(V). Since O(H(V,Z)) acts transitively on the
norm (—1)-vectors of H(V, Z) except the case degV = 7 — that is, H(V,Z) = U®2 @ (—1) - KM(V)
coincides with the Heegner divisor of norm (—1)-vectors of M (V) when degV # 7. WhendegV =7,
the Heegner divisor of norm (—1)-vectors of KKM(V) consists of two components; one is given by
KM(2p), and the other is given by KM (X)), where X,, = P(Opi & Opi(n)) is the Hirzebruch surface.
In the following theorem, we use the convention that a Del Pezzo surface of degree 0 is an Enriques
surface.

Theorem 8.8. @y is the quasi-pullback of @y to KM(V) = [E]*, up to a constant. Namely, in the
infinite product expression in Definition 8.5, the following equality holds:

@y (+)

®y = Const. s
CAED |y

where (z, [E]) is the linear form on Hz(v, C) defined by the norm (—1)-vector [E].
Proof. The result is a special case of [29, Th. 1.1]. See also [29, Example 3.17]. O

This theorem can be summarised in the following diagrams:

KM(Enr) > KM(dP;) > --- > KM(dP;) > KM(Z;) > KM(P?)
Dpnr — Ogp, — - > Ogp, - O3, — Op
Misgsgs = Miososgs0 = oo = Nyosgsgs0] — 1yossgs0° — 11-sp84-56°

and

KM(dP7) > KM(Z)
q)dp7 i (DZO
7]1—8284—807 — 7]]—8284—898

where the inclusion implies the embedding as the discriminant divisor, the arrow in the second line
implies the quasi-pullback (up to a constant), and the arrow in the third line describes the change
of elliptic modular form for I'y(4) corresponding to ®y . We remark that there are no inclusions of
KM(P?) into KM (o).

9. The invariant 7; and the BCOV invariant
9.1. The BCOV invariant of log-Enriques surfaces

In this subsection, we prove that the invariant 7y is viewed as the BCOV invariant of good log-Enriques
surfaces. Recall that for a compact connected Kéhler orbifold (V, ), the BCOV torsion Tgcov (V,y) is
defined as

Tacov(V,y) =exp(— > (=1)P*pq ¢}, ,(0)),
P.q20

where £, ,(s) is the spectral zeta function of the Laplacian 0O, , acting on (p, g)-forms on V in the
sense of orbifolds. As before, the analytic torsion of the trivial line bundle on V is denoted by 7(V,y).
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Lemma 9.1. If dimV = 2, then the following equality holds:
Tacov(V,y) = 7(V,y) .

Proof. Sincen,, ; and O >, are isospectral via the Hodge *-operator, we have {, ;(s) = {2-4,2-p (5).
Since O, 4 and Oy, , are isospectral via the complex conjugation, we have £, ;(s) = g4, (s). Using
these relations, we have

- log TBCOV(Vs 7) = 4{6,0(0) - 4{6,1 (0) + {1/1 (O) 9.1

Since o,0(s) — £o,1(s) + {o,2(s) = 0 and 1,0(s) — £1,1(s) + {1,2(s) = 0, we have 4] ,(0) — 4 ,(0) =
—44“(’)’2(0) and {1 1 (0) = £7 ,(0) +§1”2(0) = {1”0(0) +40. (0) = 245, (0). Substituting these into equation
(9.1), we get the result. m]

Now we have the following:

Theorem 9.2. Let Y be a good log-Enriques surface with k singular points. Let y be a Kdhler form on
Y in the sense of orbifolds, and let 5 € HO(Y, K;ﬂ) \ {0} be a nowhere vanishing bicanonical form on
Y. Then

e

oy R y2/2!
cov (¥) = Tgcov (Y, y) Vol(Y, ) 2||5||LT(Y) H (W (»)
peSing(Y) =

I B
'E/Yl"g(yZ/zz) ”(Y’”]

is independent of the choices of y and = In fact,

X exp

_ _ — 1
meov(Y) = w(Y) 7 = G2 |0y (V)17
where Cy. is the same constant as in Theorem 8.7.

Proof. Since tacov(Y) = 7% (Y)~2 by Theorem 8.4 and Lemma 9.1, we get the first claim. The second
claim follows from Theorem 8.7. O

We call tgcov(Y) the BCOV invariant of Y. When v is Ricci-flat and |Z| = y%/2!, we have the
following simple expression:

tcov(Y) = Tacov (Y, y)Vol(Y, ) T . 9.2)

As in the case of Enriques surfaces, the BCOV invariant of good log-Enriques surfaces is expressed by
the Peterssion norm of a Borcherds product. In particular, the BCOV invariant of log-Enriques surfaces
is not a birational invariant, for the birational equivalence classes of log-Enriques surfaces consist of a
single class.

Problem 9.3. For a good log-Enriques surface Y, there exists a log-Enriques surface Y’ with a unique
singular point admitting a birational morphism ¥ — Y’ (compare [47]). In general, the singularity of
Y’ is worse than those of Y. Can one construct a holomorphic torsion invariant of Y’ using some ALE
instanton instead of the Eguchi-Hanson instanton? If this is the case, compare the holomorphic torsion
invariants between Y and Y’.

Problem 9.4. Let Y be a good log-Enriques surface. Let p : Y — Y be aresolution such that p~(SingY)
is a disjoint union of smooth (—4)-curves. Compare the BCOV invariant of ¥ and that of the pair
(Y, p~'(SingY)) defined by Zhang [49].
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Problem 9.5. Can one construct a holomorphic torsion invariant of log-Enriques surfaces with index
> 3 and prove its automorphy?

9.2. The BCOV invariant of certain Borcea-Voisin type orbifolds

Let Y be a good log-Enriques surface with k singular points, and let X be the canonical double covering
of Y. Then X is a nodal K3 surface with k nodes endowed with an anti-symplectic involution ¢ with a
fixed point set Sing X = {p1, ..., pr}- Let T be an elliptic curve. We define

V=Vx,.,r = XxT)/tx(=Dr).
Then V is a Calabi-Yau orbifold of dimension 3. Let V be the Borcea-Voisin orbifold

V=Vigor =XxT)/(0x(-1)r),

where 7: f — X is the minimal resolution of X and 6 is the involution on X induced from ¢. As before,
we set E; := n7'(p;) = P!. The birational morphism from V to V induced by & is denoted agaln by .
Then r: V — V is a partial resolution such that the k cyclic quotient smgulantles of type (1 T 7> ) of

V are replaced by the milder cyclic quotient singularities of type (2, 5,0). As an application of some

results in Section 8, we compare the BCOV invariants between Vand V.

Let yx (respectively, y5) be a Ricci-flat Kahler from on X (respectively, X), and let y7 be the flat
Kéhler form with Vol(V,yr) = 1. Let m11: V > Y = X/vand my: V — T/(~1)r be the projections.
Similarly, let 77 : Vo X/0and7: V — T/(=1)r be the projections. We define a Ricci-flat Kihler
form y (respectively, ¥) on V (respectively, V) by

%k

Y = 7ayyx + YT, Y =myg + T
Since Sing(X XT) = ({p1} XxT) U --- U ({px} X T), we have

SingV = ({p1} xT/(=Dr) O--- W ({pr} xT/(-D)r) O (X* xT[2])
={p} XT/(=Dp) I --- I ({pr} xT/(=1)r) U (Sing X X T'[2]),
where T'[2] denotes the points of order 2 of 7. Similarly,

SingV =X?xT[2] = (Ey xT[2]) U --- L (Ex xT[2]).

Hence the 1-dimensional strata of SingV (respectively, Sing V) consist of k-copies of the quotient
T /(-1 (respectively, 4-copies of Ey,. .., Ey), which are endowed with the flat orbifold Kihler form
yr (respectively, Kihler form yg|g; induced from yg).

Recall from [46, (6.12)] that the orbifold BCOV invariant of V is defined by

eov(V) = TBcov(V YIVol(V, ) Vol 2 (HA(V. Z), ) ™!
x ]_[ t({pi} X (T/(=1)r), yr) " Nol(T/ (=), yr)™ 9.3)
i=1

= Tcov (V, ) Vol(V, ) +*

Vol (HA(V, Z),y) ™28 (T, yr) 5,
where we used the facts 7(T/(=1)r, yr) = (T, yr)"/? and Vol(T/(=1)r, yr) = 1/2 to get the second
equality and Vol,»(H?(V,Z),y) is the covolume of the lattice H*(V, Z) := H*(V,Z)/Torsion with

respect to the L? metric induced by y. (In what follows, for a finitely generated Z-module M, we set
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Mg, = M /Tors(M).) For the definition of x°™(V), see [46, (6.2)]. By [46, Prop. 6.2], x° (V) coincides
with the Euler characteristic of a crepant resolution of V. Similarly, we have

Xorb

—~ ~ ~ ) =~ _
ooy (V) = Tacov (V, %) Vol(V, 7)™ 12 Vol 2 (H*(V, Z), 7)™

k
< A[ v (B, vgle) Vol (B, yg e )} .

i=1

Let g: X xT — Vand §: X x T — V be the quotient maps. Let H2(X x T, Z)* (respectively,
H2(X x T,Z)") be the invariant subspace with respect to the ¢ X (—=1)7 (respectively, 6 X (—1)r)-
action on X X T (respectively, X x T). We define H*(X,Z)* and H2(X,Z)" in the same way. Let
r:=r1kzH*(X,Z)* and 7 := tkz H*(X,Z)*. Then 7 = r + k = 10 + k. The maps of cohomologies

g H*(V,Z)y — H (X xT,2); = H*(X,Z); ® H (T, Z),

7 H*(V,Z)y » H (X XT,Z)* = H*(X,Z)* @ HX(T, Z),
have finite cokernel. Let disc(H?(X, Z);) be the discriminant of the lattice H*(X, Z); with respect
to the intersection pairing (-,-) on H>(X,Z); < H*(X,Q). Namely, if {e;,...,e,} is a basis of
H*(X,Z);,, then disc(H*(X, Z)}) := det({e;, e;)). Obviously, |Coker g*|, |Coker g*|, disc(H*(X, 7)),
disc(H2(X, Z)*) depend only on k. Recall that the constant C (k) was defined in equation (8.1), which

is the kth power of the product of the normalised analytic torsion of the Eguchi-Hanson instanton and
the analytic torsion of P! endowed with the Fubini-Study metric, up to a universal constant.

Theorem 9.6. The following equality holds:

-1

Tacoy (V) = 2—k—4c(k)8(|C0k¢f61*|)_2 |disc(H*(X, Z)7)|
Tacov (V) [Cokerg"|} \|dise(H>(X. Z)")|

Proof. We express Tgcov(V,y) in terms of 17, (X, ¥x)(¢) and 7(T, yr). As is easily verified, Lemmas
8.3-8.7 of [46] hold true for V without any change. Since i'! (X) = 20—k, the coefficient 21 of 7 *(s)
in [46, Lemma 8.8] should be replaced by 21 — k. Hence, for V, the equality corresponding to [46,
(8.28), p.357] becomes

Z(—l)p+qpq Lpaa(s) = (24 =) (5) +8{¢F*(s) = X7 (5)}

p.q

As a result, we get the following equality as in the first equality of [46, (8.29), p.358]:
Tocov(V.7) = 72,(X, yx) (07 (Tyr) (272, 9.4)
By [46, (8.29), p.358 1.2-3], we have
Tecov (V. 7) = 12,(X, 75) (0)*o(T.yr) "2, ©.5)

Since X consists of k copies of mutually disjoint P!, we get y°®(V) = XO(V) = %X(f xT)+
%/\((fe X T[2]) = 12k by [46, Prop. 6.1 and (6.3)]. Hence

Xorb(v)

Vol(V,y) " = Vol(V, )k = 237k vol(X, yx)3**, 9.6)
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where we used the fact Vol(T, yr) = 1 and Vol(V,y) = Vol(X, yx)Vol(T, yr)/2. Similarly,

Xorh(v)
12

Vol(V, 7)™+ =25k Vol (X, y5) k. 9.7)

Let {f,...,f..1} be a basis of H>(V, Z);. By definition, we have
Voly2 (HA(V, Z), y) = | det((f;, £;)2)],

where (-, -);2 denotes the L? inner product on H?(V, R) induced from y. Since Vol, . (H*(T, Z), yr) = 1,
the same calculations as in [19, Lemma 13.4] yield that
Vol,»(H*(V,Z),y) = |Coker ¢*|* Vol .2 (H*(X, Z)} ® H*(T,Z), yx ® yr)
= |Coker ¢"|* Vol .2 (H*(X, Z){, yx) Vol(X, yx) /2 9.8)
= 27D Coker ¢*|? |disc(H (X, Z)})| Vol(X, yx).

Similarly, we have
Vol,2(H*(V,Z),7) = 27"V |Coker ¢*|* |disc(H* (X, Z)*)| Vol(X, yz). 9.9)
Substituting equations (9.4), (9.6) and (9.8) into equation (9.3) and using equation (3.7), we get

o0 v (V) = 27 |Coker ¢*| 72 |disc(H* (X, Z);)| ™!
X 72, (X, yx) () TVol(X, yx) "1 (T, yr) ™"
= 2"*|Coker ¢*| % |disc(H*(X, Z)})| ™
X T(X, 7x) 1z, (X, yx) () Vol (X, yx) ™ 2 (T, yr) ™"
= 2""%|Coker ¢*| % |disc(H* (X, Z)}) | (Y, yy) B Vol(Y, yy ) 2 (T, yr) ™12
= 2"k |Coker ¢*| % |disc(H*(X, Z)}) |7 C (k)3tp (X, 0) 2 (T, y7) ™12,

(9.10)

where we used the equality 7(Y,yy)? = 7(X, yx)7z,(X, ¥x)(t) to get the third equality and Theorem
8.3 to get the last equality. Similarly, substituting equations (9.5), (9.7) and (9.9) into [46, (6.12)], we get

k
toeov (V) = 12, (X, 7) (0) (T, yr) ([ [ (Ei, vgle) Vol (Ei, ygle)}
i=1

x 2% Vol (X, yg) 2! |Coker g*| 2 |disc(H*(X, Z)*)| ' VoI (X, y5)~!
= 2"+ k|Coker g*| 72 |disc(H* (X, Z)") | "2 (T, yr) ™2 9.11)
k
X 72, (X, yg) (0) Vol (X, y) ™ {| | 7(Ei. vgle) Vol (Ei, ygls)} ™

i=1
= 27 [Coker g"| 2 |disc(H(X, 2)")| " a (X, 6) (T, yr) 12,

Comparing equation (9.10) and equation (9.11), we get the result. O

We define the BCOV invariant of elliptic curve T as

PiENE

w

k)

_ 1
acov(T) := Vol(T, w) ™" pcov (T, w) exp[—ﬁflog(
T

)cl(T, w)
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where w is an arbitrary Kéhler from on 7. By [46, Th. 8.1], tgcov(7T) is independent of the choice
of w and is expressed by the Petersson norm of the Dedekind n-function. By definition, we have
tscov(T) = (T, yr)~". By equation (9.10), we have the following factorisation of the orbifold BCOV
invariant of V.

Corollary 9.7. The following equality of BCOV invariants holds:
Thcov (V) = 2" |Coker ¢*|2|disc(H*(X, Z);)| ™ tcov (Y) tacov (1) 2.

Proof. The result follows from equation (9.2) and the third equality of equation (9.10). O

Remark 9.8. In [46, p.357 1.7], it seems that the equality H2(X, Z) = H2(S x T,Z)* does not holdin
general. As the difference of these two quantities, |Coker g*| should appear in the formula for TE%’OV(V)
as in equation (9.11).

Remark 9.9. In this subsection, for the sake of simplicity of notation, we adopt the definitions
Vol(V,y) = fV y3/3! and (@, )2 = fV (Ha) A *(HpB), and so on, where H(-) denotes the harmonic
projection. If we follow the tradition in Arakelov geometry, it is more natural to define the L?-inner
product by Vol(V,y) = (2x)~d4imV fV y3/3! and (@, B);2 = (2n)~4imV fV (Ha) A *(H}), and so on.
Notice that in [46], this latter definition is adopted.

Problem 9.10. Is the orbifold BCOV invariant [46] a birational invariant of Calabi-Yau orbifolds? (To
our knowledge, it is still open that the BCOV invariant of KLT Calabi-Yau varieties [20] coincides
with the orbifold BCOV invariant [46].) If the answer is affirmative, then it follows from Theorem 9.6
that the normalised analytic torsion of the Eguchi-Hanson instanton will essentially be given by the
analytic torsion of P! with respect to the Fubini-Study metric. Once a comparison formula for the BCOV
invariants for birational Calabi-Yau orbifolds is obtained, then one will get a formula for the normalised
analytic torsion of the Eguchi-Hanson instanton through Theorem 9.6.
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