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Abstract
We introduce a holomorphic torsion invariant of log-Enriques surfaces of index two with cyclic quotient singularities
of type 1

4 (1, 1). The moduli space of such log-Enriques surfaces with k singular points is a modular variety of
orthogonal type associated with a unimodular lattice of signature (2, 10 − 𝑘). We prove that the invariant, viewed
as a function of the modular variety, is given by the Petersson norm of an explicit Borcherds product. We note that
this torsion invariant is essentially the BCOV invariant in the complex dimension 2. As a consequence, the BCOV
invariant in this case is not a birational invariant, unlike the Calabi-Yau case.
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1. Introduction

The analytic torsion, which is a certain combination of the determinants of Hodge Laplacians on
differential forms, is an invariant of Riemannian manifolds defined by Ray and Singer [40] as an analytic
analogue of the Reidemeister torsion, the first topological invariant that is not a homotopy invariant. It
was proved independently by Cheeger [11] and Müller [38] that the analytic torsion and the Reidemeister
torsion agree on closed manifolds (Ray-Singer conjecture). Ray and Singer [41] also introduced a version
of the analytic torsion for complex manifolds, usually referred to as the holomorphic torsion. The
holomorphic torsion has found significant applications in Arakelov theory, canonical metrics and mirror
symmetry. Unlike its real analogue, it depends on the geometry and complex structure of the underlying
complex manifold [6] (the anomaly formula), which gives rise to interesting functions on moduli spaces.
In this paper, we focus on this aspect of holomorphic torsion: that is, its connection with modular forms.

In fact, Ray and Singer already noticed the remarkable connection. Using Kronecker’s first limit
formula, Ray and Singer [41] computed the analytic torsion for elliptic curves and found it to be given in
terms of the Jacobi Δ-function, a modular form of weight 12 on H/SL(2, Z). Their result has since then
been extended to higher genus Riemann surfaces by Zograf [51], McIntyre-Takhtajan [35], Kokotov-
Korotkin [28] and McIntyre-Park [36]; Zograf and McIntyre-Takhtajan studied the analytic torsion of
Riemann surfaces with respect to the hyperbolic metric, while Kokotov-Korotkin and McIntyre-Park
studied it with respect to the (degenerate) flat metric attached to an abelian differential of the Riemann
surface.

In dimension two, motivated by string duality, the second author [43] studied the case of 2-elementary
𝐾3 surfaces – that is, pairs consisting of a 𝐾3 surface X and a holomorphic involution 𝜄 : 𝑋 −→ 𝑋 (acting
nontrivially on holomorphic two forms) – and introduced an (equivariant) holomorphic torsion invariant
for those surfaces. By the global Torelli theorem for 𝐾3 surfaces, the moduli space of 2-elementary
K3 surfaces of fixed topological type is a modular variety of orthogonal type, so the holomorphic
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torsion invariant is viewed as a function on such modular varieties. On orthogonal modular varieties,
Borcherds [8] constructed a class of automorphic forms with remarkable properties as singular theta
lifts of elliptic modular forms. These automorphic forms are called Borcherds products. It is shown
that the holomorphic torsion invariant of 2-elementary 𝐾3 surfaces is given by the Petersson norm of a
certain series of Borcherds products [45], [30].

If 𝜄 is fixed point free, then the quotient 𝑌 = 𝑋/𝜄 is an Enriques surface whose holomorphic torsion
invariant is given by one of the most remarkable Borcherds products, the Borcherds Φ-function of
rank 10. In this paper, we extend this result to a class of singular rational surfaces called log-Enriques
surfaces introduced by D.-Q. Zhang [47]. As in the case of Enriques surfaces, a log-Enriques surface
Y is expressed as a quotient 𝑌 = 𝑋/𝜄, where X is a 𝐾3 surface with rational double points called the
canonical covering of Y, and 𝜄 is an anti-symplectic involution on X free from fixed points outside the
singular points. To be precise, our log-Enriques surfaces are those of index two in the sense of Zhang
[47]. To obtain a nice moduli space, we restrict ourselves to the case where X has only nodes as its
singular points. A log-Enriques surface with this property is called good in this paper. Then a good
log-Enriques surface can admit at most 10 singular points, any of which is a cyclic quotient singularity
of type 1

4 (1, 1). It turns out that the moduli space of good log-Enriques surfaces of k singular points is
again a Zariski open subset of a modular variety of orthogonal type of dimension 10 − 𝑘 attached to
a unimodular lattice of signature (2, 10 − 𝑘). Let us write M𝑘 for this modular variety. When 𝑘 = 8,
we have Modd

8 and Meven
8 , according to the parity of the unimodular lattice of signature (2, 2). For

simplicity, we write M8 for Modd
8 and Meven

8 when there is no possibility of confusion. For a good
log-Enriques surface Y with k singular points, we write 𝜛(𝑌 ) ∈ M𝑘 for the isomorphism class of Y.
Interestingly enough, M𝑘 can be identified with a Zariski open subset of the Kähler moduli of a Del
Pezzo surface V of degree deg𝑉 = 𝑘 , the modular variety given by KM(𝑉) = Ω𝐻 (𝑉 ,Z) /𝑂+(𝐻 (𝑉, Z)),
where 𝐻 (𝑉, Z) is the total cohomology lattice of V, 𝑂+(𝐻 (𝑉, Z)) is its automorphism group and
Ω𝐻 (𝑉 ,Z) is the domain of type IV attached to 𝐻 (𝑉, Z). (See Theorem 2.10.)

Analogously to the Enriques lattice, the Del Pezzo lattice 𝐻 (𝑉, Z) admits a reflective modular form
Φ𝑉 on Ω𝐻 (𝑉 ,Z) for 𝑂+(𝐻 (𝑉, Z)) of weight deg𝑉 + 4, which is nowhere vanishing on the Zariski
open subset corresponding to M𝑘 and characterises the Heegner divisor of norm (−1)-vectors [44].
In addition, Φ𝑉 is the denominator function of a generalised Kac-Moody algebra with explicit Fourier
series expansion by Gritsenko and Nikulin [22], [23]. (See Section 8 for more about Φ𝑉 .)

On the other hand, even though they are rational surfaces, every log-Enriques surface Y admits a
Ricci flat Kähler orbifold metric [27]. Let 𝜏(𝑌 ) denote the analytic torsion of Y in the sense of X. Ma
[32] (suitably normalised by volume; see Section 8.1, especially Theorem 8.3 and Theorem 8.4 for the
precise definition). Then our main result says that 𝜏(𝑌 ) is given by some power of the Petersson norm
of the Borcherds product Φ𝑉 .
Theorem 1.1. There exists a constant𝐶𝑘 > 0 depending only on k such that for every good log-Enriques
surface Y with k singular points,

𝜏(𝑌 ) = 𝐶𝑘 ‖Φ𝑉 (𝜛(𝑌 ))‖−1/4,

where V is a Del Pezzo surface of degree k.
It is important to note that our torsion invariant is essentially the complex 2-dimensional analogue

of the BCOV invariant (See [3], [19], [17], [20]). In higher dimensions, Bershadsky, Cecotti, Ooguri
and Vafa [3] introduced a certain combination of holomorphic torsions, called the BCOV torsion,
and predicted the mirror symmetry at genus one as an equivalence of the BCOV torsion and certain
curve counting invariants at genus one. The corresponding holomorphic torsion invariant of Calabi-Yau
threefolds, called the BCOV invariant, was introduced by Fang, Lu and the second author [19], who
verified some predictions in [3]. Very recently, the BCOV invariant is extended to Calabi-Yau manifolds
of arbitrary dimension by Eriksson, Freixas i Montplet and Mourougane [17], who have established the
mirror symmetry at genus one for the Dwork family in arbitrary dimension [18]. The notion of the BCOV
invariant is further extended to a certain class of pairs by Y. Zhang [49], who, together with L. Fu, has
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established the birational invariance of the BCOV invariants [50], [20]. According to mirror symmetry,
the BCOV invariants correspond to the topological string amplitudes whose modular properties are
important features. In the final section, we will interpret Theorem 1.1 in terms of the BCOV torsion so
that the BCOV invariant of good log-Enriques surfaces is expressed as the Borcherds product Φ𝑉 , an
infinite product of expected type in mirror symmetry. As log-Enriques surfaces are rational, the BCOV
invariant is not a birational invariant in this case.

We remark that the equivalence of the analytic torsion of Ricci flat Enriques surfaces and the
Borcherds Φ-function [43] may be viewed as the limiting case 𝑘 = 0. Since 𝜏(𝑌 ) is the analytic torsion
of a resolution of Y with respect to a degenerate Ricci flat metric, our theorem may be viewed as a two-
dimensional analogue of the theorems of Kokotov-Korotkin [28] and McIntyre-Park [36], as mentioned
above. Because of the isomorphism between the complex structure moduli of good log-Enriques surfaces
and the Kähler moduli of Del Pezzo surfaces, in view of mirror symmetry at genus one as mentioned
above, it may be worth asking if the Fourier coefficients of the elliptic modular form appearing in the
infinite product expansion of Φ𝑉 are interpreted as some counting invariants of Del Pezzo surfaces.
We also remark that by Theorem 1.1 and the recent result of S. Ma [29], the analytic torsion of good
log-Enriques surfaces is obtained from the Borcherds Φ-function of rank 10 by manipulating quasi-
pullbacks successively. See Section 8.3 for the details.

Our method of proof, which should have independent interest and which carries out the program
proposed in [44, Question 5.18] for 2-elementary 𝐾3 surfaces, is to de-singularise the double covering
of Y via the Eguchi-Hanson instanton to obtain a 2-elementary 𝐾3 surface (𝑋, 𝜃) and study the limiting
behaviour of the (equivariant) analytic torsion of (𝑋, 𝜃), as well as other constituents of the invariant
𝜏(𝑋, 𝜃) of (𝑋, 𝜃), as 𝑋 degenerates into the orbifold double covering X of Y. As a result, the ratio
𝜏(𝑌 )/𝜏(𝑋, 𝜃)1/2 may be viewed as the (equivariant) analytic torsion of the Eguchi-Hanson instanton
(compare Theorem 7.12). In [5], Bismut computed the behaviour of Quillen metrics when the exceptional
divisor is blown down to a smooth point. In this paper, we study the same type of problem, where the
blowing-up of C2 will be replaced by the Eguchi-Hanson instanton. We remark that Theorem 1.1 would
be proved in the same way as in [43] by making use of the fundamental theorems for Quillen metrics
such as the curvature formula, anomaly formula and embedding formula [4], [6], [7], [31], whose
extensions to orbifolds were obtained by X. Ma [32], [33], if we could understand degenerations of log
Enriques surfaces. On the other hand, it would be difficult to understand the geometric meaning of the
ratio 𝜏(𝑌 )/𝜏(𝑋, 𝜃)1/2 by this method. In the final section, we will observe that 𝜏(𝑌 )/𝜏(𝑋, 𝜃)1/2 is the
key factor in the exact comparison formula for the BCOV invariants for certain Calabi-Yau orbifolds.

This paper is organised as follows.
In Section 2, we recall log-Enriques surfaces and study their moduli space. In Section 3, we recall

the notion of analytic torsion and also the holomorphic torsion invariant 𝜏(𝑋, 𝜃) for 2-elementary 𝐾3
surfaces [43]. In Theorem 3.2, we will give an explicit formula for the analytic torsion of a 𝐾3 surface
with respect to an arbitrary Kähler metric. In Section 4, we recall the Eguchi-Hanson instanton and
construct a family of Kähler metrics {𝛾𝜖 , 𝛿} on 𝑋 converging to an orbifold metric with uniformly
bounded Ricci curvature. In Section 5, we study the behaviour of some constituents of the invariant
𝜏(𝑋, 𝜃) with respect to the metric 𝛾𝜖 , 𝛿 as 𝜖 → 0. In Section 6, we derive some estimates for the heat
kernels of (𝑋, 𝛾𝜖 , 𝛿). In Section 7, we determine the behaviour of (equivariant) analytic torsion of (𝑋, 𝜃)
with respect to the metric 𝛾𝜖 , 𝛿 as 𝜖 → 0 and 𝛿 → 0. In Section 8, we introduce a holomorphic torsion
invariant for good log-Enriques surfaces and prove the main theorem. In Section 9, we study the relation
between the invariant 𝜏(𝑌 ) and the BCOV invariant.

2. log-Enriques surfaces

2.1. log-Enriques surfaces

Following D.-Q. Zhang [47], [48], we recall the notion of log-Enriques surfaces (of index 2) and its
basic properties.
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Definition 2.1. An irreducible normal projective complex surface Y is called a log-Enriques surface if
the following conditions are satisfied:

(1) Y is singular and has at most quotient singularities except rational double points. In particular, Y
has the structure of a compact complex orbifold.

(2) The irregularity of Y vanishes: that is, 𝐻1(𝑌,O𝑌 ) = 0.
(3) Let 𝐾𝑌 be the canonical line bundle of Y in the sense of orbifolds. Then

𝐾𝑌 � O𝑌 , 𝐾 ⊗2
𝑌 = O𝑌 .

Remark 2.2. For 𝔭 ∈ Sing𝑌 , there exist a neighbourhood 𝑈𝔭 of 𝔭 in Y, a finite group 𝐺𝔭 ⊂ GL(C2)
and a 𝐺𝔭-invariant neighbourhood V of 0 in C2 such that (𝑈𝔭,𝔭) � (𝑉/𝐺𝔭, 0). Then 𝐾𝑌 |𝑈𝔭 is defined
as (𝑉 × C)/𝐺𝔭, where the 𝐺𝔭-action is given by 𝑔 · (𝑧, 𝜁) = (𝑔 · 𝑧, det(𝑔)𝜁).

Remark 2.3. Logarithmic Enriques surfaces in this paper are those of index two in Zhang’s papers [47],
[48]. We only deal with log-Enriques surfaces of index two in this paper.

If a smooth complex surface satisfies conditions (2), (3), then it is an Enriques surface. For this
reason, we impose that log-Enriques surfaces are singular. Then a log-Enriques surface is rational [47,
Lemma 3.4]. By Zhang [47, Lemma 3.1], every singularity of a log-Enriques surface Y is the quotient
of a rational double point by Z/2Z and hence non-Gorenstein. Indeed, if 𝔭 ∈ Sing𝑌 , then there exists
by (1) an isomorphism of germs of analytic spaces (𝑌,𝔭) � (C2/𝐺, 0), where 𝐺 ⊂ GL(C2) is a finite
group. By (3), the image of the homomorphism det : 𝐺 � 𝑔 → det 𝑔 ∈ C∗ is ±1. If 𝐺0 := ker det ⊂ 𝐺,
then 𝐺0 ⊂ SL(C2) is a normal subgroup of G of index 2, so that (𝑋, 0) = (C2/𝐺0, 0) is a rational
double point. If 𝑝 : (𝑋, 0) → (𝑌, 0) denotes the projection induced by the inclusion of groups 𝐺0 ⊂ 𝐺,
then p induces an isomorphism of germs (𝑋/(𝐺/𝐺0), 0) → (𝑌, 0), where 𝐺/𝐺0 � {±1} � Z/2Z. By
[47, Lemma 3.1], (𝑋, 0) is a rational double point of type 𝐴2𝑛−1 for some n. Since the homomorphism
det2 : 𝐺 → C∗ is trivial, 𝐾 ⊗2

𝑌 is a holomorphic line bundle on Y in the ordinary sense.

2.2. The canonical double covering

Let Y be a log-Enriques surface, and let 𝛯 ∈ 𝐻0(𝑌, 𝐾 ⊗2
𝑌 ) \ {0} be a nowhere vanishing bicanonical

form on Y in the sense of orbifolds. The canonical double covering of Y is defined as

𝑋 := {(𝑦, 𝜉) ∈ 𝐾𝑌 ; 𝜉 ⊗ 𝜉 = 𝛯} ⊂ 𝐾𝑌 ,

which is equipped with the projection 𝑝 : 𝑋 → 𝑌 induced from the projection 𝐾𝑌 → 𝑌 . Then 𝑝 : 𝑋 → 𝑌
is a double covering, which ramifies only over Sing𝑌 . (Since 𝐾𝑌 ,𝔭 = C/±1 for 𝔭 ∈ Sing(𝑌 ), 𝑝−1(𝔭)
consists of a single point.) The canonical involution 𝜄 : 𝑋 → 𝑋 is defined as the nontrivial covering
transformation:

𝜄(𝑦, 𝜉) = (𝑦,−𝜉).

Since the ramification locus of 𝑝 : 𝑋 → 𝑌 is Sing 𝑋 , we have 𝑋 𝜄 = Sing 𝑋 and that 𝜄 has no fixed points
on 𝑋 \ Sing 𝑋 .

Let 𝜋 : 𝑋 → 𝑋 be the minimal resolution, and let 𝜃 : 𝑋 → 𝑋 be the involution induced by the
canonical involution 𝜄. The involution 𝜃 is also called the canonical involution on 𝑋 . We have the
following commutative diagram:

𝑋
𝜋−−−−−−→ 𝑋

𝑝
−−−−−−→ 𝑌 = 𝑋/𝜄

𝜃
⏐⏐� 𝜄

⏐⏐� ⏐⏐�id

𝑋 −−−−−−→
𝜋

𝑋 −−−−−−→
𝑝

𝑌 = 𝑋/𝜄

(2.1)
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Here the projection 𝑝 : 𝑋 → 𝑌 ramifies only at Sing𝑌 . In what follows, we denote by 𝑋 𝜄 and 𝑋 𝜃 the
sets of fixed points of 𝜄 and 𝜃, respectively. Since 𝜄 has no fixed points on 𝑋 \ Sing 𝑋 , 𝜃 has no fixed
points on 𝑋 \ 𝜋−1 (Sing 𝑋). Hence 𝑋 \ 𝜋−1(Sing 𝑋) ⊂ 𝑋 \ 𝑋 𝜃 . In other words, 𝑋 𝜃 ⊂ 𝜋−1(Sing 𝑋).

Lemma 2.4. In the commutative diagram (2.1), the following hold:

(1) X is a 𝐾3 surface with rational double points, and

𝑋 𝜄 = Sing 𝑋 = 𝑝−1 (Sing𝑌 ), 𝜄∗ |𝐻 0 (𝑋,𝐾𝑋 ) = −1.

(2) (𝑋, 𝜃) is a 2-elementary 𝐾3 surface. Namely, 𝜃 acts nontrivially on holomorphic 2-forms on 𝑋 .
Moreover, there exists an integer 𝑘 ∈ {1, . . . , 10} such that

𝑋 𝜃 = 𝐸1 	 . . . 	 𝐸𝑘 , 𝐸𝑖 � P1.

The pair (𝑋, 𝜃) is called the 2-elementary 𝐾3 surface associated to Y.

Proof. See [47, Lemma 3.1, Th. 3.6] for (1) and [48, Lemma 2.1] for (2). �

Lemma 2.5. Let Y, 𝑌 ′ be log Enriques surfaces with canonical double coverings 𝑝′ : 𝑋 ′ → 𝑌 ′ and
𝑝 : 𝑋 → 𝑌 , respectively. Let 𝜑 : 𝑌 ′ → 𝑌 be a birational holomorphic map. Then the following hold:

(1) 𝜑∗ induces an isomorphism from 𝐻0(𝑌, 𝐾 ⊗2
𝑌 ) to 𝐻0(𝑌 ′, 𝐾 ⊗2

𝑌 ′ ).
(2) 𝜑(Sing𝑌 ′) ⊂ Sing𝑌 .
(3) 𝜑 lifts to a holomorphic map 𝑓 : 𝑋 ′ → 𝑋 of canonical double coverings.

Proof. (1) Let Ξ ∈ 𝐻0(𝑌, 𝐾 ⊗2
𝑌 ) \ {0} and Ξ′ ∈ 𝐻0 (𝑌 ′, 𝐾 ⊗2

𝑌 ′ ) \ {0}. Then 𝜑∗Ξ is a bicanonical from
on 𝑌 ′ \ (Sing𝑌 ′ ∪ 𝜑−1(Sing𝑌 )), and Ξ′ is nowhere vanishing. We get 𝜑∗Ξ/Ξ′ ∈ O(𝑌 ′ \ (Sing𝑌 ′ ∪
𝜑−1 (Sing𝑌 ))) = O(𝑌 ′ \ 𝜑−1 (Sing𝑌 )) = O(𝑌 \Sing𝑌 ) = O(𝑌 ) = C, where the first and third equalities
follow from the normality of 𝑌 ′ and Y and the second equality follows from the Zariski Main Theorem.
Hence 𝜑∗Ξ = 𝑐 Ξ′ with some 𝑐 ∈ C \ {0}, and 𝜑∗ is an isomorphism.

(2) Let 𝑜 ∈ Sing𝑌 ′. Assume 𝜑(𝑜) ∈ 𝑌 \ Sing𝑌 . There exist a neighbourhood U of 𝜑(𝑜) and a
nowhere vanishing canonical form 𝜂 ∈ 𝐻0(𝑈, 𝐾𝑌 ). We can express Ξ|𝑈 = 𝐹 · 𝜂⊗2, 𝐹 ∈ O∗(𝑈). Since
𝜑∗Ξ and 𝜑∗𝐹 are nowhere vanishing on 𝜑−1(𝑈), so is 𝜑∗𝜂⊗2. Hence 𝜑∗𝜂 is nowhere vanishing. Since
any singular point of 𝑌 ′ is non-Gorenstein, we get a contradiction. Thus 𝜑(𝑜) ∈ Sing𝑌 .

(3) Since 𝜑∗Ξ is nowhere vanishing on𝑌 ′ \𝜑−1(Sing𝑌 ), 𝜑 has no critical points on𝑌 ′ \𝜑−1(Sing𝑌 ).
Since the restriction of 𝜑 to 𝑌 ′ \ 𝜑−1(Sing𝑌 ) is a closed map, 𝜑 : 𝑌 ′ \ 𝜑−1 (Sing𝑌 ) → 𝑌 \ Sing𝑌
is an étale covering of degree one: that is, an isomorphism. 𝜑 induces a holomorphic map 𝑓 : 𝑋 ′ \
(𝑝′)−1𝜑−1 (Sing𝑌 ) → 𝑋 \ 𝑝−1 (Sing𝑌 ) such that 𝑝 ◦ 𝑓 = 𝜑 ◦ 𝑝′. Since 𝑝−1 (𝑦) consists of a unique
point for any 𝑦 ∈ Sing𝑌 , f extends to a map from 𝑋 ′ to X by setting 𝑓 (𝑥 ′) := 𝑝−1 (𝜑(𝑝′(𝑥 ′))) for
𝑥 ′ ∈ (𝑝′)−1𝜑−1(Sing𝑌 ). By construction, 𝑝 ◦ 𝑓 = 𝜑 ◦ 𝑝′. By this equality and the bijectivity of the map
𝑝 : Sing 𝑋 → Sing𝑌 , f is continuous. Since f is holomorphic on a Zariski open subset, 𝑓 : 𝑋 ′ → 𝑋 is
holomorphic by the normality of 𝑋 ′. �

2.3. The good model of a log-Enriques surface

The group Z/4Z acts on C2 as the multiplication by 𝑖 =
√
−1: that is, 𝑖(𝑧1, 𝑧2) := (𝑖𝑧1, 𝑖𝑧2). We define

the cyclic quotient singularity of type 1
4 (1, 1) by

(C2/〈𝑖〉, 0).

Its minimal resolution is the total space of the line bundle OP1 (−4)

𝜛 : (OP1 (−4), 𝐸) → (C2/〈𝑖〉, 0),
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where the exceptional divisor 𝐸 = 𝜛−1(0) is a (−4)-curve: that is, 𝐸2 = −4.

Definition 2.6. A log-Enriques surface Y is good if Y has only cyclic quotient singularities of type
1
4 (1, 1).

Let Y be a log-Enriques surface, 𝑝 : 𝑋 → 𝑌 be its canonical double covering and 𝜋 : 𝑋 → 𝑋 be the
minimal resolution. Then X and 𝑋 are equipped with the canonical involutions 𝜄 and 𝜃, respectively. Let
𝐸 = 𝜋−1(Sing 𝑋) be the exceptional divisor of 𝜋 : 𝑋 → 𝑋 . Then 𝐸 ⊃ 𝑋 𝜃 = 	𝑘

𝑖=1𝐸𝑖 with 1 ≤ 𝑘 ≤ 10.
Since 𝐸𝑖 is a (−2)-curve of 𝑋 , it is a (−4)-curve of 𝑋/𝜃, and its contraction produces a cyclic quotient
singularity of type 1

4 (1, 1).

Definition 2.7. The good model of a log-Enriques surface Y, denoted by𝑌 ♮ , is defined as the contraction
of the disjoint union of (−4)-curves 𝑋 𝜃 in 𝑋/𝜃, where (𝑋, 𝜃) is the 2-elementary 𝐾3 surface associated
to Y.

Another construction of 𝑌 ♮ from Y is as follows [47, Th. 3.6], [48, Lemmas 1.4 and 2.1]. Let 𝑌 be
the minimal resolution of Y with exceptional divisor 𝐷 ⊂ 𝑌 . Let 𝑌# be the blowing-up of 𝑌 at Sing 𝐷.
Then the proper transform of D consists of disjoint (−4)-curves, say 𝐷1, . . . , 𝐷𝑘 . Then 𝑌# � 𝑋/𝜃 and
𝑌 ♮ is obtained from 𝑌# by contracting the 𝐷𝑖s. (Notice that 𝑌 and 𝑌# are not log-Enriques surfaces.) As
is verified easily, the composition of the rational map 𝑌 ♮ � 𝑌# and the blowing-down 𝑌# → 𝑌 extend
to a holomorphic map from 𝑌 ♮ to Y.

By construction, 𝑌 ♮ has at most cyclic quotient singularities of type 1
4 (1, 1). If Y is a good log-

Enriques surface, then 𝑌 = 𝑌 ♮.

Proposition 2.8. Let Y be a log-Enriques surface. If there is a birational holomorphic map from a good
log-Enriques surface 𝑌 ′ to Y, then 𝑌 ′ � 𝑌 ♮ .

Proof. Let 𝑋♮ (respectively, 𝑋 ′) be the canonical double covering of 𝑌 ♮ (respectively, 𝑌 ′), and let
𝑋♮ (respectively, �̃� ′) be the minimal resolution of 𝑋♮ (respectively, 𝑋 ′). The birational morphism
𝑌 ′ → 𝑌 induces a birational morphism 𝜓 : (𝑋 ′, 𝜄′) → (𝑋, 𝜄) by Lemma 2.5 (3), and this 𝜓 in-
duces an isomorphism 𝑓 : (𝑋 ′, 𝜃 ′) → (𝑋, 𝜃) = (𝑋♮, 𝜃), by the minimality of 𝐾3 surfaces. Hence
(𝑋 ′/𝜃 ′, (𝑋 ′) 𝜃′ ) � (𝑋♮/𝜃, (𝑋♮) 𝜃 ). Since the projection 𝑋 ′/𝜃 ′ → 𝑌 ′ (respectively, 𝑋♮/𝜃 → 𝑌 ♮) is ob-
tained by contracting every component of (𝑋 ′) 𝜃′ (respectively, (𝑋♮) 𝜃 ) to a cyclic quotient singularity
of type 1

4 (1, 1), f induces an isomorphism from 𝑌 ′ to Y. �

By Proposition 2.8, every log-Enriques surface has a unique good model. By Zhang [47, Th. 3.6],
[48, Th.4, Cor. 5, Lemma 2.3], one can associate to a log-Enriques surface another log-Enriques surface
with a unique singular point in the canonical way. So log-Enriques surfaces of this type form another
class to be studied. Because of the uniqueness (up to a scaling) of the Ricci-flat ALE hyperkähler metric
on the minimal resolution of 𝐴1-singularity, in this paper, we focus on good log-Enriques surfaces.

In the rest of this section, we study the moduli space of good log-Enriques surfaces. Throughout
this paper, we mean by lattice a free Z-module of finite rank equipped with a nondegenerate integral
symmetric bilinear form. We often identify a lattice with its Gram matrix.

2.4. 2-elementary 𝐾3 surfaces and log-Enriques surfaces

A pair (𝑍, 𝜄) is called a 2-elementary 𝐾3 surface if Z is a 𝐾3 surface and 𝜄 : 𝑍 → 𝑍 is a holomorphic
anti-symplectic involution. For a 2-elementary 𝐾3 surface (𝑍, 𝜄), we define

𝐻2 (𝑍, Z)± = {𝑙 ∈ 𝐻2(𝑍, Z); 𝜄∗(𝑙) = ±𝑙},

which is equipped with the integral bilinear form induced from the intersection pairing on 𝐻2(𝑍, Z).
Then 𝐻2(𝑍, Z) is isometric to the 𝐾3-lattice (compare [1])

L𝐾3 := U ⊕ U ⊕ U ⊕ E8 (−1) ⊕ E8(−1),
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where U =
(0 1
1 0
)

and E8 (−1) is the negative-definite even unimodular lattice of rank 8 whose Gram
matrix is given by the Cartan matrix of type 𝐸8. If r denotes the rank of 𝐻2 (𝑍, Z)+, then 𝐻2(𝑍, Z)+
(respectively, 𝐻2 (𝑍, Z)−) has signature (1, 𝑟 − 1) (respectively, (2, 20 − 𝑟)). For a 2-elementary 𝐾3
surface (𝑍, 𝜄), the topological type of 𝑍 𝜄 is determined by the isometry class of the lattice 𝐻2(𝑍, Z)−.

Let Y be a good log-Enriques surface, and let (𝑋, 𝜃) be the corresponding 2-elementary 𝐾3 surface.
Hence (𝑋/𝜃, 𝑋 𝜃 ) → (𝑌, Sing(𝑌 )) is the minimal resolution of the cyclic quotient singularities of type
1
4 (1, 1) of Y. We set

𝑘 := #Sing(𝑌 )

and define Λ𝑘 as the unimodular lattice of signature (2, 10 − 𝑘) (except when 𝑘 = 8, which requires
modification). Under the identification with a lattice with its Gram matrix, we have

Λ𝑘 =

(
𝐼2 0
0 −𝐼10−𝑘

)
(𝑘 ≠ 8), Λ8 =

(
𝐼2 0
0 −𝐼2

)
or U ⊕ U (𝑘 = 8).

According to the parity of Λ8, we set Λodd
8 := 𝐼2 ⊕ −𝐼2 and Λeven

8 := U ⊕ U. Since 𝑋 𝜃 consists of
smooth rational curves, we deduce from Nikulin [39, Th. 4.2.2] that there is an isometry of lattices
𝛼 : 𝐻2(𝑋, Z) � L𝐾3 with

𝛼 : 𝐻2 (𝑋, Z)− � Λ𝑘 (2). (2.2)

Here Λ𝑘 (2) stands for the rescaling of Λ𝑘 , whose bilinear form is the double of that of Λ𝑘 . An isometry
of lattices 𝛼 : 𝐻2 (𝑋, Z) � L𝐾3 satisfying equation (2.2) is called a marking of (𝑋, 𝜃). We set

𝑀𝑘 := Λ𝑘 (2)⊥,

where the orthogonal complement is considered in the 𝐾3-lattice L𝐾3. A 2-elementary 𝐾3 surface (𝑍, 𝜄)
is of type 𝑀𝑘 if its invariant lattice 𝐻2 (𝑍, Z)+ is isometric to 𝑀𝑘 .

We define

Ω𝑘 := {[𝜂] ∈ P(Λ𝑘 ⊗ C); 〈𝜂, 𝜂〉 = 0, 〈𝜂, 𝜂〉 > 0}.

Then Ω𝑘 consists of two connected components Ω+
𝑘 and Ω−

𝑘 , each of which is isomorphic to the bounded
symmetric domain of type IV of dimension 10 − 𝑘 . Let 𝑂 (Λ𝑘 ) be the automorphism group of Λ𝑘 , and
let 𝑂+(Λ𝑘 ) ⊂ 𝑂 (Λ𝑘 ) be the subgroup of index 2 consisting of elements preserving Ω±

𝑘 . We define the
orthogonal modular variety associated with Λ𝑘 by

M𝑘 := Ω𝑘/𝑂 (Λ𝑘 ) = Ω+
𝑘/𝑂

+(Λ𝑘 ).

When 𝑘 = 8, we define Modd
8 := Ω8/𝑂 (Λodd

8 ) and Meven
8 := Ω8/𝑂 (Λeven

8 ). When there is no possibility
of confusion, we write M8 for Modd

8 and Meven
8 .

Since 𝜃 acts nontrivially on 𝐻0 (𝑋,Ω2
𝑋
), we deduce the inclusion from the Hodge decomposition

𝐻0 (𝑋,Ω2
𝑋
) ⊂ 𝐻2(𝑋, C)−. Since 𝐻0(𝑋,Ω2

𝑋
) is a complex line, it follows from the Riemann-Hodge

bilinear relations that

𝜛(𝑋, 𝜃, 𝛼) := [𝛼(𝐻0 (𝑋,Ω2
𝑋
)] ∈ Ω𝑘 .

The point 𝜛(𝑋, 𝜃, 𝛼) ∈ Ω𝑘 is called the period of (𝑋, 𝜃, 𝛼). We define the period of (𝑋, 𝜃) as the
𝑂 (Λ𝑘 )-orbit of 𝜛(𝑋, 𝜃, 𝛼): that is,

𝜛(𝑋, 𝜃) := 𝑂 (Λ𝑘 ) · [𝛼(𝐻0 (𝑋,Ω2
𝑋
)] ∈ M𝑘 .
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By [43, Th. 1.8], the coarse moduli space of 2-elementary 𝐾3 surfaces of type 𝑀𝑘 is isomorphic via
the period map to the analytic space M𝑜

𝑘 := M𝑘 \D𝑘 , where D𝑘 is the discriminant divisor

D𝑘 = (
⋃

𝑑∈Λ𝑘 , 𝑑2=−1

𝑑⊥)/𝑂 (Λ𝑘 ), 𝑑⊥ := {[𝜂] ∈ Ω𝑘 ; 〈𝜂, 𝑑〉 = 0}.

2.5. The period mapping for log-Enriques surfaces

Definition 2.9. The period of a good log-Enriques surface Y with k singular points is defined as the
period of the corresponding 2-elementary 𝐾3 surface (𝑋, 𝜃):

𝜛(𝑌 ) := 𝜛(𝑋, 𝜃) ∈ M𝑘 .

When 𝑘 = 8, we define the parity of Y as that of the lattice Λ8 defined by equation (2.2).
Theorem 2.10. The period mapping induces a bijection between the isomorphism classes of good log-
Enriques surfaces with k singular points (and fixed parity when 𝑘 = 8) and M𝑜

𝑘 .
Proof. Let N𝑘 be the isomorphism classes of good log-Enriques surfaces with k singular points (and
fixed parity when 𝑘 = 8). By [43, Th. 1.8], we can identify M𝑜

𝑘 with the isomorphism classes of 2-
elementary 𝐾3 surfaces of type 𝑀𝑘 via the period mapping. We define a map 𝑓 : N𝑘 →M𝑜

𝑘 by setting
𝑓 (𝑌 ) = (𝑋, 𝜃), where (𝑋, 𝜃) is the 2-elementary 𝐾3 surface associated to Y. Similarly, we define a
map 𝑔 : M𝑜

𝑘 → N𝑘 by sending (𝑍, 𝜎) ∈ M𝑜
𝑘 to the surface obtained from 𝑍/𝜎 by blowing down 𝑍𝜎 .

Since 𝑍𝜎 consists of k disjoint (−2)-curves, its image in 𝑍/𝜎 consists of k disjoint (−4)-curves so that
𝑔(𝑍, 𝜎) is a good log-Enriques surface with k singular points. Since 𝑔 = 𝑓 −1 by [48, Lemmas 1.4 and
2.1], f is a bijection. �

Since the (locally defined) family of 2-elementary 𝐾3 surfaces of type 𝑀𝑘 associated to a holomorphic
family of good log-Enriques surfaces with k-singular points is again holomorphic, the period mapping
for any holomorphic family of good log-Enriques surfaces with k-singular points is holomorphic. In
what follows, we regard M𝑜

𝑘 as a coarse moduli space of good log-Enriques surfaces with k singular
points (and fixed parity when 𝑘 = 8).

3. Analytic torsion for 𝐾3 surfaces and 2-elementary 𝐾3 surfaces

3.1. Analytic torsion

Let Z be a compact complex orbifold of dimension n, and let 𝛾 be a Kähler form on Z in the sense of
orbifolds. Let 𝜄 : 𝑍 → 𝑍 be a holomorphic involution, and assume that 𝜄 preserves 𝛾. Let 𝐴0,𝑞

𝑍 be the
space of smooth (0, 𝑞)-forms on Z in the sense of orbifolds. Let �𝑞 = (𝜕 + 𝜕∗)2 be the Hodge-Kodaira
Laplacian acting on 𝐴0,𝑞

𝑍 . Let

𝜁𝑞 (𝑠) :=
∑

𝜆∈𝜎 (�𝑞)\{0}
𝜆−𝑠 dim 𝐸 (𝜆;�𝑞)

be the spectral zeta function of �𝑞 , where 𝐸 (𝜆;�𝑞) is the eigenspace of �𝑞 corresponding to the
eigenvalue 𝜆. Similarly, let

𝜁𝑞 (𝑠) (𝜄) :=
∑

𝜆∈𝜎 (�𝑞)\{0}
𝜆−𝑠 Tr

[
𝜄∗ |𝐸 (𝜆;�𝑞)

]
be the equivariant spectral zeta function of �𝑞 . Since (𝑍, 𝛾) is a Kähler orbifold, 𝜁𝑞 (𝑠) and 𝜁𝑞 (𝑠) (𝜄)
converge absolutely when �𝑠 > dim 𝑍 , extend to meromorphic functions on C and are holomorphic at
𝑠 = 0. After Ray-Singer [41] and Bismut [4], we make the following:
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Definition 3.1. The analytic torsion of the Kähler orbilod (𝑍, 𝛾) is defined as

𝜏(𝑍, 𝛾) := exp[−
𝑛∑

𝑞=0
(−1)𝑞𝑞 𝜁 ′𝑞 (0)] .

The equivariant analytic torsion of (𝑍, 𝜄, 𝛾) is defined as

𝜏Z2 (𝑍, 𝛾) (𝜄) := exp[−
𝑛∑

𝑞=0
(−1)𝑞𝑞 𝜁 ′𝑞 (0) (𝜄)] .

3.2. Analytic torsion for 𝐾3 surfaces

Theorem 3.2. Let Z be a 𝐾3 surface, let 𝜂 ∈ 𝐻0(𝑍, 𝐾𝑍 ) \ {0}, and let 𝛾 be a Kähler form on Z. Then
the following formula holds:

𝜏(𝑍, 𝛾) = exp

[
− 1

24

∫
𝑍

log

{
𝜂 ∧ 𝜂

𝛾2/2!
· Vol(𝑍, 𝛾)

‖𝜂‖2
𝐿2

}
𝑐2(𝑍, 𝛾)

]
,

where 𝑐𝑖 (𝑍, 𝛾) denotes the ith Chern form of (𝑇𝑍, 𝛾) and ‖𝜂‖2
𝐿2 :=

∫
𝑍
𝜂 ∧ 𝜂.

Proof. Let 𝜔 be a Ricci-flat Kähler form on Z such that

𝜔2

2!
= 𝜂 ∧ 𝜂. (3.1)

Since the 𝐿2-metric on 𝐻2(𝑍,O𝑍 ) = 𝐻0 (𝑍, 𝐾𝑍 )∨ is independent of the choice of a Kähler metric on
Z, we get by the anomaly formula for Quillen metrics [6]

log
(
𝜏(𝑍, 𝛾) Vol(𝑍, 𝛾)
𝜏(𝑍, 𝜔) Vol(𝑍, 𝜔)

)
=

1
24

∫
𝑍
𝑐1𝑐2 (𝑇𝑍; 𝛾, 𝜔), (3.2)

where 𝑐1𝑐2 (𝑇𝑍; 𝛾, 𝜔) is the Bott-Chern secondary class [6] such that

−𝑑𝑑𝑐𝑐1𝑐2 (𝑇𝑍; 𝛾, 𝜔) = 𝑐1 (𝑍, 𝛾)𝑐2 (𝑍, 𝛾) − 𝑐1 (𝑍, 𝜔)𝑐2(𝑍, 𝜔).

Since 𝑐1 (𝑍, 𝜔) = 0 by the Ricci-flatness of 𝜔 and 𝑐1 (𝐿; ℎ, ℎ′) = log(ℎ/ℎ′) for a holomorphic line
bundle L and Hermitian metrics h and ℎ′ on L, and since

𝑐1𝑐2 (𝑇𝑍; 𝛾, 𝜔) = 𝑐1 (𝑇𝑍; 𝛾, 𝜔)𝑐2(𝑍, 𝛾) + 𝑐1 (𝑍, 𝜔)𝑐2(𝑇𝑍; 𝛾, 𝜔)

by [21], we get by equation (3.1)

𝑐1𝑐2(𝑇𝑍; 𝛾, 𝜔) = 𝑐1 (𝑇𝑍; 𝛾, 𝜔)𝑐2(𝑍, 𝛾) = log
(
𝛾2

𝜔2

)
𝑐2 (𝑍, 𝛾) = log

(
𝛾2/2!
𝜂 ∧ 𝜂

)
𝑐2(𝑍, 𝛾). (3.3)

Since Vol(𝑍, 𝛾)/Vol(𝑍, 𝜔) = Vol(𝑍, 𝛾)/‖𝜂‖2
𝐿2 , we get by substituting equation (3.3) into equation (3.2)

log
(
𝜏(𝑍, 𝛾)
𝜏(𝑍, 𝜔)

)
= − log

(
Vol(𝑍, 𝛾)
‖𝜂‖2

𝐿2

)
− 1

24

∫
𝑍

log
(
𝜂 ∧ 𝜂

𝛾2/2!

)
𝑐2 (𝑍, 𝛾)

= − 1
24

∫
𝑍

log

{
𝜂 ∧ 𝜂

𝛾2/2!
· Vol(𝑍, 𝛾)

‖𝜂‖2
𝐿2

}
𝑐2 (𝑍, 𝛾),

(3.4)

where we used the Gauss-Bonnet-Chern formula for Z to get the second equality.
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Since 𝜔 is Ricci-flat, the Laplacians �0 and �2 are isospectral via the map 𝐴0,0
𝑌 � 𝑓 ↦→ 𝑓 𝜂 ∈ 𝐴0,2

𝑌 .
Hence, for the Ricci-flat metric 𝜔, we get the equality of meromorphic functions

𝜁0(𝑠) = 𝜁2(𝑠) (3.5)

Since the Dolbeault complex is exact on the orthogonal complement of harmonic forms, we get the
equality of meromorphic functions

𝜁0 (𝑠) − 𝜁1 (𝑠) + 𝜁2 (𝑠) = 0. (3.6)

By equations (3.5) and (3.6), we get

𝜏(𝑍, 𝜔) = 1. (3.7)

The result follows from equations (3.4) and (3.7). �

3.3. Equivariant analytic torsion for 2-elementary 𝐾3 surfaces

Let Z be a 𝐾3 surface, and let 𝜄 : 𝑍 → 𝑍 be an anti-symplectic holomorphic involution. Let 𝑍 𝜄 = 	𝛼𝐶𝛼

be the decomposition into the connected components. By Nikulin [39, Th. 4.2.2], every 𝐶𝛼 is a compact
Riemann surface unless 𝑍 𝜄 = ∅.

Let 𝛾 be an 𝜄-invariant Kähler form on Z, and let 𝜂 ∈ 𝐻2 (𝑍, 𝐾𝑍 ) \ {0}. Let

𝑀 := 𝐻2 (𝑍, Z)+

be the invariant sublattice of 𝐻2 (𝑍, Z) with respect to the 𝜄-action. We define

𝜏𝑀 (𝑍, 𝜄) := Vol(𝑍, 𝛾)
14−𝑟 (𝑀 )

4 𝜏Z2 (𝑍, 𝛾) (𝜄) 𝐴𝑀 (𝑍, 𝜄, 𝛾) Vol(𝑍 𝜄, 𝛾 |𝑍 𝜄 )𝜏(𝑍 𝜄, 𝛾 |𝑍 𝜄 ),

where we define

𝜏(𝑍 𝜄, 𝛾 |𝑍 𝜄 ) :=
∏
𝛼

𝜏(𝐶𝛼, 𝛾 |𝐶𝛼 ), Vol(𝑍 𝜄, 𝛾 |𝑍 𝜄 ) :=
∏
𝛼

Vol(𝐶𝛼, 𝛾 |𝐶𝛼 )

and

𝐴𝑀 (𝑍, 𝜄, 𝛾) := exp

[
1
8

∫
𝑍 𝜄

log

{
𝜂 ∧ 𝜂

𝛾2/2!
· Vol(𝑍, 𝛾)

‖𝜂‖2
𝐿2

}�����
𝑍 𝜄

𝑐1 (𝑍 𝜄, 𝛾 |𝑍 𝜄 )
]
.

As before, 𝑐1 (𝑍 𝜄, 𝛾 |𝑍 𝜄 ) is the first Chern form of (𝑇𝑍 𝜄, 𝛾 |𝑍 𝜄 ).

Theorem 3.3. The number 𝜏𝑀 (𝑍, 𝜄) is independent of the choice of an 𝜄-invariant Kähler form on Z.

Proof. See [43, Th. 5.7]. �

For an explicit formula for 𝜏𝑀 as a function on the moduli space of 2-elementary 𝐾3 surfaces, see
[43], [45], [30]. By Theorem 3.2, we can rewrite 𝜏𝑀 (𝑍, 𝜄) as follows:

𝜏𝑀 (𝑍, 𝜄) = Vol(𝑍, 𝛾)
14−𝑟 (𝑀 )

4 𝜏(𝑍, 𝛾)𝜏Z2 (𝑍, 𝛾) (𝜄) Vol(𝑍 𝜄, 𝛾 |𝑍 𝜄 )𝜏(𝑍 𝜄, 𝛾 |𝑍 𝜄 )

× 𝐴𝑀 (𝑍, 𝜄, 𝛾) exp

[
1
24

∫
𝑍

log

{
𝜂 ∧ 𝜂

𝛾2/2!
· Vol(𝑍, 𝛾)

‖𝜂‖2
𝐿2

}
𝑐2 (𝑍, 𝛾)

]
.

(3.8)
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4. A degenerating family of Kähler metrics

Let Y be a good log-Enriques surface. For an orbifold Kähler form 𝛾 on Y, we write Vol(𝑌, 𝛾) =
∫
𝑌
𝛾2/2!

for the volume of (𝑌, 𝛾). We set

𝑘 := #Sing(𝑌 ) ∈ {1, . . . , 10}.

Let (𝑋, 𝜃) be the 2-elementary 𝐾3 surface associated to Y such that

𝑋 𝜃 = 	𝔭∈Sing(𝑌 )𝐸𝔭, 𝐸𝔭 � P1.

Let

𝜋 : (𝑋, 𝑋 𝜃 ) → (𝑋, Sing 𝑋)

be the blowing-down of the disjoint union of (−2)-curves. Then

𝔭 = 𝜋(𝐸𝔭).

In this section, we construct a two-parameter family of Kähler metrics {𝛾𝜖 , 𝛿} on 𝑋 converging to an
orbifold Kähler metric on X, which is obtained by glueing the Eguchi-Hanson instanton at each 𝔭 and
a Kähler metric on X. In the subsequent sections, we study the limiting behaviour of various geometric
quantities of (𝑋, 𝛾𝜖 , 𝛿) to construct an invariant of the log-Enriques surface Y.

4.1. Eguchi-Hanson instanton

For 𝜖 ≥ 0, let 𝐹𝜖 (𝑧) be the function on C2 \ {0} defined by

𝐹𝜖 (𝑧) :=
√
‖𝑧‖4 + 𝜖2 + 𝜖 log

(
‖𝑧‖2√

‖𝑧‖4 + 𝜖2 + 𝜖

)
.

On every compact subset of C2 \ {0}, we have lim𝜖→0 𝐹𝜖 (𝑧) = ‖𝑧‖2. For all 𝜖 ≥ 0 and 𝛿 > 0,

𝐹𝜖 (𝛿𝑧) = 𝛿2𝐹𝜖 𝛿−2 (𝑧).

Let 𝑇∗P1 be the holomorphic cotangent bundle of the projective line, and let 𝐸 ⊂ 𝑇∗P1 be its zero
section. Let

𝛱 : (𝑇∗P1, 𝐸) → (C2/{±1}, 0)

be the blowing-down of the zero section. Since

𝑖𝜕𝜕𝐹𝜖 (𝑧) = 𝑖

(
𝜖 𝜕‖𝑧‖2 ∧ 𝜕‖𝑧‖2√

‖𝑧‖4 + 𝜖2 + 𝜖)
√
‖𝑧‖4 + 𝜖2

+ ‖𝑧‖2𝜕𝜕‖𝑧‖2√
‖𝑧‖4 + 𝜖2 + 𝜖

+ 𝜖 𝜕𝜕 log ‖𝑧‖2

)
is a positive (1, 1)-form on (C2 \ {0})/±1 satisfying

(𝑖𝜕𝜕𝐹𝜖 )2
2!

= (
√
−1)2𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2,

its pull-back to 𝑇∗P1

𝛾EH
𝜖 := 𝛱 ∗(𝑖𝜕𝜕𝐹𝜖 )
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extends to a Ricci-flat Kähler form on 𝑇∗P1 for 𝜖 > 0, called the Eguchi-Hanson instanton. We write
𝛾EH for 𝛾EH

1 . The coordinate change 𝑧 ↦→
√
𝜖𝑧 on C2 induces an isometry of Kähler manifolds

(𝑇∗P1, 𝛾EH
𝜖 ) � (𝑇∗P1, 𝜖𝛾EH). (4.1)

When 𝜖 = 0,

𝑖𝜕𝜕𝐹0 = 𝑖𝜕𝜕‖𝑧‖2

is the Euclidean Kähler form on C2/{±1} and 𝛾EH
0 = 𝛱 ∗{𝑖𝜕𝜕𝐹0 (𝑧)} = 𝛱 ∗(𝑖𝜕𝜕‖𝑧‖2) is a degenerate

Kähler form on 𝑇∗P1.
Let 𝜔FS be the Fubini-Study form on P1 such that

[𝜔FS] = 𝑐1 (OP1 (1)).

By the definition of 𝐹𝜖 , we get

𝛾EH
𝜖 |𝐸 = 𝜖𝛱 ∗(𝑖𝜕𝜕 log ‖𝑧‖2) |𝐸 = 2𝜋𝜖 𝜔FS.

4.2. Glueing of the Eguchi-Hanson instanton

4.2.1. A modification of the Eguchi-Hanson instanton
Let 𝐵(𝑟) ⊂ C2 be the ball of radius 𝑟 > 0 centred at 0 ∈ C2, and set

𝑉 (𝑟) := 𝐵(𝑟)/{±1}.

Let 𝛱 : (𝑉 (𝑟), 𝐸) → (𝑉 (𝑟), 0) be the blowing-up at the origin. Then𝑉 (∞) = C2/±1 and𝑉 (∞) = 𝑇∗P1.
For 𝑧 ∈ (C2 \ {0})/±1 and 𝜖 ≥ 0, we define

𝐸 (𝑧, 𝜖) := 𝐹𝜖 (𝑧) − ‖𝑧‖2.

Since the error term 𝐸 (𝑧, 𝜖) is a 𝐶𝜔 function on (𝑉 (4) \ 𝑉 (1)) × [0, 1] with 𝐸 (𝑧, 0) = 0, there is a
constant 𝐶𝑘 for all 𝑘 ≥ 0 with

sup
𝑧∈𝑉 (4)\𝑉 (1)

|𝜕𝑘
𝑧 𝐸 (𝑧, 𝜖) | ≤ 𝐶𝑘 𝜖 . (4.2)

Let 𝜌(𝑡) be a 𝐶∞ function on R such that 0 ≤ 𝜌(𝑡) ≤ 1 on R, 𝜌(𝑡) = 1 for 𝑡 ≤ 1 and 𝜌(𝑡) = 0 for
𝑡 ≥ 2. We set

𝜙𝜖 (𝑧) := 𝜌(‖𝑧‖) 𝐹𝜖 (𝑧) + {1 − 𝜌(‖𝑧‖)} ‖𝑧‖2 = ‖𝑧‖2 + 𝜌(‖𝑧‖) 𝐸 (𝑧, 𝜖)

and we define a (1, 1) form on 𝑉 (∞) \ {0} by

𝜅𝜖 := 𝑖𝜕𝜕𝜙𝜖 .

Since 𝜙𝜖 (𝑧) = 𝐹𝜖 (𝑧) on𝑉 (1), 𝜅𝜖 extends to a real (1, 1)-form on𝑇∗P1, which is positive on𝑉 (1). Since
𝜙𝜖 (𝑧) = ‖𝑧‖2 + 𝜌(‖𝑧‖) 𝐸 (𝑧, 𝜖) on 𝑉 (2) \ 𝑉 (1), there exists by equation (4.2) a constant 𝜖 (𝜌) ∈ (0, 1)
depending only on the choice of the cut-off function 𝜌 such that 𝜅𝜖 is a positive (1, 1)-form on𝑉 (2)\𝑉 (1)
for 0 < 𝜖 ≤ 𝜖 (𝜌). As a result, {𝜅𝜖 }0<𝜖 ≤𝜖 (𝜌) is a family of Kähler forms on 𝑇∗P1 such that 𝜅𝜖 = 𝑖𝜕𝜕‖𝑧‖2

on 𝑇∗P1 \𝑉 (2).
We have the following slightly refined estimate for the error term 𝐸 (𝑧, 𝜖). Set

𝐸 (𝑧) := 𝐸 (𝑧, 1) = 𝐸1 (𝑧) + 𝐸2(𝑧),
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where

𝐸1 (𝑧) =
√
‖𝑧‖4 + 1 − ‖𝑧‖2 =

1√
‖𝑧‖4 + 1 + ‖𝑧‖2

, 𝐸2 (𝑧) = log
‖𝑧‖2√

‖𝑧‖4 + 1 + 1
.

Then for any nonnegative integer k, there exists a constant 𝐶𝑘 > 0 such that

(i) |𝜕𝑘
𝑧 𝐸1(𝑧) | ≤ 𝐶𝑘 (1 + ‖𝑧‖)−(2+𝑘) for all 𝑧 ∈ 𝑉 (∞) \ {0};

(ii) |𝜕𝑘
𝑧 𝐸2(𝑧) | ≤ 𝐶𝑘 (1 + ‖𝑧‖)−(2+𝑘) for all 𝑧 ∈ 𝑉 (∞) \𝑉 (2);

(iii) |𝜕𝑘
𝑧 𝐸2(𝑧) | ≤ 𝐶𝑘 ‖𝑧‖−𝑘 for all 𝑧 ∈ 𝑉 (2) \ {0}𝑘 ≥ 1; 𝐶0 log ‖𝑧‖2 for 𝑘 = 0.

From these inequalities, we get

|𝜕𝑘
𝑧 𝐸 (𝑧) | ≤

{
𝐶𝑘 ‖𝑧‖−𝑘 (𝑘 ≥ 1;𝐶0 log ‖𝑧‖2, 𝑘 = 0) (∀ 𝑧 ∈ 𝑉 (2) \ {0}),
𝐶𝑘 (1 + ‖𝑧‖)−(2+𝑘) (∀ 𝑧 ∈ 𝑉 (∞) \𝑉 (2)).

(4.3)

Since 𝐸 (𝑧, 𝜖) = 𝜖 𝐸 ( 𝑧√
𝜖
, 1) = 𝜖 𝐸 ( 𝑧√

𝜖
) and hence 𝜕𝑘

𝑧 𝐸 (𝑧, 𝜖) = 𝜖1− 𝑘
2 (𝜕𝑘

𝑧 𝐸) ( 𝑧√
𝜖
), we get by equation

(4.3)

|𝜕𝑘
𝑧 𝐸 (𝑧, 𝜖) | ≤

{
𝐶𝑘𝜖 ‖𝑧‖−𝑘 (𝑘 ≥ 1;𝐶0𝜖 (log ‖𝑧‖2 + log 𝜖), 𝑘 = 0) (∀ 𝑧 ∈ 𝑉 (2) \ {0}),
𝐶𝑘𝜖

2(
√
𝜖 + ‖𝑧‖)−(2+𝑘) (∀ 𝑧 ∈ 𝑉 (∞) \𝑉 (2)).

(4.4)

Here, to get the estimate on𝑉 (2) \ {0}, we used the fact 𝜖2(
√
𝜖 + ‖𝑧‖)−(2+𝑘) < 𝜖 ‖𝑧‖−𝑘 on𝑉 (2) \𝑉 (2

√
𝜖).

Replacing 𝜖 (𝜌) by a smaller constant if necessary, we may assume by equation (4.4) the following
inequality of Hermitian matrices for all 0 < 𝜖 ≤ 𝜖 (𝜌) and 𝑧 ∈ 𝑉 (∞) \𝑉 (2):

1
2
(𝛿𝑖 𝑗 ) ≤ (𝛿𝑖 𝑗 +

𝜕2𝐸 (𝑧, 𝜖)
𝜕𝑧𝑖𝜕𝑧 𝑗

) ≤ 2(𝛿𝑖 𝑗 ). (4.5)

Moreover, for ‖𝑧‖ ≤ 2,

|𝜕𝜖 𝐸 (𝑧, 𝜖) | ≤ 𝐶 𝜖 ‖𝑧‖−2. (4.6)

Lemma 4.1. There exist constants 𝐶1, 𝐶2 > 0 such that the following inequality of (1, 1)-forms on 𝑇∗P1

hold for all 0 < 𝜖 ≤ 𝜖 (𝜌):

𝐶1𝛾
EH
𝜖 ≤ 𝜅𝜖 ≤ 𝐶2𝛾

EH
𝜖 .

Proof. (Step 1) On 𝑉 (1), we have 𝜅𝜖 = 𝛾EH
𝜖 . On 𝑉 (2) \ 𝑉 (1), it follows from equation (4.2) that there

exist constants 𝐶1, 𝐶2 > 0 independent of 𝜖 ∈ (0, 𝜖 (𝜌)] with 𝐶1𝛾
EH
𝜖 ≤ 𝜅𝜖 ≤ 𝐶2𝛾

EH
𝜖 . Combining these

two estimates, we get 𝐶1𝛾
EH
𝜖 ≤ 𝜅𝜖 ≤ 𝐶2𝛾

EH
𝜖 on 𝑉 (2).

(Step 2) We compare 𝜅𝜖 and 𝛾EH
𝜖 on 𝑇∗P1 \ 𝑉 (2). On 𝑇∗P1 \ 𝑉 (2), we have 𝜅𝜖 = 𝛾EH

0 . By equation
(4.5), we have 1

2𝛾
EH
𝜖 ≤ 𝛾EH

0 ≤ 2𝛾EH
𝜖 on 𝑇∗P1 \𝑉 (2). Since 𝜅𝜖 = 𝛾EH

0 on 𝑇∗P1 \𝑉 (2), We get the desired
estimate on 𝑇∗P1 \𝑉 (2). This completes the proof. �

4.2.2. A family of Kähler metrics on 𝑋

Since 𝐸𝔭 is a (−2)-curve on 𝑋 , there exist a neighbourhood 𝑈𝔭 of 𝐸𝔭 in 𝑋 and an isomorphism of pairs

𝜓𝔭 : (𝑈𝔭, 𝐸𝔭) � (𝑉 (1), 𝐸).

We may and will assume that 𝜓𝔭 extends to an isomorphism between an open subset of 𝑋 containing
𝑈𝔭 and 𝑉 (4). We write 𝑉 (𝑟)𝔭 for 𝑉 (𝑟) viewed as a neighbourhood of 𝔭 ∈ Sing(𝑋). In what follows, we
identify 𝑉 (𝑟)𝔭 with 𝜓−1

𝔭 (𝑉 (𝑟)𝔭).
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Let 𝛾 be a 𝜃-invariant Kähler form on X in the sense of orbifolds, which has a potential function on
every 𝑉 (4)𝔭. By modifying the potential of 𝛾 on each 𝑉 (4)𝔭 (compare [43, Proof of Lemma 6.2]), there
exists a Kähler form 𝛾0 on X in the sense of orbifolds such that

𝛾0 |𝑋\⋃𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭 = 𝛾, 𝛾0 |𝑉 (2)𝔭 = 𝑖𝜕𝜕‖𝑧‖2 (∀𝔭 ∈ Sing(𝑋)). (4.7)

In particular, ‖𝑧‖2 ∈ 𝐶𝜔 (𝑉 (2)𝔭) is a potential function of 𝛾0 on every 𝑉 (2)𝔭. Since 𝜙𝜖 (𝑧) = ‖𝑧‖2

near 𝜕𝑉 (2)𝔭, we can glue the Kähler form 𝜅𝜖 on
⋃

𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭 and the Kähler form 𝛾0 on 𝑋 \⋃
𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭 by setting

𝛾𝜖 :=

{
𝜅𝜖 on

⋃
𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭,

𝛾0 on 𝑋 \
⋃

𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭 .
(4.8)

By construction, {𝛾𝜖 }0<𝜖 ≤𝜖 (𝜌) is a family of 𝜃-invariant Kähler forms on 𝑋 .

Lemma 4.2. The family of Kähler forms {𝛾𝜖 }0<𝜖 ≤𝜖 (𝜌) on 𝑋 satisfies the following:

(1) For all 𝔭 ∈ Sing(𝑋), 𝛾0 |𝑉 (2)𝔭 = 𝑖𝜕𝜕‖𝑧‖2.
(2) For all 𝔭 ∈ Sing(𝑋), 𝛾𝜖 |𝑉 (1)𝔭 = 𝜓∗𝔭𝛾

EH
𝜖 .

(3) On 𝑋 , 𝛾𝜖 converges to 𝜋∗𝛾0 in the 𝐶∞-topology.
(4) There exist constants 𝐶,𝐶 ′ > 0 independent of 𝜖 (but depending on 𝜌) such that |Ric(𝛾𝜖 ) |𝛾𝜖 ≤ 𝐶 · 𝜖

on
⋃

𝔭∈Sing 𝑋 𝑉 (2)𝔭 and |Ric(𝛾𝜖 ) |𝛾𝜖 ≤ 𝐶 ′ on 𝑋 .

Proof. By construction, (1), (2), (3) are obvious. Let us see (4). Since 𝛾EH
𝜖 is Ricci-flat and since

𝜅𝜖 = 𝛾EH
𝜖 on 𝑉 (1)𝔭, we get Ric(𝜅𝜖 ) = Ric(𝛾EH

𝜖 ) = 0 on 𝑉 (1)𝔭. On 𝑉 (2)𝔭 \ 𝑉 (1)𝔭, we get
|Ric(𝛾𝜖 ) |𝛾𝜖 = |Ric(𝜅𝜖 ) |𝜅𝜖 ≤ 𝐶 · 𝜖 by equation (4.2). This proves the first estimate. Since 𝛾𝜖 = 𝛾0
on 𝑋 \

⋃
𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭, we get the second estimate. �

4.2.3. A two-parameter family of Kähler metrics on 𝑇∗P1

For later use, we introduce another small parameter 𝛿 > 0. Instead of glueing in the Eguchi-Hanson
instanton in the region 𝑉 (2) − 𝑉 (1), we now do it in the region 𝑉 (2𝛿) − 𝑉 (𝛿). This is effected by
replacing the cut-off function 𝜌(𝑡) by 𝜌𝛿 (𝑡) = 𝜌( 𝑡

𝛿 ) in defining the Kähler potential 𝜙𝜖 for the Kähler
metric 𝛾𝜖 such that 𝜌𝛿 (𝑡) = 1 for 𝑡 ≤ 𝛿 and 𝜌𝛿 (𝑡) = 0 for 𝑡 ≥ 2𝛿. This gives us the family of real
(1, 1)-forms on 𝑇∗P1

𝜅𝜖 , 𝛿 := 𝑖𝜕𝜕𝜙𝜖 , 𝛿 ,

where

𝜙𝜖 , 𝛿 (𝑧) := ‖𝑧‖2 + 𝜌𝛿 (‖𝑧‖)𝐸 (𝑧, 𝜖).

To verify the positivity of 𝜅𝜖 , 𝛿 , we see the relation between 𝜙𝜖 and 𝜙𝜖 , 𝛿 . Since 𝐹𝜖 (𝛿𝑧) = 𝛿2𝐹𝜖 /𝛿2 (𝑧),
we get 𝐸 (𝛿𝑧, 𝜖) = 𝛿2𝐸 (𝑧, 𝜖/𝛿2). Since 𝜙𝜖 ,1(𝑧) = 𝜙𝜖 (𝑧) and 𝜙𝜖 , 𝛿 (𝑧) = ‖𝛿 · 𝑧

𝛿 ‖
2 + 𝜌( ‖𝑧 ‖𝛿 )𝐸 (𝛿 · 𝑧

𝛿 , 𝜖),
this implies that

𝜙𝜖 , 𝛿 (𝑧) = 𝛿2𝜙𝜖 /𝛿2 (𝑧/𝛿).

Hence if 0 < 𝜖/𝛿2 ≤ 𝜖 (𝜌), then 𝜅𝜖 , 𝛿 = 𝑖𝜕𝜕𝜙𝜖 , 𝛿 is a positive (1, 1)-form on 𝑇∗P1. In what follows, we
define 𝜙𝜖 , 𝛿 for 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖/𝛿2 ≤ 𝜖 (𝜌). Then {𝜅𝜖 , 𝛿}0<𝜖 /𝛿2≤𝜖 (𝜌) , 𝜖 , 𝛿∈(0,1] is a family of
Kähler forms on 𝑇∗P1. Moreover, the relation 𝜙𝜖 , 𝛿 (𝑧) = 𝛿2𝜙𝜖 /𝛿2 (𝑧/𝛿) implies that the automorphism
of 𝑇∗P1 induced from the one 𝑧 ↦→ 𝑧/𝛿 on𝑉 (∞) yields an isometry of Kähler manifolds (𝑇∗P1, 𝜅𝜖 , 𝛿) �
(𝑇∗P1, 𝛿2𝜅𝜖 /𝛿2) such that

(𝑉 (2𝛿), 𝜅𝜖 , 𝛿) � (𝑉 (2), 𝛿2𝜅𝜖 /𝛿2). (4.9)
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Lemma 4.3. There exist constants 𝐶1, 𝐶2 > 0 such that the following inequality of (1, 1)-forms on 𝑇∗P1

holds for all 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖/𝛿2 ≤ 𝜖 (𝜌):

𝐶1𝜅𝜖 ≤ 𝜅𝜖 , 𝛿 ≤ 𝐶2𝜅𝜖 .

Proof. (Step 1) By Lemma 4.3 (Step 1), we get 𝐶1𝛾
EH
𝜖 ≤ 𝜅𝜖 ≤ 𝐶2𝛾

EH
𝜖 on 𝑉 (2). By equation (4.9) and

the relation 𝛿2𝛾EH
𝜖 /𝛿2 = 𝛾EH

𝜖 , this implies the inequality 𝐶1𝛾
EH
𝜖 ≤ 𝜅𝜖 , 𝛿 ≤ 𝐶2𝛾

EH
𝜖 on 𝑉 (2𝛿). Hence we get

𝐶1𝐶
−1
2 𝜅𝜖 ≤ 𝜅𝜖 , 𝛿 ≤ 𝐶2𝐶

−1
1 𝜅𝜖 on 𝑉 (2𝛿).

(Step 2) Next we compare 𝜅𝜖 , 𝛿 and 𝜅𝜖 on 𝑇∗P1 \ 𝑉 (2𝛿). By definition, we have 𝜅𝜖 , 𝛿 = 𝛾EH
0 on

𝑇∗P1 \ 𝑉 (2𝛿). Let 𝐻𝜖 be the automorphism of 𝑇∗P1 induced from the automorphism 𝑧 ↦→
√
𝜖𝑧 of

𝑉 (∞) = C2/±1. Then 𝐻𝜖 is an isomorphism from 𝑇∗P1 \ 𝑉 (2𝛿/
√
𝜖) to 𝑇∗P1 \ 𝑉 (2𝛿) inducing the

isometries

(𝑇∗P1 \𝑉 (2𝛿), 𝛾EH
𝜖 ) � (𝑇∗P1 \𝑉 (2𝛿/

√
𝜖), 𝜖𝛾EH), (4.10)

(𝑇∗P1 \𝑉 (2𝛿), 𝛾EH
0 ) � (𝑇∗P1 \𝑉 (2𝛿/

√
𝜖), 𝜖𝛾EH

0 ). (4.11)

Since 𝜖/𝛿2 ≤ 𝜖 (𝜌) and hence 𝛿/
√
𝜖 > 1/

√
𝜖 (𝜌), we have the inclusion 𝑇∗P1 \ 𝑉 ( 2𝛿√

𝜖
) ⊂ 𝑇∗P1 \

𝑉 (2/
√
𝜖 (𝜌)). By equation (4.4), there exist constants 𝐶 ′

1, 𝐶
′
2 > 0 such that 𝐶 ′

1𝛾
EH ≤ 𝛾EH

0 ≤ 𝐶 ′
2𝛾

EH on
𝑇∗P1 \ 𝑉 (2/

√
𝜖 (𝜌)). This, together with equations (4.10) and (4.11), yields the inequality 𝐶 ′

1𝛾
EH
𝜖 ≤

𝛾EH
0 ≤ 𝐶 ′

2𝛾
EH
𝜖 on 𝑇∗P1 \ 𝑉 (2𝛿) for all 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖/𝛿2 ≤ 𝜖 (𝜌). Since 𝜅𝜖 , 𝛿 = 𝛾EH

0 on
𝑇∗P1 \ 𝑉 (2𝛿), we get 𝐶 ′

1𝛾
EH
𝜖 ≤ 𝜅𝜖 , 𝛿 ≤ 𝐶 ′

2𝛾
EH
𝜖 on 𝑇∗P1 \ 𝑉 (2𝛿). By Lemma 4.1, this implies the

inequality 𝐶 ′′
1 𝜅𝜖 ≤ 𝜅𝜖 , 𝛿 ≤ 𝐶 ′′

2 𝜅𝜖 on 𝑇∗P1 \ 𝑉 (2𝛿), where 𝐶 ′′
1 , 𝐶 ′′

2 > 0 are constants independent of
𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖/𝛿2 ≤ 𝜖 (𝜌). This completes the proof. �

4.2.4. A two-parameter family of Kähler metrics on 𝑋

Modifying the construction in equation (4.8), we introduce a two-parameter family of 𝜃-invariant Kähler
forms on 𝑋 by

𝛾𝜖 , 𝛿 :=

{
𝜅𝜖 , 𝛿 on

⋃
𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭,

𝛾0 on 𝑋 \
⋃

𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭
(4.12)

for 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖/𝛿2 ≤ 𝜖 (𝜌).

Lemma 4.4. There exist constants 𝐶1, 𝐶2 > 0 such that the following inequality of (1, 1)-forms on 𝑋
hold for all 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖/𝛿2 ≤ 𝜖 (𝜌):

𝐶1𝛾𝜖 ≤ 𝛾𝜖 , 𝛿 ≤ 𝐶2𝛾𝜖 .

Proof. On
⋃

𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭, the result follows from Lemma 4.3. On 𝑋 \
⋃

𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭, the result is
obvious since 𝛾𝜖 , 𝛿 = 𝛾𝜖 = 𝛾0 is independent of 𝜖, 𝛿 there. �

Lemma 4.5. There exists a constant 𝐶3 > 0 such that the following estimate holds for all 𝜖, 𝛿 ∈ (0, 1]
with 0 < 𝜖/𝛿2 ≤ 𝜖 (𝜌):

|Ric(𝛾𝜖 , 𝛿) |𝛾𝜖 , 𝛿 ≤ 𝐶3 (𝜖𝛿−4 + 1).

Proof. Since 𝛾𝜖 , 𝛿 = 𝛾0 on 𝑋 \
⋃

𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭, it suffices to prove the estimate on
⋃

𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭.
Since 𝛾𝜖 , 𝛿 = 𝑖𝜕𝜕‖𝑧‖2 is a flat metric on

⋃
𝔭∈Sing(𝑋 ) 𝑉 (2)𝔭 \ 𝑉 (2𝛿)𝔭, it suffices to prove the estimate on⋃

𝔭∈Sing(𝑋 ) 𝑉 (2𝛿)𝔭. By equation (4.9), we get on each 𝑉 (2𝛿)𝔭

|Ric(𝛾𝜖 , 𝛿) |𝛾𝜖 , 𝛿 = |Ric(𝛿2𝛾𝜖 /𝛿2) |𝛾𝜖 , 𝛿 = 𝛿−2 |Ric(𝛾𝜖 /𝛿2) |𝛾𝜖 /𝛿2 ≤ 𝛿−2𝐶 (𝜖/𝛿2) = 𝐶𝜖𝛿−4,
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where we used Lemma 4.2 (4) to get the inequality |Ric(𝛾𝜖 /𝛿2) |𝛾𝜖 /𝛿2 ≤ 𝐶 (𝜖/𝛿2) on 𝑉 (2𝛿)𝔭. This
completes the proof. �

Fix a nowhere vanishing holomorphic 2-form

𝜂 ∈ 𝐻0(𝑋, 𝐾𝑋 ) \ {0}.

Since (𝛱−1)∗(𝜂 |𝑉 (1)𝔭 ) is a nowhere vanishing holomorphic 2-form on 𝑉 (1)𝔭 \ {0}, there exists by the
Hartogs extension theorem a nowhere vanishing holomorphic function 𝑓𝔭 (𝑧) on 𝐵(1) such that

(𝛱−1)∗(𝜂 |𝑉 (1)𝔭 ) = 𝑓𝔭 (𝑧) 𝑑𝑧1 ∧ 𝑑𝑧2

and 𝑓𝔭 (−𝑧) = 𝑓𝔭 (𝑧). Since 𝛾𝜖 , 𝛿 = 𝛾𝜖 on 𝑉 (𝛿)𝔭 and hence

(𝛱−1)∗(𝛾2
𝜖 , 𝛿/2!)

��
𝑉 (𝛿)𝔭\{0}

= (𝑖𝜕𝜕𝐹𝜖 )2/2! = (𝑖)2𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2,

we get the equality of functions on 𝑉 (𝛿)𝔭

𝜂 ∧ 𝜂

𝛾2
𝜖 , 𝛿/2!

�����
𝑉 (𝛿)𝔭

= 𝜋∗ | 𝑓𝔭 (𝑧) |2. (4.13)

In particular, we have the following:

(i) On each 𝑉 (𝜖)𝔭, the volume form of 𝛾𝜖 , 𝛿 is independent of 𝜖 ∈ (0, 𝜖 (𝜌)].
(ii) 𝑓𝔭 (0) is independent of 𝛿 ∈ (0, 1] and the choice of the cut-off function 𝜌.

Since 𝛾𝜖 , 𝛿 converges to 𝛾0 outside
⋃

𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭, we get the continuity

lim
𝜖→0

Vol(𝑋, 𝛾𝜖 , 𝛿) = Vol(𝑋, 𝛾0). (4.14)

4.3. Ricci-flat Kähler form on the blowing-down of 𝑋 𝜃

Recall that

𝜋 : (𝑋, 𝑋 𝜃 ) → (𝑋, Sing 𝑋)

is the blowing-down of the disjoint union of (−2)-curves 𝑋 𝜃 = 	𝔭∈Sing 𝑋𝐸𝔭. Then𝔭 = 𝜋(𝐸𝔭). Under the
identification 𝜓𝔭 : (𝑈𝔭, 𝐸𝔭) � (𝑉 (1)𝔭, 𝐸), 𝜋 : 𝑋 → 𝑋 is identified with the blowing-down 𝛱 : 𝑇∗P1 →
C2/{±1} on each 𝑉 (1)𝔭.

By [26], there exists a Ricci-flat orbifold Kähler form 𝜔𝜂 on X such that

𝜋∗𝜔2
𝜂/2! = 𝜂 ∧ 𝜂.

By equation (4.13), we have

𝜋∗𝜔2
𝜂/𝛾2

𝜖 , 𝛿

��
𝑉 (𝛿)𝔭

= 𝛱 ∗ | 𝑓𝔭 (𝑧) |2.

Since the right-hand side is independent of 𝜖 ∈ (0, 1), we get by putting 𝜖 → 0

𝜔2
𝜂/𝛾2

0
��
𝑉 (𝛿)𝔭

= | 𝑓𝔭 |2.
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Hence we get the following relation by regarding 𝜂 as a nowhere vanishing holomorphic 2-form on both
𝑋 and X

𝜂 ∧ 𝜂

𝛾2
𝜖 , 𝛿/2!

�����
𝐸𝔭

= | 𝑓𝔭 (0) |2 =
𝜂 ∧ 𝜂

𝛾2
0
(𝔭).

5. Behaviour of some geometric quantities under the degeneration

In this section, we study the behaviour of the second Chern form, the Bott-Chern term, and the analytic
torsion of the fixed curves when 𝛾𝜖 , 𝛿 converges to the orbifold metric 𝛾0.

5.1. Behaviour of the second Chern form as 𝜖 → 0

Proposition 5.1. For any 𝛿 ∈ (0, 1], one has

lim
𝜖→0

𝜋∗𝑐2 (𝑋, 𝛾𝜖 , 𝛿) = 𝑐2 (𝑋, 𝛾0) +
3
2

∑
𝔭∈Sing(𝑋 )

𝛿𝔭

as currents on X, where 𝛿𝔭 is the Dirac 𝛿-current supported at 𝔭. In particular,

1
24

∫
𝑌
𝑐2 (𝑌, 𝛾0) =

1
32
(16 − 𝑘).

Proof. Let ℎ ∈ 𝐶∞(𝑋). By the definition of the Kähler form 𝛾𝜖 , 𝛿 , we have∫
𝑋
𝜋∗ℎ · 𝑐2 (𝑋, 𝛾𝜖 , 𝛿) =

∫
𝑋\

⋃
𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭

ℎ · 𝑐2 (𝑋, 𝛾𝜖 , 𝛿) +
∑

𝔭∈Sing(𝑋 )
ℎ(𝔭)

∫
𝑉 (𝛿)𝔭

𝑐2 (𝑋, 𝛾𝜖 , 𝛿)

+
∑

𝔭∈Sing(𝑋 )

∫
𝑉 (𝛿)𝔭

𝜋∗{ℎ − ℎ(𝔭)} · 𝑐2(𝑋, 𝛾𝜖 , 𝛿).
(5.1)

For 𝑎 > 0, let 𝑇𝑎 (𝑧) := 𝑎𝑧 be the homothety of C2 and let 𝑇𝑎 : 𝑇∗P1 → 𝑇∗P1 be the biholomorphic
map induced by 𝑇𝑎. Then 𝑇𝜖 induces an isometry of Kähler manifolds

𝑇𝜖 : (𝑉 (𝜖−2), 𝜖2 𝛾EH) � (𝑉 (1), 𝛾EH
𝜖 2 ).

Under the identification 𝑇∗P1 \ 𝐸 � 𝑉 (∞) \ {0}, we have the following estimates��𝛾EH (𝑧) − 𝑖𝜕𝜕‖𝑧‖2�� ≤ 𝐶 (1 + ‖𝑧‖)−4, ‖𝑐2 (𝑇∗P1, 𝛾EH) (𝑧)‖ ≤ 𝐶 (1 + ‖𝑧‖)−6

for ‖𝑧‖ � 1 by equation (4.3), where 𝐶 > 0 is a constant and the norm is with respect to 𝛾EH.
Since there is a constant 𝐶 ′ > 0 with

��ℎ|𝑉 (𝛿)𝔭 (𝑧) − ℎ(𝔭)
�� ≤ 𝐶 ′‖𝑧‖/(1 + ‖𝑧‖) on 𝑉 (𝛿)𝔭, we get�����∫𝑉 (𝛿)𝔭

{𝜋∗ℎ − ℎ(𝔭)} · 𝑐2 (𝑋, 𝛾𝜖 , 𝛿)

����� =
�����∫𝑉 (𝛿)𝔭

𝜋∗{ℎ|𝑉 (𝛿)𝔭 − ℎ(𝔭)} · 𝑐2 (𝑇∗P1, 𝛾EH
𝜖 )

�����
=

����∫
𝑉 (𝛿

√
𝜖
−1)

𝑇∗𝜖 𝜋
∗{ℎ|𝑉 (𝛿)𝔭 − ℎ(𝔭)} · 𝑐2 (𝑇∗P1, 𝛾EH)

����
≤

∫
𝑉 (𝛿

√
𝜖
−1)

𝐶 ′
√
𝜖 ‖𝑧‖

1 +
√
𝜖 ‖𝑧‖

· 𝐶

1 + ‖𝑧‖6
(𝛾EH)2

2!
≤ 𝐶 ′′√𝜖 → 0 (𝜖 → 0),

(5.2)
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where 𝐶 ′′ > 0 is a constant. By equations (5.1) and (5.2), we get

lim
𝜖→0

∫
𝑋
𝜋∗ℎ · 𝑐2 (𝑋, 𝛾𝜖 , 𝛿) =

∫
𝑋\

⋃
𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭

ℎ · 𝑐2 (𝑋, 𝛾0)

+
∑

𝔭∈Sing(𝑋 )
ℎ(𝔭)

∫
𝑇 ∗P1

𝑐2 (𝑇∗P1, 𝛾EH)

=
∫
𝑋
ℎ · 𝑐2 (𝑋, 𝛾0) +

∑
𝔭∈Sing(𝑋 )

ℎ(𝔭)
∫
𝑇 ∗P1

𝑐2 (𝑇∗P1, 𝛾EH),

(5.3)

where we used the vanishing of 𝑐2 (𝑋, 𝛾0) on 𝑉 (𝛿)𝔭 to get the second equality. Setting ℎ = 1 in equation
(5.3) and comparing it with the formula [27, p.396 l.5], we get∫

𝑇 ∗P1
𝑐2 (𝑇∗P1, 𝛾EH) = 𝜒(P1) − 1

|Z2 |
=

3
2
. (5.4)

The first assertion follows from equations (5.3) and (5.4).
Since #Sing(𝑌 ) = 𝑘 , we get by the first assertion

2
∫
𝑌
𝑐2 (𝑌, 𝛾0) =

∫
𝑋
𝑐2 (𝑋, 𝛾0) =

∫
𝑋
𝑐2 (𝑋, 𝛾𝜖 , 𝛿) −

3
2

∑
𝔭∈Sing(𝑋 )

∫
𝑋
𝛿𝔭 = 24 − 3

2
𝑘.

This proves the second assertion. �

5.2. Behaviour of the Bott-Chern terms as 𝜖 → 0

Proposition 5.2. For any 𝛿 ∈ (0, 1], one has

lim
𝜖→0

∫
𝑋

log

{
𝜂 ∧ 𝜂

𝛾2
𝜖 , 𝛿/2!

·
Vol(𝑋, 𝛾𝜖 , 𝛿)

‖𝜂‖2
𝐿2

}
𝑐2 (𝑋, 𝛾𝜖 , 𝛿)

=
∫
𝑋

log

{
𝜂 ∧ 𝜂

𝛾2
0/2!

· Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

}
𝑐2 (𝑋, 𝛾0) +

3
2

∑
𝔭∈Sing(𝑋 )

log

{
| 𝑓𝔭 (0) |2

Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

}
.

Proof. Since 𝛾𝜖 , 𝛿 converges to 𝛾0 outside
⋃

𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭, and since Vol(𝑋, 𝛾𝜖 , 𝛿) converges to
Vol(𝑋, 𝛾0) as 𝜖 → 0, we get the convergence

���
∫
𝑋\

⋃
𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭

+
∑

𝔭∈Sing(𝑋 )

∫
𝑉 (𝛿)𝔭

� ! log

{
𝜂 ∧ 𝜂

𝛾2
𝜖 , 𝛿/2!

·
Vol(𝑋, 𝛾𝜖 , 𝛿)

‖𝜂‖2
𝐿2

}
𝑐2 (𝑋, 𝛾𝜖 , 𝛿)

→
∫
𝑋\

⋃
𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭

log

{
𝜂 ∧ 𝜂

𝛾2
0/2!

· Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

}
𝑐2 (𝑋, 𝛾0)

+ lim
𝜖→0

∑
𝔭∈Sing(𝑋 )

∫
𝑉 (𝛿)𝔭

{
log 𝜋∗ | 𝑓𝔭 (𝑧) |2𝑐2 (𝑋, 𝛾𝜖 , 𝛿) + log

Vol(𝑋, 𝛾𝜖 , 𝛿)
‖𝜂‖2

𝐿2

𝑐2 (𝑋, 𝛾𝜖 , 𝛿)
}

=
∫
𝑋\

⋃
𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭

log

{
𝜂 ∧ 𝜂

𝛾2
0/2!

· Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

}
𝑐2 (𝑋, 𝛾0)

+ 3
2

∑
𝔭∈Sing(𝑋 )

log

(
| 𝑓𝔭 (0) |2

Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

)
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as 𝜖 → 0, where the last equality follows from Proposition 5.1. Since 𝑐2 (𝑋, 𝛾0) = 0 on
⋃

𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭,
we get the result. �

Corollary 5.3. For any 𝛿 ∈ (0, 1], one has

lim
𝛿→0

lim
𝜖→0

𝜏(𝑋, 𝛾𝜖 , 𝛿) =
∏

𝔭∈Sing(𝑋 )

{
| 𝑓𝔭 (0) |2

Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

}− 1
16

× exp

(
− 1

24

∫
𝑋

log

{
𝜂 ∧ 𝜂

𝛾2
0/2!

· Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

}
𝑐2(𝑋, 𝛾0)

)
.

In particular, the limit lim𝛿→0 lim𝜖→0 𝜏(𝑋, 𝛾𝜖 , 𝛿) is independent of the choice of 𝜌.

Proof. By Theorem 3.2 and Proposition 5.2, we get the desired equality. The independence of the
double limit lim𝛿→0 lim𝜖→0 𝜏(𝑋, 𝛾𝜖 , 𝛿) from 𝜌 is obvious because the right-hand side is independent
of the choice of 𝜌. �

Define the Fubini-Study form on 𝐸𝔭 by

𝜔FS (𝐸𝔭) := 𝛱 ∗
(
𝑖

2𝜋
𝜕𝜕 log ‖𝑧‖2

)����
𝐸𝔭

.

Then for 𝔭 ∈ Sing(𝑋), we have

𝛾𝜖 , 𝛿 |𝐸𝔭 = 𝜖 𝜔FS (𝐸𝔭)

and an isomorphism of Kähler manifolds (𝐸𝔭, 𝜔FS (𝐸𝔭)) � (P1, 𝜔FS).

Proposition 5.4. For any 𝛿 ∈ (0, 1], one has

lim
𝜖→0

𝐴𝑀 (𝑋, 𝜃, 𝛾𝜖 , 𝛿) =
∏

𝔭∈Sing(𝑋 )

{
| 𝑓𝔭 (0) |2

Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

} 1
4

.

Proof. Since 𝛾𝜖 , 𝛿 |𝐸𝔭 = 𝜖 𝜔FS (𝐸𝔭), and since 𝜔FS (𝐸𝔭) is Kähler-Einstein, we get

𝑐1 (𝑋 𝜃 , 𝛾𝜖 , 𝛿 |𝑋 𝜃 ) |𝐸𝔭 = 𝜒(P1) 𝜔FS (𝐸𝔭) = 2𝜔FS (𝐸𝔭).

Since (𝜂 ∧ 𝜂)/(𝛾2
𝜖 , 𝛿/2!) |𝐸𝔭 = | 𝑓𝔭 (0) |2 by equation (4.13), we get

𝐴𝑀 (𝑋, 𝜃, 𝛾𝜖 , 𝛿) = exp

[
1
8

∫
𝑋 𝜃

log

{
𝜂 ∧ 𝜂

𝛾2
𝜖 , 𝛿/2!

·
Vol(𝑋, 𝛾𝜖 , 𝛿)

‖𝜂‖2
𝐿2

}�����
𝑋 𝜃

𝑐1 (𝑋 𝜃 , 𝛾𝜖 , 𝛿 |𝑋 𝜃 )
]

= exp
⎡⎢⎢⎢⎢⎣
1
4

∑
𝔭∈Sing(𝑋 )

∫
𝐸𝔭

log

{
| 𝑓𝔭 (0) |2

Vol(𝑋, 𝛾𝜖 , 𝛿)
‖𝜂‖2

𝐿2

}�����
𝐸𝔭

𝜔FS (𝐸𝔭)
⎤⎥⎥⎥⎥⎦

= exp
⎡⎢⎢⎢⎢⎣
1
4

∑
𝔭∈Sing(𝑋 )

log

{
| 𝑓𝔭 (0) |2

Vol(𝑋, 𝛾𝜖 , 𝛿)
‖𝜂‖2

𝐿2

}⎤⎥⎥⎥⎥⎦ →
∏

𝔭∈Sing(𝑋 )

{
| 𝑓𝔭 (0) |2

Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2

} 1
4

as 𝜖 → 0, where we used equation (4.14) to get the last limit. This completes the proof. �
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5.3. Behaviour of the analytic torsion of the exceptional divisors

Proposition 5.5. For any 𝛿 ∈ (0, 1] and 𝔭 ∈ Sing(𝑋), the following equality holds for all 𝜖 ∈
(0, 𝛿2𝜖 (𝜌)]:

Vol(𝐸𝔭, 𝛾𝜖 , 𝛿 |𝐸𝔭 )𝜏(𝐸𝔭, 𝛾𝜖 , 𝛿 |𝐸𝔭 )
Vol(P1, 𝜔FS)𝜏(P1, 𝜔FS)

= 𝜖1/3.

Proof. We recall a formula of Bost [9, Prop. 4.4]. Let (𝑍, 𝑔) be a compact Kähler manifold of dimension
d, and let 𝜆 > 0 be a constant. By [9, (4.2.4)], we get

log
(
𝜏(𝑍, 𝜆𝑔)
𝜏(𝑍, 𝑔)

)
=

(
−

𝑑∑
𝑖=0
(−1)𝑖 (𝑑 − 𝑖) ℎ0,𝑖 (𝑍) +

∫
𝑍

Td′(𝑇𝑍)
)

log𝜆, (5.5)

where the characteristic class Td′(𝐸) is defined as follows (compare [9, Prop. 4.4]). If 𝜉𝑖 (𝑖 = 1, . . . , 𝑟 =
rk(𝐸)) are the Chern roots of a vector bundle E, then

Td′(𝐸) := Td(𝐸) ·
𝑟∑

𝑖=1

(
1
𝜉𝑖
− 𝑒−𝜉𝑖

1 − 𝑒−𝜉𝑖

)
.

Since

Td′(𝑥) = 𝑥

1 − 𝑒−𝑥

(
1
𝑥
− 𝑒−𝑥

1 − 𝑒−𝑥

)
=

1
2
+ 1

6
𝑥 +𝑂 (𝑥2)

and hence
∫

P1 Td′(𝑇P1) = 1/3, we get by equation (5.5) applied to (𝑍, 𝑔) = (P1, 𝜔FS)

𝜏(𝐸𝔭, 𝛾𝜖 , 𝛿 |𝐸𝔭 )/𝜏(P1, 𝜔FS) = 𝜏(P1, 𝜖 𝜔FS)/𝜏(P1, 𝜔FS) = 𝜖−2/3. (5.6)

Since

Vol(𝐸𝔭, 𝛾𝜖 , 𝛿 |𝐸𝔭 )/Vol(P1, 𝜔FS) = Vol(P1, 𝜖 𝜔FS)/Vol(P1, 𝜔FS) = 𝜖, (5.7)

the result follows from equations (5.6) and (5.7). �

6. Spectrum and heat kernels under the degeneration

In this section, we prove a uniform lower bound of the kth eigenvalue of the Laplacian and also a certain
uniform exponential decay of the heat kernel for the degenerating family of metrics 𝛾𝜖 , 𝛿 .

6.1. Uniformity of Sobolev inequality

In order to study the limit of the analytic torsions 𝜏(𝑋, 𝛾𝜖 , 𝛿) and 𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) (𝜃) in the next section,
we need to establish a uniform Sobolev inequality. First, we consider our model space (𝑇∗P1, 𝛾EH

𝜖 ),
the Eguchi-Hanson instanton. Here 𝛾EH

𝜖 is the Ricci-flat Kähler metric constructed in Section 5.1 on
𝑉 (∞) = 𝑇∗P1. Note that for 0 < 𝜖 ≤ 1, under the identification Φ : (R4−𝐵(𝜌))/{±1} � 𝑉 (∞)−𝐾
outside a compact neighbourhood 𝐾 = 𝑉 (𝜌) ⊂ 𝑉 (∞) of the zero section of 𝑇∗P1 induced by the
identification (C2−𝐵(𝜌))/{±1} = 𝑉 (∞)−𝑉 (𝜌) = 𝑉 (∞)−𝑉 (𝜌), one has

Φ∗(𝛾EH
𝜖 )𝑖 𝑗 = 𝛿𝑖 𝑗 +𝑂 (𝑟−4)

uniformly in 𝜖 by equation (4.4).
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Lemma 6.1. There is a constant C such that for all 0 < 𝜖 ≤ 1, the following hold:

(1) For all 𝑓 ∈ 𝐶∞
0 (𝑉 (∞)),

‖ 𝑓 ‖𝐿4 (𝑉 (∞) ,𝛾EH
𝜖 ) ≤ 𝐶‖𝑑𝑓 ‖𝐿2 (𝑉 (∞) ,𝛾EH

𝜖 ) .

(2) Similarly, for all 𝛼 ∈ 𝐴0,2
0 (𝑉 (∞)),

‖𝛼‖𝐿4 (𝑉 (∞) ,𝛾EH
𝜖 ) ≤ 𝐶‖𝑑𝛼‖𝐿2 (𝑉 (∞) ,𝛾EH

𝜖 ) .

(3) For all 𝛼 ∈ 𝐴0,1
0 (𝑉 (∞)),

‖𝛼‖2
𝐿4 (𝑉 (∞) ,𝛾EH

𝜖 ) ≤ 𝐶2
(
‖𝜕𝛼‖2

𝐿2 (𝑉 (∞) ,𝛾EH
𝜖 ) + ‖𝜕

∗
𝛼‖2

𝐿2 (𝑉 (∞) ,𝛾EH
𝜖 )

)
.

Here all norms are defined with respect to the metric 𝛾EH
𝜖 .

Proof. Since (𝑉 (∞), 𝛾EH
𝜖 ) � (𝑉 (∞), 𝜖𝛾EH) by equation (4.1), and since the inequalities (1), (2), (3)

above are invariant under the scaling of metrics 𝛾EH ↦→ 𝜖𝛾EH, it suffices to prove (1), (2), (3) for 𝛾EH. In
the rest of the proof, all norms are defined with respect to 𝛾EH. Identifying a function in 𝐶∞

0 (𝑉 (∞)−𝐾)
with the corresponding ±1-invariant function on R4 with compact support via Φ, we deduce from the
Sobolev inequality for R4 that

‖ 𝑓 ‖𝐿4 (𝑉 (∞)) ≤ 2𝐶‖𝑑𝑓 ‖𝐿2 (𝑉 (∞)) , ∀ 𝑓 ∈ 𝐶∞
0 (𝑉 (∞)−𝐾),

where C is the Sobolev constant for R4. By an argument using partition of unity, there is a constant
𝐶𝐾 > 0 such that

‖ 𝑓 ‖𝐿4 (𝑉 (∞)) ≤ 𝐶𝐾 (‖𝑑𝑓 ‖𝐿2 (𝑉 (∞)) + ‖ 𝑓 ‖𝐿2 (𝐾 ) ), ∀ 𝑓 ∈ 𝐶∞
0 (𝑉 (∞)).

Assume that there is no constant 𝐷 > 0 such that

‖ 𝑓 ‖𝐿2 (𝐾 ) ≤ 𝐷‖𝑑𝑓 ‖𝐿2 (𝑉 (∞)) , ∀ 𝑓 ∈ 𝐶∞
0 (𝑉 (∞)).

Then for any 𝑛 ∈ N, there is a function 𝑓𝑛 ∈ 𝐶∞
0 (𝑉 (∞)) such that

‖ 𝑓𝑛‖𝐿2 (𝐾 ) = 1, ‖𝑑𝑓𝑛‖𝐿2 (𝑉 (∞)) ≤
1
𝑛
.

Therefore, we have

‖ 𝑓𝑛‖𝐿4 (𝑉 (∞)) ≤ 𝐶𝐾 (1 + 1/𝑛) ≤ 2𝐶𝐾 .

Passing to a subsequence if necessary, it follows that the sequence 𝑓𝑛 has a weak limit 𝑓∞ ∈ 𝐿4 (𝑉 (∞))
with 𝑑𝑓∞ = 0 as currents on 𝑉 (∞). This implies that in 𝐿4 (𝑉 (∞)), 𝑓∞ = 0. On the other hand, let 𝐾 ′ be
a sufficiently big compact subset of 𝑉 (∞), whose open subset contains K. Now, for any compact subset
𝐾 ′ ⊂ 𝑉 (∞), there is a constant 𝐶𝐾 ′ > 0 such that

‖ 𝑓𝑛‖𝐿2 (𝐾 ′) ≤ Vol(𝐾 ′)1/2‖ 𝑓𝑛‖1/2
𝐿4 (𝐾 ′) ≤ 𝐶𝐾 ′ =

√
2𝐶𝐾 Vol(𝐾 ′).

Hence, by the Rellich lemma, we may assume (by again passing to a subsequence if necessary) that 𝑓𝑛
converges to 𝑓∞ strongly in 𝐿2 (𝐾 ′). Since 𝐾 ⊂ 𝐾 ′ and hence the convergence 𝑓𝑛 → 𝑓∞ in 𝐿2 (𝐾) is

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.66


Forum of Mathematics, Sigma 23

strong, we see that ‖ 𝑓∞‖𝐿2 (𝐾 ) = lim𝑛→∞ ‖ 𝑓𝑛‖𝐿2 (𝐾 ) = 1. This is a contradiction. Hence there exists a
constant D such that ‖ 𝑓 ‖𝐿2 (𝐾 ) ≤ 𝐷‖𝑑𝑓 ‖𝐿2 (𝑉 (∞)) . By setting 𝐶 = 𝐶𝐾 (1 + 𝐷), we have

‖ 𝑓 ‖𝐿4 (𝑉 (∞)) ≤ 𝐶‖𝑑𝑓 ‖𝐿2 (𝑉 (∞)) .

This proves (1).
(2) is an immediate consequence of (1), and the isomorphism 𝐶∞

0 (𝑉 (∞)) � 𝑓 ↦→ 𝑓 𝜂 ∈ 𝐴0,2
0 (𝑉 (∞)),

which commutes with the operations involved. To see (3), let 𝛼 ∈ 𝐴0,1
0 (𝑉 (∞)). Then by (1),

‖𝛼‖2
𝐿4 (𝑉 (∞)) =

(∫
𝑉 (∞)

|𝛼 |4𝑑𝑥
)1/2

≤ 𝐶2
∫
𝑉 (∞)

| 𝑑 |𝛼 | |2𝑑𝑥.

Using Kato’s inequality, we have ∫
𝑉 (∞)

| 𝑑 |𝛼 | |2𝑑𝑥 ≤
∫
𝑉 (∞)

|∇𝛼 |2𝑑𝑥.

Now the Bochner formula [34, (1.4.63)] gives (𝜕𝜕∗ + 𝜕
∗
𝜕)𝛼 = ∇∗∇𝛼 since (𝑉 (∞), 𝛾EH

𝜖 ) is Ricci flat.
Our result follows. �

Lemma 6.2. There is a constant C such that for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌), and all 𝛼 ∈
𝐴0,𝑞

0 (𝑉 (∞)), 0 ≤ 𝑞 ≤ 2,

‖𝛼‖2
𝐿4 (𝑉 (∞) ,𝜅𝜖 , 𝛿 )

≤ 𝐶2
(
‖𝜕𝛼‖2

𝐿2 (𝑉 (∞) ,𝜅𝜖 , 𝛿 )
+ ‖𝜕∗𝛼‖2

𝐿2 (𝑉 (∞) ,𝜅𝜖 , 𝛿 )

)
,

where the norms and 𝜕∗ are defined with respect to the metric 𝜅𝜖 , 𝛿 .

Proof. By Lemmas 4.1 and 4.3, there exist constants 𝐶1, 𝐶2 > 0 such that

𝐶1𝛾
EH
𝜖 ≤ 𝜅𝜖 , 𝛿 ≤ 𝐶2𝛾

EH
𝜖 (6.1)

for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌). Here 𝜖 (𝜌) is defined in Section 4.2.1, in the discussion following
equation (4.2). Hence there is a constant 𝐶3 > 0 such that

𝐶−1
3 ‖𝛼‖2

𝐿4 (𝑉 (∞) ,𝛾EH
𝜖 ) ≤ ‖𝛼‖2

𝐿4 (𝑉 (∞) ,𝜅𝜖 , 𝛿 )
≤ 𝐶3‖𝛼‖2

𝐿4 (𝑉 (∞) ,𝛾EH
𝜖 ) , (6.2)

𝐶−1
3 ‖𝜕𝛼‖2

𝐿2 (𝑉 (∞) ,𝛾EH
𝜖 ) ≤ ‖𝜕𝛼‖2

𝐿2 (𝑉 (∞) ,𝜅𝜖 , 𝛿 )
≤ 𝐶3‖𝜕𝛼‖2

𝐿2 (𝑉 (∞) ,𝛾EH
𝜖 ) (6.3)

for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and 𝛼 ∈ 𝐴0,𝑞
0 (𝑉 (∞)).

Let Λ𝜖 .𝛿 (respectively, Λ𝜖 ) be the Lefschetz operator defined as the adjoint of the multiplication by
𝜅𝜖 , 𝛿 (respectively, 𝛾EH

𝜖 ). Since 𝜕
∗
= ±𝑖Λ𝜖 , 𝛿𝜕 for (0, 𝑞)-forms by the Kähler identity, there exists by

equation (6.1) a constant 𝐶4 > 0 such that

𝐶−1
4 ‖𝜕∗𝛼‖2

𝐿2 (𝑉 (∞) ,𝛾EH
𝜖 ) ≤ ‖𝜕∗𝛼‖2

𝐿2 (𝑉 (∞) ,𝜅𝜖 , 𝛿 )
≤ 𝐶4‖𝜕

∗
𝛼‖2

𝐿2 (𝑉 (∞) ,𝛾EH
𝜖 ) . (6.4)

By Lemma 6.1 (3) and equations (6.2), (6.3) and (6.4), we get the result. �

For the minimal resolution 𝑋 and the family of Kähler metrics 𝛾𝜖 , 𝛿 constructed in Section 5.2 using
the Eguchi-Hanson instanton, we have
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Proposition 6.3. There is a constant C such that for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌), and all
𝛼 ∈ 𝐴0,𝑞 (𝑋), 0 ≤ 𝑞 ≤ 2,

‖𝛼‖2
𝐿4 (𝑋,𝛾𝜖 , 𝛿 )

≤ 𝐶2
(
‖𝜕𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )
+ ‖𝜕∗𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )
+ ‖𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )

)
,

where the norms are defined with respect to the metric 𝛾𝜖 , 𝛿 .

Proof. Since 𝛾𝜖 , 𝛿 = 𝜅𝜖 , 𝛿 on
⋃

𝔭∈Sing(𝑋 ) 𝑉 (𝛿)𝔭, the result follows from Lemma 6.2 and an easy partition
of unity argument. �

6.2. A uniform lower bound of spectrum

Let �𝑞𝜖 , 𝛿 = (𝜕 + 𝜕∗)2 (respectively, �𝑞0 ) be the Hodge-Kodaira Laplacian of (𝑋, 𝛾𝜖 , 𝛿) (respectively,
(𝑋, 𝛾0)) acting on (0, 𝑞)-forms. Let 𝜆𝑞

𝜖 , 𝛿 (𝑘) (respectively, 𝜆𝑞
0 (𝑘)) be the kth nonzero eigenvalue of the

Laplacian �𝑞𝜖 , 𝛿 (respectively, �𝑞0 ). Then the nonzero eigenvalues of �𝑞𝜖 , 𝛿 are given by

0 < 𝜆𝑞
𝜖 , 𝛿 (1) ≤ 𝜆𝑞

𝜖 , 𝛿 (2) ≤ · · · ≤ 𝜆𝑞
𝜖 , 𝛿 (𝑘) ≤ 𝜆𝑞

𝜖 , 𝛿 (𝑘 + 1) ≤ · · ·

and the set of corresponding eigenforms {𝜑𝑞
𝑘,𝜖 , 𝛿}𝑘∈N. We set 𝜆𝑞

𝜖 , 𝛿 (0) = 0 and list the corresponding
eigenforms 𝜑𝑞

0, 𝜖 , 𝛿 (here we abuse the notation as there would be dim 𝐻0 ( �̃�,Ω𝑞

�̃�
) many of them) so

that {𝜑𝑞
𝑘,𝜖 , 𝛿}

∞
𝑘=0 forms a complete orthonormal basis of 𝐿0,𝑞

𝜖 , 𝛿 (𝑋), the 𝐿2-completion of 𝐴0,𝑞 (𝑋) with
respect to the norm associated to 𝛾𝜖 , 𝛿 . Since

𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) =

∞∑
𝑘=0

𝑒−𝑡𝜆
𝑞
𝜖 ,𝛿 (𝑘)𝜑𝑞

𝑘,𝜖 , 𝛿 (𝑥) ⊗ 𝜑𝑞
𝑘,𝜖 , 𝛿 (𝑦)

∗,

we get ���𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦)

��� ≤ ∞∑
𝑘=0

𝑒−𝑡𝜆
𝑞
𝜖 ,𝛿 (𝑘) |𝜑𝑞

𝑘,𝜖 , 𝛿 (𝑥) | · |𝜑
𝑞
𝑘,𝜖 , 𝛿 (𝑦) |

≤ {
∞∑
𝑘=0

𝑒−𝑡𝜆
𝑞
𝜖 ,𝛿 (𝑘) |𝜑𝑞

𝑘,𝜖 , 𝛿 (𝑥) |
2}1/2{

∞∑
𝑘=0

𝑒−𝑡𝜆
𝑞
𝜖 ,𝛿 (𝑘) |𝜑𝑞

𝑘,𝜖 , 𝛿 (𝑦) |
2}1/2

=
√

tr 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)

√
tr 𝐾𝑞

𝜖 , 𝛿 (𝑡, 𝑦, 𝑦).

(6.5)

Proposition 6.4. If 𝑞 = 0, 2, then there are constants 𝐴,𝐶 > 0 such that for all 𝜖, 𝛿 ∈ (0, 1] with
𝜖𝛿−2 ≤ 𝜖 (𝜌), and 𝑥, 𝑦 ∈ 𝑋 , 𝑡 > 0, the following inequality holds:

0 <
���𝐾𝑞

𝜖 , 𝛿 (𝑡, 𝑥, 𝑦)
��� ≤ 𝐴𝑒𝐶 (𝜖 𝛿−4+1) (𝑡−2 + 1). (6.6)

Moreover, for all (𝜖, 𝛿) ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌), and for all 𝑡 > 0, 𝑞 ≥ 0, the following inequality
holds:

Tr 𝑒−𝑡 �
𝑞
𝜖 ,𝛿 ≤ Vol(𝑋, 𝛾𝜖 , 𝛿)𝐴𝑒𝐶 (𝜖 𝛿−4+1) (𝑡−2 + 1). (6.7)

Proof. (Case 1) Let 𝑞 = 0. By Proposition 6.3, the Sobolev constant is uniform for 𝜖, 𝛿 ∈ (0, 1] with
𝜖𝛿−2 ≤ 𝜖 (𝜌). By [10, Thms. 2.1 and 2.16], there are constants 𝐴 > 0, 𝐵 ≥ 0 such that for all 𝜖, 𝛿 ∈ (0, 1]
with 𝜖𝛿−2 ≤ 𝜖 (𝜌), and 𝑥, 𝑦 ∈ 𝑋 , 𝑡 > 0,

0 < 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) ≤ 𝐴 𝑒𝐵𝑡 𝑡−2. (6.8)
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Let 𝑞 = 2. By Lemma 4.5, the Lichnerowicz formula and [24, p.32 l.4-l.5], we have

|𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) | ≤ 𝑒𝑡 |Ric𝛾𝜖 , 𝛿 |∞ |𝐾0

𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) | ≤ 𝑒𝐶 (𝜖 𝛿−4+1)𝑡 𝐴𝑒𝐵𝑡 (𝑡−2 + 1). (6.9)

For 𝑡 ≤ 1, we get equation (6.6) by equations (6.8) and (6.9). For 𝑡 ≥ 1, since tr 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑥) is a

decreasing function in t, we deduce equation (6.6) from equations (6.5), (6.8) and (6.9) and the inequality���𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦)

��� ≤ √
tr 𝐾𝑞

𝜖 , 𝛿 (1, 𝑥, 𝑥)
√

tr 𝐾𝑞
𝜖 , 𝛿 (1, 𝑦, 𝑦) ≤ 2𝑒𝐶 (𝜖 𝛿−4+1)𝐴𝑒𝐵 .

Since Tr 𝑒−𝑡 �
𝑞
𝜖 ,𝛿 =

∫
𝑋

tr 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑥) 𝑑𝑥, we get equation (6.7) from equation (6.6).

(Case 2) Let 𝑞 = 1. Since
∑

𝑞 (−1)𝑞Tr 𝑒−𝑡 �
𝑞
𝜖 ,𝛿 = 0 for all 𝑡 > 0, equation (6.7) for 𝑞 = 1 follows from

equation (6.7) for 𝑞 = 0, 2. This completes the proof. �

Write 𝜆𝑞
𝜖 (𝑘) for 𝜆𝑞

𝜖 ,1 (𝑘).

Lemma 6.5. There is a constant 𝜆 > 0 such that for all 𝜖 ∈ (0, 𝜖 (𝜌)] and 𝑞 ≥ 0,

𝜆𝑞
𝜖 (1) ≥ 𝜆 > 0. (6.10)

Proof. Since dim 𝑋 = 2 and hence 𝜆1
𝜖 (1) = 𝜆0

𝜖 (1) or 𝜆1
𝜖 (1) = 𝜆2

𝜖 (1), it suffices to prove equation
(6.10) for 𝑞 = 0, 2. Assume that there is a sequence {𝜖𝑛} such that 𝜖𝑛 → 0 and 𝜆𝑞

𝜖𝑛 (1) → 0 as 𝑛 → ∞
for 𝑞 = 0 or 2. By the same argument as in [42, p.434–p.436] using the uniformity of the Sobolev
constant (compare Proposition 6.3), there is a holomorphic q-form 𝜓 on 𝑋 \ Sing 𝑋 , which is possibly
meromorphic on 𝑋 , with the following properties:

(i) The complex conjugation 𝜑𝑞
1, 𝜖𝑛 converges to 𝜓 on every compact subset of 𝑋 \ Sing(𝑋) as 𝑛 →∞.

(ii) ‖𝜓‖𝐿2 = 1 and 𝜋∗𝜓 ⊥ 𝐻0 (𝑋,Ω𝑞

𝑋
) with respect to the degenerate Kähler metric 𝜋∗𝛾0 on 𝑋 .

Since Sing 𝑋 consists of isolated orbifold points, it follows from the Riemann extension theorem that
𝜓 extends to a holomorphic q-form on X in the sense of orbifolds. When 𝑞 = 0, 𝜓 is a constant. When
𝑞 = 2, since X has canonical singularities, 𝜋∗𝜓 is a holomorphic 2-form on 𝑋 . In both cases, the
condition 𝜋∗𝜓 ⊥ 𝐻0 (𝑋,Ω𝑞

𝑋
) implies 𝜓 = 0, which contradicts the other condition ‖𝜓‖𝐿2 = 1. This

proves the result. �

Lemma 6.6. There is a constant 𝜆′ > 0 such that for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌)] and 𝑞 ≥ 0,

𝜆𝑞
𝜖 , 𝛿 (1) ≥ 𝜆′ > 0.

Proof. Firstly, we prove the inequality when 𝑞 = 1. Since 𝑋 is a 𝐾3 surface and hence ker�1
𝜖 , 𝛿 = 0, we

get by equation (6.10)

𝜆 ‖𝛼‖2
𝐿2 (𝑋,𝛾𝜖 )

≤ ‖𝜕𝛼‖2
𝐿2 (𝑋,𝛾𝜖 )

+ ‖𝜕∗𝛼‖2
𝐿2 (𝑋,𝛾𝜖 )

= ‖𝜕𝛼‖2
𝐿2 (𝑋,𝛾𝜖 )

(6.11)

for all 𝛼 ∈ 𝐴0,1 (𝑋), where we used the coincidence of the 𝜕-Laplacian and the 𝜕-Laplacian for Kähler
manifolds to get the equality in equation (6.11). By Lemma 4.4, there exist constants 𝐶1 > 0 such that
for all 𝛼 ∈ 𝐴0,1(𝑋),

𝐶−1
1 ‖𝛼‖2

𝐿2 (𝑋,𝛾𝜖 )
≤ ‖𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )
≤ 𝐶1‖𝛼‖2

𝐿2 (𝑋,𝛾𝜖 )
,

𝐶−1
1 ‖𝜕𝛼‖2

𝐿2 (𝑋,𝛾𝜖 )
≤ ‖𝜕𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )
≤ 𝐶1‖𝜕𝛼‖2

𝐿2 (𝑋,𝛾𝜖 )
.
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Combining these inequalities and equation (6.11), we get for all 𝛼 ∈ 𝐴0,1 (𝑋)

𝐶−1
1 𝜆 ‖𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )
≤ 𝐶1‖𝜕𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )
= 𝐶1

(
‖𝜕𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )
+ ‖𝜕∗𝛼‖2

𝐿2 (𝑋,𝛾𝜖 , 𝛿 )

)
. (6.12)

The result for 𝑞 = 1 follows from equation (6.12). Since 𝜕𝜑0
𝜖 , 𝛿 (1) and 𝜕∗𝜑2

𝜖 , 𝛿 (1) are nonzero eigenforms
of �1

𝜖 , 𝛿 , we get 𝜆′ ≤ 𝜆1
𝜖 , 𝛿 (1) ≤ 𝜆0

𝜖 , 𝛿 (1) and 𝜆′ ≤ 𝜆1
𝜖 , 𝛿 (1) ≤ 𝜆2

𝜖 , 𝛿 (1). �

Theorem 6.7. There are constants Λ, 𝐶 > 0 such that for all 𝑘 ∈ N, 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and
𝑞 ≥ 0,

𝜆𝑞
𝜖 , 𝛿 (𝑘) ≥ Λ𝑒−

1
2𝐶 (𝜖 𝛿−4+1) 𝑘1/2.

Proof. By Proposition 6.4, we get for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and 𝑡 ∈ (0, 1]

𝑘∑
𝑖=1

𝑒−𝑡𝜆
𝑞
𝜖 ,𝛿 (𝑖) ≤ ℎ0,𝑞 (𝑋) +

∞∑
𝑖=1

𝑒−𝑡𝜆
𝑞
𝜖 ,𝛿 (𝑖) = Tr 𝑒−𝑡�

𝑞
𝜖 ,𝛿 ≤ 𝐴′𝑒𝐶 (𝜖 𝛿−4+1) 𝑡−2,

where 𝐴′ is a constant such that 𝐴Vol(𝑋, 𝛾𝜖 , 𝛿) ≤ 𝐴′. Since 𝜆′/𝜆𝑞
𝜖 , 𝛿 (𝑘) ≤ 1 by Lemma 6.6, substituting

𝑡 := 𝜆′/𝜆𝑞
𝜖 , 𝛿 (𝑘) in this inequality and using 𝜆𝑞

𝜖 , 𝛿 (𝑖)/𝜆
𝑞
𝜖 , 𝛿 (𝑘) ≤ 1 for 𝑖 ≤ 𝑘 , we get

𝑘 𝑒−𝜆
′ ≤

𝑘∑
𝑖=1

𝑒
−

𝜆′𝜆𝑞
𝜖 ,𝛿

(𝑖)

𝜆
𝑞
𝜖 ,𝛿

(𝑘) ≤ 𝐴′𝑒𝐶 (𝜖 𝛿−4+1)

(
𝜆′

𝜆𝑞
𝜖 , 𝛿 (𝑘)

)−2

.

We get the result by setting Λ := (𝐴′)−1/2𝜆′𝑒−𝜆
′/2. �

Corollary 6.8. Let C and Λ be the same constants as in Theorem 6.7, and set Λ(𝑅) := Λ𝑒−
1
2𝐶𝑅 and

Ψ(𝑅) :=
∑∞

𝑘=1 𝑒
− 1

2Λ(𝑅)𝑘
1/2 . Then for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and 𝑡 ≥ 1, the following

inequality holds:

0 < Tr 𝑒−𝑡�
𝑞
𝜖 ,𝛿 − ℎ0,𝑞 (𝑋) ≤ Ψ(𝜖𝛿−4 + 1) 𝑒−

1
2Λ(1+𝜖 𝛿−4)𝑡 .

Proof. Since 𝜆𝑞
𝜖 , 𝛿 (𝑘) ≥ Λ(𝜖 𝛿−4+1)

2 (𝑘1/2 + 1) by Theorem 6.7, we get
∑∞

𝑘=1 𝑒
−𝑡𝜆𝑞

𝜖 ,𝛿 (𝑘) ≤
𝑒−𝑡Λ(𝜖 𝛿−4+1)/2 ∑∞

𝑘=1 𝑒
− 1

2 𝑡Λ(𝜖 𝛿−4+1)𝑘1/2 ≤ Ψ(𝜖𝛿−4 + 1) 𝑒−𝑡Λ(𝜖 𝛿−4+1)/2 for 𝑡 ≥ 1. �

We also need an estimate for the heat kernel 𝐾𝑞
𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) of (𝑉 (∞), 𝜅𝜖 , 𝛿).

Proposition 6.9. There are constants 𝐴′, 𝐶 ′ > 0 such that for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌),
𝑥 ∈ 𝑉 (∞), 𝑡 > 0 and 𝑞 ≥ 0, the following inequality holds:���𝐾𝑞

𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦)
��� ≤ 𝐴′𝑒𝐶

′ (𝜖 𝛿−4+1) (𝑡−2 + 1).

Proof. When 𝑞 = 0, the result follows from Lemma 6.2 and [10, Thms. 2.1 and 2.16]. Let 𝑞 > 0. Since
|Ric(𝛾𝜖 , 𝛿) | ≤ 𝐶 (𝜖𝛿−4 + 1) by Lemma 4.5, we deduce from [24, p.32 l.4-l.5] and the Lichnerowicz
formula for �𝑞𝜖 , 𝛿 that

0 <
���𝐾𝑞

𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦)
��� ≤ 𝑒𝐶 (𝜖 𝛿−4+1)𝑡𝐾0

𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) ≤ 𝐴 𝑒𝐶 (𝜖 𝛿−4+1)𝑡 𝑡−2.

This proves the result for 𝑡 ≤ 1. Since equation (6.5) remains valid for 𝐾𝑞
𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) by the fact that

𝐾𝑞
𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) is obtained as the limit 𝑅 →∞ of the Dirichlet heat kernel of 𝑉 (𝑅), the result for 𝑡 ≥ 1

also follows. This completes the proof. �
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7. Behaviour of (equivariant) analytic torsion

In the previous sections, the additional parameter 𝛿 is pretty harmless, and the results still hold in its
presence. This parameter will play a more essential role in this section. Indeed, we shall prove the
following:

Theorem 7.1. There exist constants 𝐶0 (𝑘), 𝐶1 (𝑘) > 0 depending only on 𝑘 = #Sing(𝑌 ) such that

lim
𝛿→0

lim
𝜖→0

𝜏(𝑋, 𝛾𝜖 , 𝛿) = 𝐶0 (𝑘) · 𝜏(𝑋, 𝛾0),

lim
𝛿→0

lim
𝜖→0

𝜖 𝑘/3𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) (𝜃) = 𝐶1 (𝑘) · 𝜏Z2 (𝑋, 𝛾0) (𝜄).

7.1. Existence of limits

By Corollary 5.3, the first limit exists and is independent of the choice of a cut-off function 𝜌. For the
second limit, we have

Proposition 7.2. For any 𝛿 ∈ (0, 1], the number

𝜖 𝑘/3𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) (𝜃)Vol(𝑋, 𝛾𝜖 , 𝛿)

is independent of 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖𝛿−2 ≤ 𝜖 (𝜌). In particular, for any 𝛿 ∈ (0, 1], the following
limit exists as 𝜖 → 0

lim
𝜖→0

𝜖 𝑘/3𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) (𝜃),

and the limit is independent of 𝛿 ∈ (0, 1] and the choice of a cut-off function 𝜌.

Proof. (Step 1) Let 𝑔0, 𝑔1 be 𝜃-invariant Kähler metrics on 𝑋 . Let T̃d𝜃 (𝑇𝑋; 𝑔0, 𝑔1) (1,1) be the Bott-
Chern class such that

−𝑑𝑑𝑐T̃d𝜃 (𝑇𝑋; 𝑔0, 𝑔1) = Td𝜃 (𝑇𝑋, 𝑔0) − Td𝜃 (𝑇𝑋, 𝑔1).

By Bismut [4, Th. 2.5],

log

(
𝜏Z2 (𝑋, 𝑔0) (𝜃)Vol(𝑋, 𝑔0)
𝜏Z2 (𝑋, 𝑔1) (𝜃)Vol(𝑋, 𝑔1)

)
=
∫
𝑋 𝜃

T̃d𝜃 (𝑇𝑋; 𝑔0, 𝑔1). (7.1)

Since

Td𝜃 (𝑇𝑋; 𝑔0, 𝑔1) (1,1) =
1
8
𝑐1 (𝑇𝑋) |𝑋 𝜃 𝑐1 (𝑇𝑋 𝜃 )(𝑔0, 𝑔1) −

1
12

𝑐1 (𝑇𝑋 𝜃 )2(𝑔0, 𝑔1)

by [43, Prop. 5.3], we have the following equality of Bott-Chern classes:

T̃d𝜃 (𝑇𝑋; 𝑔0, 𝑔1) (1,1) =
1
8

,𝑐1 (𝑇𝑋) |𝑋 𝜃 𝑐1 (𝑇𝑋 𝜃 )(𝑔0, 𝑔1) −
1

12
,𝑐1 (𝑇𝑋 𝜃 )2(𝑔0, 𝑔1)

=
1
8
𝑐1 (𝑇𝑋; 𝑔0, 𝑔1) |𝑋 𝜃 𝑐1 (𝑇𝑋 𝜃 , 𝑔1) +

1
8
𝑐1 (𝑇𝑋, 𝑔0) |𝑋 𝜃 𝑐1 (𝑇𝑋 𝜃 ; 𝑔0, 𝑔1)

− 1
12

𝑐1 (𝑇𝑋 𝜃 ; 𝑔0, 𝑔1){𝑐1(𝑇𝑋 𝜃 , 𝑔0) + 𝑐1 (𝑇𝑋 𝜃 , 𝑔1)},
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where [21, Eq. (1.3.1.2)] is used to get the second equality. For a holomorphic line bundle L and
Hermitian metrics ℎ0, ℎ1 on L, we have

𝑐1 (𝐿; ℎ0, ℎ1) = log(ℎ0/ℎ1)

by [21, Eq. (1.2.5.1)]. (Our sign convention is different from the one in Gillet-Soulé [21]. Our
𝑐1 (𝐿; ℎ0, ℎ1) is −𝑐1 (𝐿; ℎ0, ℎ1) in [21].) Hence

T̃d𝜃 (𝑇𝑋; 𝑔0, 𝑔1) (1,1) ≡
1
8

log
(

det 𝑔0
det 𝑔1

)����
𝑋 𝜃

𝑐1 (𝑋 𝜃 , 𝑔1) +
1
8
𝑐1 (𝑋, 𝑔0) log

(
𝑔0
𝑔1

����
𝑋 𝜃

)
− 1

12
log

(
𝑔0
𝑔1

����
𝑋 𝜃

)
{𝑐1(𝑋 𝜃 , 𝑔0) + 𝑐1 (𝑋 𝜃 , 𝑔1)}

mod Im 𝜕 + Im 𝜕.

(7.2)

(Step 2) We set 𝑔0 = 𝛾𝜖 , 𝛿 and 𝑔1 = 𝛾𝜖 (𝜌) in Step 1. Since 𝑔0 = 𝛾𝜖 , 𝛿 is Ricci-flat on a neighbourhood
of 𝑋 𝜃 , we have

𝑐1 (𝑋, 𝛾𝜖 , 𝛿) |𝑋 𝜃 = 0.

Since the volume form of EH instanton 𝑖𝜕𝜕𝐹𝜖 is the standard Euclidean volume form

(𝑖𝜕𝜕𝐹𝜖 )2
2!

= 𝑖2𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

and since 𝛾𝜖 , 𝛿 = 𝑖𝜕𝜕𝐹𝜖 on 𝑉 (𝛿)𝔭, we get(
det 𝛾𝜖 , 𝛿

det 𝛾𝜖 (𝜌)

)����
𝑋 𝜃

=

(
𝛾2
𝜖 , 𝛿/2!

𝛾2
𝜖 (𝜌) /2!

)�����
𝑋 𝜃

= 1.

If 𝐸𝑖 � P1 is a component of 𝑋 𝜃 , then (𝐸𝑖 , 𝛾𝜖 , 𝛿 |𝐸𝑖 ) � (P1, 𝜖 𝜔FS) and (𝐸𝑖 , 𝛾𝜖 (𝜌) |𝐸𝑖 ) � (P1, 𝜖 (𝜌)𝜔FS).
Hence

𝛾𝜖 , 𝛿

𝛾𝜖 (𝜌)

����
𝑋 𝜃

=
𝜖

𝜖 (𝜌) .

Altogether, we get∫
𝑋 𝜃

T̃d𝜃 (𝑇𝑋; 𝛾𝜖 , 𝛿 , 𝛾𝜖 (𝜌) ) (1,1) = −
∫
𝑋 𝜃

1
12

log
(
𝛾𝜖 , 𝛿

𝛾𝜖 (𝜌)

����𝑋 𝜃

)
{𝑐1(𝑋 𝜃 , 𝛾𝜖 , 𝛿) + 𝑐1 (𝑋 𝜃 , 𝛾𝜖 (𝜌) )}

= − log(𝜖/𝜖 (𝜌))
6

∫
𝑋 𝜃

𝑐1 (𝑋 𝜃 ) = − log(𝜖/𝜖 (𝜌))
6

𝜒(𝑋 𝜃 ) = − 𝑘

3
log

𝜖

𝜖 (𝜌) ,
(7.3)

where we used the fact 𝑋 𝜃 = 𝐸1 	 · · · 	 𝐸𝑘 , 𝑘 = #Sing 𝑋 , 𝐸𝑖 � P1. This, together with equation (7.1),
yields that

𝜖 𝑘/3𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) (𝜃)Vol(𝑋, 𝛾𝜖 , 𝛿) = 𝜖 (𝜌)𝑘/3Vol(𝑋, 𝛾𝜖 (𝜌) ) 𝜏Z2 (𝑋, 𝛾𝜖 (𝜌) ) (𝜃)

is independent of 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖𝛿−2 ≤ 𝜖 (𝜌).
(Step 3) Let 𝜒 be another cut-off function to glue Eguchi-Hanson instanton to the initial Kähler form

𝛾0 on X (compare Sections 5.2.1 and 5.2.3). Then there exists 𝜖 (𝜒) ∈ (0, 1) such that the function
𝜙′𝜖 , 𝛿 (𝑧) := ‖𝑧‖2 + 𝜒𝛿 (‖𝑧‖)𝐸 (𝑧, 𝜖) on 𝑉 (∞) \ {0} is a potential of a Kähler form on 𝑇∗P1 = 𝑉 (∞) for
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any 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖𝛿−2 ≤ 𝜖 (𝜒). Let 𝛾′𝜖 , 𝛿 be the families of Kähler forms on 𝑋 constructed in
the same way as in equation (4.12), using 𝜅′𝜖 , 𝛿 := 𝑖𝜕𝜕𝜙′𝜖 , 𝛿 instead of 𝜅𝜖 , 𝛿 . By Step 2, we get

𝜖 𝑘/3𝜏Z2 (𝑋, 𝛾′𝜖 , 𝛿) (𝜃)Vol(𝑋, 𝛾′𝜖 , 𝛿) = 𝜖 (𝜒)𝑘/3Vol(𝑋, 𝛾′𝜖 (𝜒) ) 𝜏Z2 (𝑋, 𝛾′𝜖 (𝜒) ) (𝜃)

for any 𝜖, 𝛿 ∈ (0, 1] with 0 < 𝜖𝛿−2 ≤ 𝜖 (𝜒). To prove the independence of the limit
lim𝜖→0 𝜖

𝑘/3𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) (𝜃)Vol(𝑋, 𝛾𝜖 , 𝛿) from the choice of 𝜌, we must prove

𝜖 (𝜌)𝑘/3Vol(𝑋, 𝛾𝜖 (𝜒) ) 𝜏Z2 (𝑋, 𝛾𝜖 (𝜒) ) (𝜃) = 𝜖 (𝜒)𝑘/3Vol(𝑋, 𝛾′𝜖 (𝜒) ) 𝜏Z2 (𝑋, 𝛾′𝜖 (𝜒) ) (𝜃). (7.4)

We set 𝑔0 = 𝛾𝜖 (𝜌) and 𝑔1 = 𝛾′
𝜖 (𝜒) in equation (7.2). By the same computation as in equation (7.3), we get∫
𝑋 𝜃

T̃d𝜃 (𝑇𝑋; 𝛾𝜖 (𝜌) , 𝛾
′
𝜖 (𝜒) )

(1,1) = − 𝑘

3
log

𝜖 (𝜒)
𝜖 (𝜌) .

This, together with equation (7.1), yields equation (7.4). This completes the proof. �

7.2. A comparison of heat kernels

Recall that 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) denote the heat kernel of the Hodge-Kodaira Laplacian �𝜖 , 𝛿

𝑞 for the Kähler
metric 𝛾𝜖 , 𝛿 on 𝑋 , and 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) the heat kernel of the Hodge-Kodaira Laplacian �0
𝑞 for the Kähler

metric 𝛾0 on X. For 0 < 𝑟 ≤ 4, let

𝑉𝑟 :=
⋃

𝔭∈Sing(𝑋 )
𝑉 (𝑟)𝔭, 𝑋𝑟 := 𝑋 −𝑉𝑟 .

Define 𝑉∞ to be 𝑉4 extended by k copies of the infinite cone (C2 − 𝐵(4))/{±1}. The metric 𝛾𝜖 , 𝛿 |𝑉4

similarly extends to a Kähler metric 𝛾∞𝜖 , 𝛿 on 𝑉∞. We denote by 𝐾𝑞
𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) the corresponding heat

kernel on 𝑉∞. Similarly, we have the corresponding 𝑋𝑟 , 𝑉𝑟 , 𝑉∞ on X, with 𝑋𝑟 identified with 𝑋𝑟 . Note
that 𝑉∞ is just k copies of the infinite cone.

We first established some uniform estimates on the heat kernel 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦), improving on Proposition

6.4 when the points are in specific regions.

Theorem 7.3. There are constants 𝐴,𝐶 depending only on the Sobolev constant and dimension such
that, for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and 0 ≤ 𝑞 ≤ 2, we have

|𝐾𝑞
𝜖 (𝑡, 𝑥, 𝑧) | ≤ 𝐴𝑒𝐶 (1+𝜖 𝛿−4)𝛿−4𝑒−

𝛿2
32𝑡 , ∀𝑥 ∈ 𝑋3𝛿 , 𝑧 ∈ 𝑉2𝛿 , 𝑡 > 0.

Similarly, we have ∀𝑥 ∈ 𝑋3𝛿 , 𝑧 ∈ 𝑉2𝛿 , 𝑡 > 0,

|𝑑𝐾𝑞
𝜖 (𝑡, 𝑥, 𝑧) | ≤ 𝐴𝑒𝐶 (1+𝜖 𝛿−4)𝛿−5𝑒−

𝛿2
32𝑡 , |𝑑∗𝜖 , 𝛿𝐾

𝑞
𝜖 (𝑡, 𝑥, 𝑧) | ≤ 𝐴𝑒𝐶 (1+𝜖 𝛿−4)𝛿−5𝑒−

𝛿2
32𝑡 ,

Here 𝑑, 𝑑∗𝜖 , 𝛿 could act on either the x or z variable. Finally, for 0 < 𝑟 < 2𝛿, 𝑥 ∈ 𝑋3𝛿 , 𝑧 ∈ 𝑉2𝛿,𝑟 =

𝑉2𝛿 −𝑉𝑟 , and 𝑖 ∈ N,

|∇𝑖𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) | ≤ 𝐶 (𝑖, 𝛿, 𝑟)𝑒−

𝛿2
32𝑡

for a constant 𝐶 (𝑖, 𝛿, 𝑟), depending on 𝑖, 𝛿, 𝑟 . Here ∇𝑖 denotes the ith covariant derivative with respect
to the metric 𝛾𝜖 , 𝛿 acting on either variable.
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Proof. Throughout the proof, we fix 𝑥 ∈ 𝑋3𝛿 , 𝑧 ∈ 𝑉2𝛿 , 𝑡 > 0. Since the Ricci curvature of 𝛾𝜖 , 𝛿 is
bounded by Lemma 4.5, the Sobolev estimate, together with the Moser iteration technique combined
with the finite propagation speed argument as in Cheeger-Gromov-Taylor [13], gives the uniform estimate

|𝐾𝑞
𝜖 (𝑡, 𝑥, 𝑧) | ≤ 𝐴𝑒𝐶 (1+𝜖 𝛿−4)𝛿−4𝑒−

𝛿2
32𝑡 .

Indeed, the finite propagation speed technique gives us the 𝐿2 estimate

‖𝐾𝑞
𝜖 (𝑡, ·, ·)‖𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧)) ≤ 𝑐𝑒−

𝛿2
16𝑡

for some uniform constant c. Now Moser iteration as in [13][pages 16–26], together with semi-group
domination [24], yields the desired estimate.

For the estimate on 𝑑𝐾𝑞
𝜖 (𝑡, 𝑥, 𝑧), 𝑑∗𝜖 , 𝛿𝐾

𝑞
𝜖 (𝑡, 𝑥, 𝑧), let 𝜂(𝑟) be a smooth cut-off function that is

identically 1 for |𝑟 | ≤ 𝛿/8 and identically 0 for |𝑟 | ≥ 𝛿/4 and |𝜂′ | ≤ 16
𝛿 . We will continue to denote by

𝜂 its composition with a distance function (either 𝑑 (𝑥, ·) or 𝑑 (𝑧, ·)). Note then

‖(𝑑 + 𝑑∗𝜖 , 𝛿)𝑧 [𝜂𝐾
𝑞
𝜖 (𝑡, ·, ·)] ‖2

𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧))
= ‖(𝑑)𝑧 [𝜂𝐾𝑞

𝜖 (𝑡, ·, ·)] ‖2
𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧))

+ ‖(𝑑∗𝜖 , 𝛿)𝑧 [𝜂𝐾
𝑞
𝜖 (𝑡, ·, ·)] ‖2

𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧))
,

from which we deduce

‖(𝑑)𝑧 [𝐾𝑞
𝜖 (𝑡, ·, ·)] ‖𝐿2 (𝐵𝛿/8 (𝑥)×𝐵𝛿/8 (𝑧)) ≤ ‖(𝑑 + 𝑑∗𝜖 , 𝛿)𝑧 [𝜂𝐾

𝑞
𝜖 (𝑡, ·, ·)] ‖𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧))

+ 16
𝛿
‖𝐾𝑞

𝜖 (𝑡, ·, ·)‖𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧))

≤ ‖(𝑑 + 𝑑∗𝜖 , 𝛿)𝑧 [𝐾
𝑞
𝜖 (𝑡, ·, ·)] ‖𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧))

+ 32
𝛿
‖𝐾𝑞

𝜖 (𝑡, ·, ·)‖𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧)) .

Now the same finite propagation speed technique gives

‖(𝑑 + 𝑑∗𝜖 , 𝛿)𝑧 [𝐾
𝑞
𝜖 (𝑡, ·, ·)] ‖𝐿2 (𝐵𝛿/4 (𝑥)×𝐵𝛿/4 (𝑧)) ≤ 𝑐′𝑒−

𝛿2
16𝑡 ,

which in turn gives

‖(𝑑)𝑧 [𝐾𝑞
𝜖 (𝑡, ·, ·)] ‖𝐿2 (𝐵𝛿/8 (𝑥)×𝐵𝛿/8 (𝑧)) ≤ (𝑐′ + 𝑐

32
𝛿
)𝑒−

𝛿2
32𝑡 .

The same method as above then yields

| (𝑑)𝑧 [𝐾𝑞
𝜖 (𝑡, 𝑥, 𝑧)] | ≤ 𝐴𝑒𝐶 (1+𝜖 𝛿−4)𝛿−5𝑒−

𝛿2
32𝑡 .

The others can be proven in exactly the same way.
Finally, for 0 < 𝑟 < 2𝛿, we note that the curvature tensor and its derivatives of 𝛾𝜖 , 𝛿 are bounded in

𝑉2𝛿,𝑟 = 𝑉2𝛿 − 𝑉𝑟 by a constant depending on 𝛿, 𝑟 . Moreover, the injectivity radius of 𝛾𝜖 , 𝛿 in 𝑉2𝛿,𝑟 is
bounded away from zero by a constant depending on 𝛿, 𝑟 . Hence, by the elliptic estimate combined with
the argument as before, we have, for 𝑥 ∈ 𝑋3𝛿 , 𝑧 ∈ 𝑉2𝛿,𝑟 = 𝑉2𝛿 −𝑉𝑟 , and 𝑖 ∈ N,

|∇𝑖𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) | ≤ 𝐶 (𝑖, 𝛿, 𝑟)𝑒−

𝛿2
32𝑡

for a constant 𝐶 (𝑖, 𝛿, 𝑟) depending on 𝑖, 𝛿, 𝑟 . �
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Theorem 7.4. There are constants 𝐴,𝐶 depending only on the Sobolev constant and dimension such
that, for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and 0 ≤ 𝑞 ≤ 2, we have

|𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) | ≤ 𝐴𝑒𝐶 (1+𝜖 𝛿−4)𝛿−9𝑒−
𝛿2
16𝑡 vol(𝜕𝑋2𝛿), ∀𝑥, 𝑦 ∈ 𝑋3𝛿 , 𝑡 > 0.

Furthermore,∀𝑥, 𝑦 ∈ 𝑋3𝛿 , 𝑡 > 0, we have the pointwise (although not necessarily uniform) convergence
as 𝜖 → 0,

𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) −→ 0.

Proof. For 0 < 𝑟 ≤ 4, we apply the Duhamel principle [11, (3.9)] to 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) on 𝑋𝑟

to obtain

𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) = −
∫ 𝑡

0

∫
𝑋𝑟

[
(𝜕𝑡 + �𝑞0 )𝐾

𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧)

]
∧ ∗𝐾𝑞

0 (𝑠, 𝑧, 𝑦)

+
∫ 𝑡

0

∫
𝜕𝑋𝑟

𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) ∧ ∗𝑑𝐾𝑞

0 (𝑠, 𝑧, 𝑦)

+ (−1)4𝑞+1
∫ 𝑡

0

∫
𝜕𝑋𝑟

∗𝑑𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) ∧ 𝐾𝑞

0 (𝑠, 𝑧, 𝑦)

+ (−1)4𝑞+1
∫ 𝑡

0

∫
𝜕𝑋𝑟

∗𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) ∧ 𝑑∗𝐾𝑞

0 (𝑠, 𝑧, 𝑦)

+
∫ 𝑡

0

∫
𝜕𝑋𝑟

𝑑∗𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) ∧ ∗𝐾𝑞

0 (𝑠, 𝑧, 𝑦).

Now fix 𝑥, 𝑦 ∈ 𝑋3𝛿 . First we let 𝑟 = 2𝛿. Then the first term on the right-hand side goes away, and
we are left with only boundary terms. By Theorem 7.3, and noticing that similar estimates hold for the
orbifold heat kernel

|𝐾𝑞
0 (𝑡, 𝑥, 𝑧) | ≤ 𝐶𝛿−4𝑒−

𝛿2
32𝑡 , ∀𝑥 ∈ 𝑋3𝛿 , 𝑧 ∈ 𝑉2𝛿 , 𝑡 > 0, (7.5)

as well as its derivatives, we deduce then that

|𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) | ≤ 𝐴𝑒𝐶 (1+𝜖 𝛿−4)𝛿−9𝑒−
𝛿2
16𝑡 vol(𝜕𝑋2𝛿).

To prove the pointwise convergence, we let 𝑟 < 2𝛿 and denote 𝑉2𝛿,𝑟 = 𝑉2𝛿 − 𝑉𝑟 . Then the Duhamel
principle becomes

𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) = −
∫ 𝑡

0

∫
𝑉2𝛿 ,𝑟

[
(𝜕𝑡 + �𝑞0 )𝐾

𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧)

]
∧ ∗𝐾𝑞

0 (𝑠, 𝑧, 𝑦)

+
∫ 𝑡

0

∫
𝜕𝑋𝑟

𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) ∧ ∗𝑑𝐾𝑞

0 (𝑠, 𝑧, 𝑦)

+ (−1)4𝑞+1
∫ 𝑡

0

∫
𝜕𝑋𝑟

∗𝑑𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) ∧ 𝐾𝑞

0 (𝑠, 𝑧, 𝑦)

+ (−1)4𝑞+1
∫ 𝑡

0

∫
𝜕𝑋𝑟

∗𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) ∧ 𝑑∗𝐾𝑞

0 (𝑠, 𝑧, 𝑦)

+
∫ 𝑡

0

∫
𝜕𝑋𝑟

𝑑∗𝐾𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) ∧ ∗𝐾𝑞

0 (𝑠, 𝑧, 𝑦).
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We use the relation (𝜕𝑡 + �𝑞0 )𝐾
𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) = (�𝑞0 − �

𝑞
𝜖 , 𝛿)𝐾

𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) to control the first

integral. Since 𝛾𝜖 , 𝛿 = 𝑖𝜕𝜕𝜙𝜖 , 𝛿 , 𝜙𝜖 , 𝛿 (𝑧) = ‖𝑧‖2 + 𝜌𝛿 (‖𝑧‖)𝐸 (𝑧, 𝜖), 𝜌𝛿 (𝑡) = 𝜌(𝑡/𝛿), 𝜌(·) ∈ 𝐶∞(R) on
𝑉2𝛿,𝑟 and since 𝐸 (𝑧, 𝜖) is a real analytic function on 𝑉3𝛿,𝑟/2 × [0, 1) with 𝐸 (𝑧, 0) = 0, 1

𝜖 (�
𝑞
0 − �

𝑞
𝜖 , 𝛿)

is a second order differential operator with coefficients in 𝐶∞(𝑉3𝛿,𝑟/2 × [0, 𝜖 (𝜌)𝛿2)). Hence there is a
constant 𝐶0 (𝛿, 𝑟) > 0 depending on 𝛿, r but not on 𝜖 such that for all (𝑧, 𝜖) ∈ 𝑉3𝛿,𝑟/2 × [0, 𝜖 (𝜌)𝛿2),

| (�𝑞0 − �
𝑞
𝜖 , 𝛿)𝐾

𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) | ≤ 𝜖𝐶0(𝛿, 𝑟)

∑
𝑘≤2

|∇𝑘
𝑧𝐾 (𝑡 − 𝑠, 𝑥, 𝑧) |.

(This can also be deduced from equations (4.2), (4.4) and (4.6).)
By the second statement of Theorem 7.3 applied to the right-hand side, we have, for 𝑥 ∈ 𝑋3𝛿 , 𝑧 ∈

𝑉2𝛿,𝑟 ,

| (𝜕𝑡 + �𝑞0 )𝐾
𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) | = | (�𝑞0 − �

𝑞
𝜖 , 𝛿)𝐾

𝑞
𝜖 , 𝛿 (𝑡 − 𝑠, 𝑥, 𝑧) | ≤ 𝜖𝐶 (𝛿, 𝑟)𝑒−

𝛿2
32𝑡

for a constant 𝐶 (𝛿, 𝑟) depending on 𝛿, 𝑟 but not on 𝜖 .
Combining with the uniform estimates in Theorem 7.4, we obtain, for 𝑥, 𝑦 ∈ 𝑋3𝛿 ,

|𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) | ≤ 𝜖𝑡𝐶 ′(𝛿, 𝑟)𝑒−
𝛿2
16𝑡 + 𝐶 ′′(𝛿)𝑡𝑒−

𝛿2
16𝑡 vol(𝜕𝑋𝑟 ).

Now for any 𝜂 > 0, we take r sufficiently small so that 𝐶 ′′(𝛿)𝑡𝑒− 𝛿2
16𝑡 vol(𝜕𝑋𝑟 ) < 𝜂

2 . Then we take 𝜖

sufficiently small such that 𝜖𝑡𝐶 ′(𝛿, 𝑟)𝑒− 𝛿2
16𝑡 < 𝜂

2 . Hence

|𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0 (𝑡, 𝑥, 𝑦) | < 𝜂.

This proves the pointwise convergence. �

Remark 7.5. Since we have the Ricci curvature lower bound, the pointwise convergence of the heat
kernels should also be a consequence of some general spectral convergence results due to Cheeger-
Colding [12] for the case 𝑞 = 0, Honda [25] for the case 𝑞 = 1 and Bei [2] for 𝑞 = 𝑛 = 2. See also [16].

Theorem 7.6. There is a constant C depending only on the Sobolev constant and dimension such that,
for 𝛿 ≤ 1,

|𝐾𝑞
0 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0,∞(𝑡, 𝑥, 𝑦) | ≤ 𝐶𝑒−
1

16𝑡 vol(𝜕𝑉4), ∀𝑥, 𝑦 ∈ 𝑉3𝛿 , 𝑡 > 0.

Proof. The Duhamel principle [11, (3.9)] applied to 𝐾𝑞
0 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0,∞(𝑡, 𝑥, 𝑦) on 𝑉4 gives us

𝐾𝑞
0 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0,∞(𝑡, 𝑥, 𝑦) =
∫ 𝑡

0

∫
𝜕𝑉4

𝐾𝑞
0 (𝑠, 𝑥, 𝑧) ∧ ∗𝑑𝐾

𝑞
0,∞(𝑡 − 𝑠, 𝑧, 𝑦)

+ (−1)4𝑞+1
∫ 𝑡

0

∫
𝜕𝑉4

∗𝑑𝐾𝑞
0 (𝑠, 𝑥, 𝑧) ∧ 𝐾𝑞

0,∞(𝑡 − 𝑠, 𝑧, 𝑦)

+ (−1)4𝑞+1
∫ 𝑡

0

∫
𝜕𝑉4

∗𝐾𝑞
0 (𝑠, 𝑥, 𝑧) ∧ 𝑑∗𝐾𝑞

0,∞(𝑡 − 𝑠, 𝑧, 𝑦)

+
∫ 𝑡

0

∫
𝜕𝑉4

𝑑∗𝐾𝑞
0 (𝑠, 𝑥, 𝑧) ∧ ∗𝐾

𝑞
0,∞(𝑡 − 𝑠, 𝑧, 𝑦).
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Thus we obtain, for 𝑥, 𝑦 ∈ 𝑉3𝛿 , 𝛿 ≤ 1, using the estimate 7.5, except with the 𝛿 there replaced by a
fixed constant, say 1/4, as well as a similar estimate for 𝐾𝑞

0,∞(𝑡, 𝑥, 𝑦),

|𝐾𝑞
0 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

0,∞(𝑡, 𝑥, 𝑦) | ≤ 𝐶𝑒−
1

16𝑡 vol(𝜕𝑉4). �

Our final task here is to compare the heat kernel 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) with 𝐾𝑞

𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦), the heat kernel
on 𝑉∞, when 𝑥, 𝑦 ∈ 𝑉3𝛿 .

Theorem 7.7. There are constants 𝐴,𝐶 depending only on the Sobolev constant and dimension such
that, for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and 0 ≤ 𝑞 ≤ 2, we have

|𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) − 𝐾𝑞

𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) | ≤ 𝐴𝑒𝐶 (1+𝜖 𝛿−4)𝑒−
1

16𝑡 vol(𝜕𝑉4), ∀𝑥, 𝑦 ∈ 𝑉3𝛿 , 𝑡 > 0.

Proof. The proof follows the same line as above. We apply the Duhamel principle to 𝐾𝑞
𝜖 , 𝛿 (𝑡, 𝑥, 𝑦) −

𝐾𝑞
𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) on 𝑉4 and use the heat kernel estimate in Theorem 7.3 as well as the analogous estimate

for 𝐾𝑞
𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) to obtain the desired estimate. �

7.3. Partial analytic torsion

Recall that in Section 4.1, for a compact Kähler orbifold (𝑍, 𝛾) of dimension n,

𝜁𝑞 (𝑠) =
∑

𝜆∈𝜎 (�𝑞)\{0}
𝜆−𝑠 dim 𝐸 (𝜆;�𝑞) =

1
Γ(𝑠)

∫ ∞

0
𝑡𝑠−1Tr(𝑒−𝑡�𝑞𝑃⊥𝑞 ) 𝑑𝑡

with 𝑃⊥𝑞 the orthogonal projection onto the orthogonal complement of ker�𝑞 and (the logarithm of) the
analytic torsion

ln 𝜏(𝑍, 𝛾) = −
𝑛∑

𝑞=0
(−1)𝑞𝑞 𝜁 ′𝑞 (0) = −𝜁 ′𝑇 (0),

where

𝜁𝑇 (𝑠) =
1

Γ(𝑠)

∫ ∞

0
𝑡𝑠−1Tr𝑠 (𝑁𝑒−𝑡�𝑃⊥) 𝑑𝑡.

Here � denotes the Hodge-Kodaira Laplacian on 𝐴0,∗(𝑍), 𝑃⊥ the orthogonal projection onto the
orthogonal compliment of ker� and Tr𝑠 the supertrace on 𝐴0,∗(𝑍): that is, the alternating sum of the
traces on each degree and N the so-called number operator, which simply multiplies a differential form
by its degree.

By the Lidskii theorem,

Tr𝑠 (𝑁𝑒−𝑡�𝑃⊥) =
∫
𝑍

tr𝑠 (𝑁𝐾 (𝑡, 𝑥, 𝑥)𝑃⊥(𝑥, 𝑥)) 𝑑𝑥

=
𝑛∑

𝑞=0
(−1)𝑞𝑞

∫
𝑍

tr(𝐾𝑞 (𝑡, 𝑥, 𝑥)𝑃⊥𝑞 (𝑥, 𝑥)) 𝑑𝑥,

where 𝐾 (𝑡, 𝑥, 𝑦), 𝐾𝑞 (𝑡, 𝑥, 𝑦) denotes the heat kernel of �, �𝑞 , respectively, 𝑃⊥(𝑥, 𝑥) the Schwartz kernel
of 𝑃⊥ and tr𝑠 (abusing notation) also the pointwise supertrace.
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At this point, it is convenient to introduce what is called ‘partial analytic torsion’ in [14]. For a
domain 𝐷 ⊂ 𝑍 , we define

𝜁𝐷,𝑍
𝑇 (𝑠) = 1

Γ(𝑠)

∫ ∞

0
𝑡𝑠−1

∫
𝐷

tr𝑠 (𝑁𝐾 (𝑡, 𝑥, 𝑥)𝑃⊥(𝑥, 𝑥)) 𝑑𝑥 𝑑𝑡

and

ln 𝜏(𝐷, 𝑍, 𝛾) = −
(
𝜁𝐷,𝑍
𝑇

) ′
(0). (7.6)

Clearly

ln 𝜏(𝑍, 𝛾) = ln 𝜏(𝐷, 𝑍, 𝛾) + ln 𝜏(𝑍 − 𝐷, 𝑍, 𝛾). (7.7)

Similarly, we can define the equivariant version 𝜏Z2 (𝐷, 𝑍, 𝛾) (𝜃) for 𝜃-invariant domain 𝐷 ⊂ 𝑍 . That
is, we define

𝜁𝐷,𝑍
𝑇 ,𝜃 (𝑠) =

1
Γ(𝑠)

∫ ∞

0
𝑡𝑠−1

∫
𝐷

tr𝑠 (𝑁𝐾 (𝑡, 𝑥, 𝜃𝑥)𝑃⊥(𝑥, 𝜃𝑥)) 𝑑𝑥 𝑑𝑡

and

ln 𝜏Z2 (𝐷, 𝑍, 𝛾) (𝜃) = −
(
𝜁𝐷,𝑍
𝑇 ,𝜃

) ′
(0). (7.8)

Then the discussion applies to the equivariant version as well.

7.4. Limit of partial analytic torsion I

Theorem 7.8. For 0 < 𝛿 ≤ 1, we have

lim
𝜖→0

ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾0)

and

lim
𝜖→0

ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) (𝜃) = ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾0) (𝜄).

Proof. (Step 1) Let

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) ∼
∞∑
𝑖=0

𝑎 𝜖 , 𝛿
𝑖 (𝑥) 𝑡𝑖−2

be the pointwise small time asymptotic expansion, and write

𝜁𝑋3𝛿 ,𝑋
𝑇 (𝑠) = 1

Γ(𝑠)

[∫ ∞

1
𝑡𝑠−1

∫
𝑋3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥)) 𝑑𝑥 𝑑𝑡

+
∫ 1

0
𝑡𝑠−1

∫
𝑋3𝛿

[tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) −
2∑

𝑖=0
𝑎 𝜖 , 𝛿
𝑖 (𝑥) 𝑡𝑖−2] 𝑑𝑥 𝑑𝑡

+
1∑

𝑖=0

∫
𝑋3𝛿

𝑎 𝜖 , 𝛿
𝑖 (𝑥)

𝑠 + 𝑖 − 2
𝑑𝑥 + 1

𝑠

∫
𝑋3𝛿

[𝑎 𝜖 , 𝛿
2 (𝑥) − tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝑥))] 𝑑𝑥

]
,
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where 𝑃𝜖 , 𝛿 (𝑥, 𝑥) is the Schwartz kernel of 𝑃𝜖 , 𝛿 , the orthogonal projection onto ker�𝜖 , 𝛿 . We obtain

ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = −
∫ ∞

1
𝑡−1

∫
𝑋3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥)) 𝑑𝑥 𝑑𝑡

−
∫ 1

0
𝑡−1

∫
𝑋3𝛿

[
tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) −

2∑
𝑖=0

𝑎 𝜖 , 𝛿
𝑖 (𝑥) 𝑡𝑖−2

]
𝑑𝑥 𝑑𝑡

−
1∑

𝑖=0

∫
𝑋3𝛿

𝑎 𝜖 , 𝛿
𝑖 (𝑥)
𝑖 − 2

𝑑𝑥 + Γ′(1)
∫
𝑋3𝛿

[
𝑎 𝜖 , 𝛿

2 (𝑥) − tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝑥))
]
𝑑𝑥

and similarly for ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾0). Since the asymptotic expansion depends only on the local data, we
have 𝑎 𝜖 , 𝛿

𝑖 (𝑥) = 𝑎0
𝑖 (𝑥) on 𝑋3𝛿 . Hence

ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) − ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾0)

= −
∫ ∞

1
𝑡−1

∫
𝑋3𝛿

tr𝑠
[
𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥) − 𝑁𝐾0(𝑡, 𝑥, 𝑥)𝑃⊥0 (𝑥, 𝑥)

]
𝑑𝑥 𝑑𝑡

−
∫ 1

0
𝑡−1

∫
𝑋3𝛿

[
tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥) − 𝑁𝐾0(𝑡, 𝑥, 𝑥))

]
𝑑𝑥 𝑑𝑡

− Γ′(1)
∫
𝑋3𝛿

tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝑥) − 𝑁𝑃0 (𝑥, 𝑥)) 𝑑𝑥.

(7.9)

We estimate each term on the right-hand side.
(Step 2) Let Ψ(·) > 0 and Λ(·) > 0 be as defined in Corollary 6.8. By Corollary 6.8,∫

𝑋3𝛿

��tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥))
�� 𝑑𝑥 ≤ ∑

𝑞≥0
𝑞 (Tr 𝑒−𝑡�𝜖 , 𝛿 − ℎ0,𝑞 (𝑋))

≤ Ψ(𝜖𝛿−4 + 1) exp[−1
2
𝑡Λ(𝜖𝛿−4 + 1)]

for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and 𝑡 ≥ 1. Hence for any 𝜈 > 0, there is 𝑇 ′ = 𝑇 ′(𝜈) > 0 depending
only on 𝜈 such that for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖 < min{𝜖 (𝜌)𝛿2, 𝛿4}, and 𝑇 > 𝑇 ′,∫ ∞

𝑇
𝑡−1

∫
𝑋3𝛿

��tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥))
�� 𝑑𝑥 𝑑𝑡 ≤ Ψ(2)

∫ ∞

𝑇
𝑒−Λ(2)𝑡/2

𝑑𝑡

𝑡
< 𝜈 (7.10)

and similarly for the same term involving 𝐾0. By Theorem 7.4 and Lebesgue dominated convergence
theorem, there exists 𝜖0 > 0 such that����∫ 𝑇

1
𝑡−1

∫
𝑋3𝛿

tr𝑠 [𝑁 (𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) − 𝐾0(𝑡, 𝑥, 𝑥))] 𝑑𝑥 𝑑𝑡

���� < 𝜈 (7.11)

whenever 𝜖 < 𝜖0. Similarly,����∫ 1

0
𝑡−1

∫
𝑋3𝛿

tr𝑠 [𝑁 (𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) − 𝐾0(𝑡, 𝑥, 𝑥))] 𝑑𝑥 𝑑𝑡

���� < 𝜈 (7.12)

whenever 𝜖 < 𝜖0.
On the other hand,

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥)) = tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) − tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝑥)) (7.13)
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and similarly for 𝐾0. Recall ker�0 = ker�𝜖 , 𝛿 = C · 1 ⊕ C · 𝜂. For 𝑥 ∈ 𝑋3𝛿 , we get

tr𝑠 [𝑁 (𝑃𝜖 , 𝛿 (𝑥, 𝑥) − 𝑃0 (𝑥, 𝑥))] =
2

‖𝜂‖2
𝐿2

(
𝜂 ∧ 𝜂

𝛾2
𝜖 , 𝛿/2!

(𝑥) − 𝜂 ∧ 𝜂

𝛾2
0/2!

(𝑥)
)
= 0, (7.14)

because 𝛾𝜖 , 𝛿 = 𝛾0 on 𝑋3𝛿 . It follows from equations (7.11), (7.13) and (7.14) that����∫ 𝑇

1
𝑡−1

∫
𝑋3𝛿

tr𝑠 (𝑁 [𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥) − 𝐾0(𝑡, 𝑥, 𝑥)𝑃⊥0 (𝑥, 𝑥)]) 𝑑𝑥 𝑑𝑡

���� < 𝜈. (7.15)

Substituting equations (7.10), (7.11), (7.12), (7.14) and (7.15) into equation (7.9), we get���ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) − ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾0)
��� < 3𝜈

whenever 𝜖 < 𝜖0. Since 𝜈 > 0 can be chosen arbitrarily small, this finishes the proof of the first formula.
To prove the result about the equivariant torsion, we follow the same line of argument, except with a

simplification, since 𝜃 has no fixed points in 𝑋3𝛿 . Indeed,

ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) (𝜃) = −
∫ ∞

1
𝑡−1

∫
𝑋3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝜃𝑥)) 𝑑𝑥 𝑑𝑡

−
∫ 1

0
𝑡−1

∫
𝑋3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃𝑥)) 𝑑𝑥 𝑑𝑡

− Γ′(1)
∫
𝑋3𝛿

tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝜃𝑥) 𝑑𝑥

and

ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) (𝜃) − ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾0) (𝜄)

= −
∫ ∞

1
𝑡−1

∫
𝑋3𝛿

tr𝑠
[
𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝜃𝑥) − 𝑁𝐾0(𝑡, 𝑥, 𝜃𝑥)𝑃⊥0 (𝑥, 𝜃𝑥)

]
𝑑𝑥 𝑑𝑡

−
∫ 1

0
𝑡−1

∫
𝑋3𝛿

[
tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃𝑥) − 𝑁𝐾0(𝑡, 𝑥, 𝜃𝑥))

]
𝑑𝑥 𝑑𝑡

− Γ′(1)
∫
𝑋3𝛿

tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝜃𝑥) − 𝑁𝑃0 (𝑥, 𝜃𝑥)) 𝑑𝑥.

(7.16)

Now we proceed as before. �

7.5. Limit of partial analytic torsion II

To relate ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾0) to ln 𝜏(𝑋, 𝛾0), by (7.7), it suffices to show

Theorem 7.9. We have

lim
𝛿→0

ln 𝜏(𝑉3𝛿 , 𝑋, 𝛾0) = 0, lim
𝛿→0

ln 𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾0) (𝜄) = 0.

Remark 7.10. This is closely related to [15], where analytic torsions on orbifolds defined from conical
singularity pointview are shown to be the same as the ones defined from orbifold singularity pointview.

Proof. Again, the proofs for both formulas work the same, so we only present the first one. Moreover,
the argument works for any orbifold singularity, but we will work with the cyclic quotient singularity
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of type 1
4 (1, 1) in our situation. First of all, by the same kind of argument as above, using Theorem 7.6

and vol(𝑉3𝛿) → 0 as 𝛿 → 0, one has

lim
𝛿→0

ln 𝜏(𝑉3𝛿 , 𝑋, 𝛾0) = lim
𝛿→0

ln 𝜏(𝑉3𝛿 , 𝑉∞, 𝜅0).

Now the right-hand side can be explicitly computed since the heat kernel is explicitly known. Indeed,
as 𝑉∞ is just k copies of C2/Z2, the (orbifold) heat kernel of (𝑉∞, 𝜅0) on the (0, 𝑞) forms is 𝑘

(𝑛
𝑞

)
(𝑛 = 2

in our case) copies of

𝐾0(𝑡, 𝑥, 𝑥 ′) =
1

(4𝜋𝑡)𝑛/2

(
𝑒−

|𝑥−𝑥′ |2
4𝑡 + 𝑒−

|𝑥+𝑥′ |2
4𝑡

)
.

In terms of the polar coordinates 𝑥 = (𝑟, 𝑦), 𝑦 ∈ 𝑆2𝑛−1,

𝐾0(𝑡, 𝑥, 𝑥) =
1

(4𝜋𝑡)𝑛/2
(1 + 𝑒−𝑟

2/𝑡 ).

Thus ∫
𝑉3𝛿

𝐾0(𝑡, 𝑥, 𝑥)𝑑𝑥 = 𝑐𝑛𝛿
𝑛𝑡−𝑛/2 + 𝑑𝑛

∫ 3𝛿
𝑡1/2

0
𝜉𝑛−1𝑒−𝜉 2

𝑑𝜉,

where 𝑐𝑛 = 3𝑛𝜔𝑛

𝑛(4𝜋)𝑛/2 , 𝑑𝑛 = 𝜔𝑛

(4𝜋)𝑛/2 , 𝜔𝑛 = vol(𝑆𝑛−1).
The second term has different asymptotic behaviours for 𝑡 → 0 and 𝑡 →∞. Since∫ 3𝛿

𝑡1/2

0
𝜉𝑛−1𝑒−𝜉 2

𝑑𝜉 =
∫ ∞

0
𝜉𝑛−1𝑒−𝜉 2

𝑑𝜉 −
∫ ∞

3𝛿
𝑡1/2

𝜉𝑛−1𝑒−𝜉 2
𝑑𝜉,

by some elementary inequality, it is a constant 𝑑 ′𝑛 = 𝑑𝑛

∫ ∞
0 𝜉𝑛−1𝑒−𝜉 2

𝑑𝜉 plus an exponentially decaying
term as 𝑡 → 0 (or one could just invoke the known asymptotic for the complementary error function for
a large argument). On the other hand, it is also straightforward to see that as 𝑡 →∞, the second term is
𝑂 (𝑡− 𝑛−1

2 ).
Set

𝜁𝛿 (𝑠) =
1

Γ(𝑠)

∫ ∞

0
𝑡𝑠−1

(∫
𝑉3𝛿

𝐾0(𝑡, 𝑥, 𝑥)𝑑𝑥
)
𝑑𝑡

=
1

Γ(𝑠)

[∫ 1

0
𝑡𝑠−1

(∫
𝑉3𝛿

𝐾0(𝑡, 𝑥, 𝑥)𝑑𝑥
)
𝑑𝑡 +

∫ ∞

1
𝑡𝑠−1

(∫
𝑉3𝛿

𝐾0(𝑡, 𝑥, 𝑥)𝑑𝑥
)
𝑑𝑡

]
,

where the first term is defined through analytic continuation from a region where the real part of s is
sufficiently large, whereas the second term is defined through analytic continuation from a region where
the real part of s is sufficiently negative. Therefore

1
Γ(𝑠)

∫ 1

0
𝑡𝑠−1

(∫
𝑉3𝛿

𝐾0(𝑡, 𝑥, 𝑥)𝑑𝑥
)
𝑑𝑡 =

1
Γ(𝑠)

𝑐𝑛𝛿
𝑛

𝑠 − 𝑛/2 +
𝑑 ′𝑛

Γ(𝑠 + 1)

− 𝑑𝑛

Γ(𝑠)

∫ 1

0
𝑡𝑠−1

∫ ∞

3𝛿
𝑡1/2

𝜉𝑛−1𝑒−𝜉 2
𝑑𝜉𝑑𝑡,
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and

1
Γ(𝑠)

∫ ∞

1
𝑡𝑠−1

(∫
𝑉3𝛿

𝐾0(𝑡, 𝑥, 𝑥)𝑑𝑥
)
𝑑𝑡 = − 1

Γ(𝑠)
𝑐𝑛𝛿

𝑛

𝑠 − 𝑛/2

+ 𝑑𝑛

Γ(𝑠)

∫ 1

0
𝑡𝑠−1

∫ 3𝛿
𝑡1/2

0
𝜉𝑛−1𝑒−𝜉 2

𝑑𝜉𝑑𝑡.

Thus,

𝜁 ′𝛿 (0) = −𝑑
′
𝑛Γ

′(1) − 𝑑𝑛

∫ 1

0
𝑡−1

∫ ∞

3𝛿
𝑡1/2

𝜉𝑛−1𝑒−𝜉 2
𝑑𝜉𝑑𝑡 + 𝑑𝑛

∫ 1

0
𝑡−1

∫ 3𝛿
𝑡1/2

0
𝜉𝑛−1𝑒−𝜉 2

𝑑𝜉𝑑𝑡.

By a simple change of integration, we arrive at

𝜁 ′𝛿 (0) = −𝑑
′
𝑛Γ

′(1) − 𝑑𝑛

∫ ∞

3𝛿
2 ln

3𝛿
𝜉
𝜉𝑛−1𝑒−𝜉 2

𝑑𝜉 + 𝑑𝑛

∫ 3𝛿

0
2 ln

3𝛿
𝜉
𝜉𝑛−1𝑒−𝜉 2

𝑑𝜉.

This has a logarithmic divergence (2𝑑 ′𝑛 ln 3𝛿) as 𝛿 → 0, but

ln 𝜏(𝑉3𝛿 , 𝑉∞, 𝛾0) = −𝑘𝜁 ′𝛿 (0)
𝑛∑

𝑞=0
(−1)𝑞𝑞

(
𝑛

𝑞

)
= 0

by combinatorial formula since 𝑛 ≥ 2 (in fact equal to 2 in this case). The proof for the partial equivariant
torsion is almost the same. We just need to insert the action of the involution 𝜃 into the heat kernel,
which will result in only the 𝑑𝑛 terms similar to the above formulas. �

Corollary 7.11. We have

lim
𝛿→0

lim
𝜖→0

ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = ln 𝜏(𝑋, 𝛾0),

lim
𝛿→0

lim
𝜖→0

ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) (𝜄) = ln 𝜏Z2 (𝑋, 𝛾0) (𝜄).

Proof. Since ln 𝜏(𝑋, 𝛾0) = ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾0) + ln 𝜏(𝑉3𝛿 , 𝑋, 𝛾0) and ln 𝜏Z2 (𝑋, 𝛾0) (𝜄) =
ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾0) (𝜄) + ln 𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾0) (𝜄) by equation (7.7), we get by Theorem 7.9

lim
𝛿→0

ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾0) = ln 𝜏(𝑋, 𝛾0), lim
𝛿→0

ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾0) (𝜄) = ln 𝜏Z2 (𝑋, 𝛾0) (𝜄),

which, together with Theorem 7.8, yields the result. �

7.6. Limit of partial analytic torsion III

On the other hand, we have

Theorem 7.12. The following equalities hold:

lim
𝛿→0

lim
𝜖→0

ln 𝜏(𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = 𝑘 ln𝐶EH
0 (𝜌),

lim
𝛿→0

lim
𝜖→0

ln
[
𝜖 𝑘/3𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) (𝜃)

]
= 𝑘 ln𝐶EH

1 (𝜌),

where the constants 𝐶EH
0 (𝜌), 𝐶EH

1 (𝜌) depend only on the cut-off function 𝜌.

At this stage, the constants 𝐶EH
0 (𝜌), 𝐶EH

1 (𝜌) may depend on 𝜌. The fact that they are independent of
𝜌 will be postponed to the next subsection.

https://doi.org/10.1017/fms.2022.66 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.66


Forum of Mathematics, Sigma 39

7.6.1. An integral expression of 𝜏(𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) and 𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿)(𝜃)
For the proof of Theorem 7.12, as before, we compute

ln 𝜏(𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = −
∫ ∞

1
𝑡−1

∫
𝑉3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥)) 𝑑𝑥 𝑑𝑡

−
∫ 1

0
𝑡−1

∫
𝑉3𝛿

[
tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) −

2∑
𝑖=0

𝑎 𝜖 , 𝛿
𝑖 (𝑥) 𝑡𝑖−2

]
𝑑𝑥 𝑑𝑡

−
1∑

𝑖=0

∫
𝑉3𝛿

𝑎 𝜖 , 𝛿
𝑖 (𝑥)
𝑖 − 2

𝑑𝑥 + Γ′(1)
∫
𝑉3𝛿

[
𝑎 𝜖 , 𝛿

2 (𝑥) − tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝑥))
]
𝑑𝑥,

where 𝑎 𝜖 , 𝛿
𝑖 (𝑥) are the coefficients of the pointwise small time asymptotic expansion for

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) described in the proof of Theorem 7.8. Similarly,

ln 𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = −
∫ ∞

1
𝑡−1

∫
𝑉3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃 (𝑥))𝑃⊥𝜖 , 𝛿 (𝑥, 𝜃 (𝑥))) 𝑑𝑥 𝑑𝑡

−
∫ 1

0

𝑑𝑡

𝑡

[∫
𝑉3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃 (𝑥))) 𝑑𝑥 −
1∑

𝑖=0
𝑡𝑖−1

∫
𝐸
𝑏 𝜖 , 𝛿
𝑖 (𝑧) 𝑑𝑧

]
+
∫
𝐸
𝑏 𝜖 , 𝛿

0 (𝑧) 𝑑𝑧 + Γ′(1)
[∫

𝐸
𝑏 𝜖 , 𝛿

1 (𝑧) 𝑑𝑧 −
∫
𝑉3𝛿

tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝜃 (𝑥))) 𝑑𝑥
]

with 𝑏 𝜖 , 𝛿
𝑖 (𝑥) the coefficients of the pointwise small time asymptotic expansion for

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃 (𝑥))). We study the behaviour of each term on the right-hand side as 𝜖 → 0 and
𝛿 → 0. For this, we set

𝐼 (𝜖, 𝛿; 𝜌) := −
∫ 1

0

𝑑𝑡

𝑡

∫
𝑉 (3𝛿)

[
tr𝑠 (𝑁𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑥)) −

2∑
𝑖=0

𝑎 𝜖 , 𝛿
𝑖 (𝑥) 𝑡𝑖−2

]
𝑑𝑥

−
1∑

𝑖=0

∫
𝑉 (3𝛿)

𝑎 𝜖 , 𝛿
𝑖 (𝑥)
𝑖 − 2

𝑑𝑥 + Γ′(1)
∫
𝑉 (3𝛿)

𝑎 𝜖 , 𝛿
2 (𝑥) 𝑑𝑥,

𝐽 (𝜖, 𝛿; 𝜌) := −
∫ 1

0

𝑑𝑡

𝑡

[∫
𝑉 (3𝛿)

tr𝑠 (𝑁𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝜃 (𝑥))) 𝑑𝑥 −
1∑

𝑖=0
𝑡𝑖−1

∫
𝐸
𝑏 𝜖 , 𝛿
𝑖 (𝑧) 𝑑𝑧

]
+
∫
𝐸
𝑏 𝜖 , 𝛿

0 (𝑧) 𝑑𝑧 + Γ′(1)
∫
𝐸
𝑏 𝜖 , 𝛿

1 (𝑧) 𝑑𝑧.

Since 𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) = ⊕𝑞𝐾
𝑞
𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑦) is 𝑘-copies of the heat kernel of (𝑇∗P1, 𝜅𝜖 , 𝛿), 𝐼 (𝜖, 𝛿; 𝜌) and

𝐽 (𝜖, 𝛿; 𝜌) depend only on 𝜖, 𝛿 ∈ (0, 1] with 𝜖𝛿−2 ≤ 𝜖 (𝜌) and the cut-off function 𝜌. Since 𝑉3𝛿 is
k-copies of 𝑉 (3𝛿), we have

ln 𝜏(𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = −
∫ ∞

1

𝑑𝑡

𝑡

∫
𝑉3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥)) 𝑑𝑥

−
∫ 1

0

𝑑𝑡

𝑡

∫
𝑉3𝛿

tr𝑠{𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥) − 𝑁𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑥)}𝑑𝑥

− Γ′(1)
∫
𝑉3𝛿

tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝑥)) 𝑑𝑥 + 𝑘 · 𝐼 (𝜖, 𝛿; 𝜌)
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and similarly

ln 𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = −
∫ ∞

1

𝑑𝑡

𝑡

∫
𝑉3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃 (𝑥))𝑃⊥𝜖 , 𝛿 (𝑥, 𝜃 (𝑥))) 𝑑𝑥

−
∫ 1

0

𝑑𝑡

𝑡

∫
𝑉3𝛿

tr𝑠{𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝜃 (𝑥)) − 𝑁𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝜃 (𝑥))}𝑑𝑥

− Γ′(1)
∫
𝑉3𝛿

tr𝑠{𝑁𝑃𝜖 , 𝛿 (𝑥, 𝜃 (𝑥))} 𝑑𝑥 + 𝑘 · 𝐽 (𝜖, 𝛿; 𝜌).

7.6.2. Limit of the first integral
Proposition 7.13. The following equality holds:

lim
𝛿→0

lim
𝜖→0

∫ ∞

1

𝑑𝑡

𝑡

∫
𝑉3𝛿

tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥)) 𝑑𝑥 = 0.

The same is true for the first integral in the expression of ln 𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿).

Proof. Let 𝜈 > 0 be arbitrary. As in the proof of Theorem 7.8 Step 2, there is 𝑇 = 𝑇 (𝜈) > 0 depending
only on 𝜈 such that ∫ ∞

𝑇
𝑡−1

∫
𝑉3𝛿

��tr𝑠 (𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥))
�� 𝑑𝑥 𝑑𝑡 < 𝜈 (7.17)

for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖 ≤ min{𝜖 (𝜌)𝛿2, 𝛿4}, which will be assumed throughout the proof. By Theorem
7.7, ����∫ 𝑇

1
𝑡−1

∫
𝑉3𝛿

tr𝑠 [𝑁{𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)) − 𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑥)}] 𝑑𝑥 𝑑𝑡

���� ≤ 𝐶 (𝑇) vol(𝑉3𝛿), (7.18)

where 𝐶 (𝑇) is a constant depending only on T. By equation (7.14), we get∫
𝑉3𝛿

tr𝑠 [𝑁 (𝑃𝜖 , 𝛿 (𝑥, 𝑥)] 𝑑𝑥 =
∫
𝑉3𝛿

2𝜂 ∧ 𝜂

‖𝜂‖2
𝐿2

≤ 2
‖𝜂 ∧ 𝜂/𝛾2

0 ‖𝐿∞
‖𝜂‖𝐿2

Vol(𝑉3𝛿). (7.19)

By equations (7.13), (7.18) and (7.19), we get����∫ 𝑇

1
𝑡−1

∫
𝑉3𝛿

tr𝑠 [𝑁{𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥) − 𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑥)}] 𝑑𝑥 𝑑𝑡

����
≤ {𝐶 (𝑇) + 2

‖𝜂 ∧ 𝜂/𝛾2
0 ‖𝐿∞

‖𝜂‖𝐿2
log𝑇} vol(𝑉3𝛿).

(7.20)

By Proposition 6.9, there is a constant 𝐴 > 0 such that∫ 𝑇

1
𝑡−1

∫
𝑉3𝛿

��𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑥)
�� 𝑑𝑥 𝑑𝑡 ≤ 𝐴𝑒𝐶 (𝜖 𝛿−4+1)𝑇 log𝑇 · vol(𝑉3𝛿) (7.21)
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for all 𝜖, 𝛿 ∈ (0, 1] with 𝜖 𝛿−2 ≤ 𝜖 (𝜌). By equations (7.20) and (7.21), we get����∫ 𝑇

1
𝑡−1

∫
𝑉3𝛿

tr𝑠 [𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥)𝑃⊥𝜖 , 𝛿 (𝑥, 𝑥)] 𝑑𝑥 𝑑𝑡

���� ≤ 𝐶 (𝑇) vol(𝑉3𝛿), (7.22)

where 𝐶 (𝑇) = 𝐶 (𝑇) + (2 ‖𝜂∧�̄�/𝛾2
0 ‖𝐿∞

‖𝜂 ‖𝐿2
+ 𝐴𝑒2𝐶𝑇 ) log𝑇 . Since 𝜈 > 0 can be chosen arbitrarily small, by

taking into account that vol(𝑉3𝛿) goes to zero as 𝛿 → 0, the result follows from equations (7.17) and
(7.22). �

7.6.3. Limit of the second integral
Proposition 7.14. The following equality holds:

lim
𝛿→0

lim
𝜖→0

∫ 1

0

𝑑𝑡

𝑡

∫
𝑉3𝛿

tr𝑠{𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥) − 𝑁𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑥)}𝑑𝑥 = 0.

The same is true for the second integral in the expression of ln 𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿).

Proof. The proof is the same as above, using the estimate of Theorem 7.7. Indeed, we have, for all
𝜖, 𝛿 ∈ (0, 1] with 𝜖 ≤ min{𝜖 (𝜌)𝛿2, 𝛿4}, that there is a constant 𝐶 > 0 such that

|tr𝑠{𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥) − 𝑁𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑥)}| ≤ 𝐶 𝑡

for all (𝑥, 𝑡) ∈ 𝑉3𝛿 × (0, 1]. Hence����∫ 1

0

𝑑𝑡

𝑡

∫
𝑉3𝛿

tr𝑠{𝑁𝐾𝜖 , 𝛿 (𝑡, 𝑥, 𝑥) − 𝑁𝐾𝜖 , 𝛿,∞(𝑡, 𝑥, 𝑥)}𝑑𝑥
���� ≤ 𝐶 Vol(𝑉3𝛿 , 𝛾𝜖 , 𝛿). (7.23)

By the fact that

lim
𝛿→0

lim
𝜖→0

Vol(𝑉3𝛿 , 𝛾𝜖 , 𝛿) = lim
𝛿→0

Vol(𝑉3𝛿 , 𝛾0) = 0,

we get the result. �

7.6.4. Proof of Theorem 7.12
By equation (7.14), we get

lim
𝛿→0

lim
𝜖→0

∫
𝑉3𝛿

tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝑥)) 𝑑𝑥 = lim
𝛿→0

lim
𝜖→0

∫
𝑉3𝛿

tr𝑠 (𝑁𝑃𝜖 , 𝛿 (𝑥, 𝜃 (𝑥))) 𝑑𝑥 = 0.

From Propositions 7.13 and 7.14, it follows that

lim
𝛿→0

lim
𝜖→0

ln 𝜏(𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) = 𝑘 lim
𝛿→0

lim
𝜖→0

𝐼 (𝜖, 𝛿; 𝜌),

lim
𝛿→0

lim
𝜖→0

ln
[
𝜖 𝑘/3𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿)

]
= 𝑘 lim

𝛿→0
lim
𝜖→0

[
𝐽 (𝜖, 𝛿; 𝜌) + 1

3
ln 𝜖

]
.

Since the right-hand side depends only on the choice of 𝜌, we get the result by setting

ln𝐶EH
0 (𝜌) := lim

𝛿→0
lim
𝜖→0

𝐼 (𝜖, 𝛿; 𝜌), ln𝐶EH
1 (𝜌) := lim

𝛿→0
lim
𝜖→0

[
𝐽 (𝜖, 𝛿; 𝜌) + 1

3
ln 𝜖

]
.

This completes the proof, provided that these double limits exist. This will be addressed in what follows.
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Remark 7.15. 𝐶EH
0 (𝜌), respectively𝐶EH

1 (𝜌), is renormalised (respectively, equivariant) analytic torsion
for the asymptotically conical space 𝑉 (∞) = (𝑇∗P1, 𝛾EH).

7.7. Proof of Theorem 7.1

Since

ln 𝜏(𝑋, 𝛾𝜖 , 𝛿) = ln 𝜏(𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) + ln 𝜏(𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿)

and

ln 𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) = ln 𝜏Z2 (𝑋3𝛿 , 𝑋, 𝛾𝜖 , 𝛿) + ln 𝜏Z2 (𝑉3𝛿 , 𝑋, 𝛾𝜖 , 𝛿)

by the definition of partial (equivariant) analytic torsion, we get by Corollary 7.11 and Theorem 7.12

lim
𝛿→0

lim
𝜖→0

ln 𝜏(𝑋, 𝛾𝜖 , 𝛿) = ln 𝜏(𝑋, 𝛾0) + 𝑘 ln𝐶EH
0 (𝜌), (7.24)

lim
𝛿→0

lim
𝜖→0

ln
[
𝜖 𝑘/3𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿)

]
= ln 𝜏Z2 (𝑋, 𝛾0) + 𝑘 ln𝐶EH

1 (𝜌). (7.25)

As the double limits on the left-hand side of equations (7.24) and (7.25) exist by virtue of Corollary 5.3
and Proposition 7.2, so do the double limits in defining ln𝐶EH

0 (𝜌) and ln𝐶EH
1 (𝜌).

On the other hand, again by Corollary 5.3 and Proposition 7.2, the double limits
lim𝛿→0 lim𝜖→0 ln 𝜏(𝑋, 𝛾𝜖 , 𝛿) and lim𝛿→0 lim𝜖→0 ln

[
𝜖 𝑘/3𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿)

]
are independent of the choice

of 𝜌. Hence 𝐶EH
0 (𝜌) and 𝐶EH

1 (𝜌) in equations (7.24) and (7.25) are in fact independent of 𝜌. This
completes the proof of Theorem 7.1.

8. A holomorphic torsion invariant of log-Enriques surfaces

In this section, we introduce a holomorphic torsion invariant of log-Enriques surfaces and give its
explicit formula as a function on the moduli space.

8.1. A construction of invariant

Theorem 8.1. There is a constant 𝐶 (𝑘) depending only on 𝑘 = #Sing(𝑌 ) with

𝜏𝑀 (𝑋, 𝜃) = 𝐶 (𝑘)Vol(𝑌, 𝛾0)
4−𝑘

4 𝜏(𝑌, 𝛾0)2 ×
∏

𝔭∈Sing(𝑋 )

{
| 𝑓𝔭 (0) |2

Vol(𝑌, 𝛾0)
‖𝜂‖2

𝐿2 (𝑌 )

} 5
16

× exp

(
1

12

∫
𝑌

log

{
𝜂 ∧ 𝜂

𝛾2
0/2!

· Vol(𝑌, 𝛾0)
‖𝜂‖2

𝐿2 (𝑌 )

}
𝑐2 (𝑌, 𝛾0)

)
.

Here 𝑓𝔭 is defined in the discussion immediately preceding equation (4.13).

Proof. Since 𝑀⊥
𝑘 � Λ𝑘 (2), we have 14−𝑟 (𝐻 2 (𝑋,Z)+)

4 = 4−𝑘
4 . By its independence of the choice of 𝜃-

invariant Kähler metric on 𝑋 , 𝜏𝑀 (𝑋, 𝜃) is given by

lim
𝛿→0

lim
𝜖→0

𝜏(𝑋, 𝛾𝜖 , 𝛿)𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) (𝜃)Vol(𝑋, 𝛾𝜖 , 𝛿)
4−𝑘

4 Vol(𝑋 𝜃 , 𝛾𝜖 , 𝛿 |𝑋 𝜃 )𝜏(𝑋 𝜃 , 𝛾𝜖 , 𝛿 |𝑋 𝜃 )

× 𝐴𝑀 (𝑋, 𝜃, 𝛾𝜖 , 𝛿) exp��� 1
24

∫
𝑋

log
⎧⎪⎪⎨⎪⎪⎩

𝜂 ∧ 𝜂

𝛾2
𝜖 , 𝛿/2!

·
Vol(𝑋, 𝛾𝜖 , 𝛿)
‖𝜂‖2

𝐿2 (𝑋 )

⎫⎪⎪⎬⎪⎪⎭ 𝑐2 (𝑋, 𝛾𝜖 , 𝛿)
� !
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= lim
𝛿→0

lim
𝜖→0

{𝜖
𝑘
3 𝜏(𝑋, 𝛾𝜖 , 𝛿)𝜏Z2 (𝑋, 𝛾𝜖 , 𝛿) (𝜃)Vol(𝑋, 𝛾𝜖 , 𝛿)

4−𝑘
4 }

× lim
𝛿→0

lim
𝜖→0

∏
𝔭∈Sing(𝑋 )

𝜖−
1
3 Vol(𝐸𝔭, 𝛾𝜖 , 𝛿 |𝐸𝔭 )𝜏(𝐸𝔭, 𝛾𝜖 , 𝛿 |𝐸𝔭 ) × lim

𝛿→0
lim
𝜖→0

𝐴𝑀 (𝑋, 𝜃, 𝛾𝜖 , 𝛿)

× lim
𝛿→0

lim
𝜖→0

exp��� 1
24

∫
𝑋

log
⎧⎪⎪⎨⎪⎪⎩

𝜂 ∧ 𝜂

𝛾2
𝜖 , 𝛿/2!

·
Vol(𝑋, 𝛾𝜖 , 𝛿)
‖𝜂‖2

𝐿2 (𝑋 )

⎫⎪⎪⎬⎪⎪⎭ 𝑐2 (𝑋, 𝛾𝜖 , 𝛿)
� !.

By equation (4.14), Propositions 5.2, 5.4, 5.5, Corollary 5.3 and Theorem 7.1, we get

𝜏𝑀 (𝑋, 𝜃) = (𝐶EH
0 𝐶EH

1 )𝑘 𝜏(𝑋, 𝛾0)𝜏Z2 (𝑋, 𝛾0) (𝜄) {2Vol(𝑌, 𝛾0)}
4−𝑘

4

× {Vol(P1, 𝜔FS)𝜏(P1, 𝜔FS)}𝑘 ×
∏

𝔭∈Sing(𝑋 )

{
| 𝑓𝔭 (0) |2

Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2 (𝑋 )

} 1
4+

1
16

× exp

[
1
24

∫
𝑋

log

{
𝜂 ∧ 𝜂

𝛾2
0/2!

· Vol(𝑋, 𝛾0)
‖𝜂‖2

𝐿2 (𝑋 )

}
𝑐2 (𝑋, 𝛾0)

]
.

Since

𝜏(𝑌, 𝛾0)2 = 𝜏(𝑋, 𝛾0)𝜏Z2 (𝑋, 𝛾0) (𝜄), Vol(𝑋, 𝛾0)/‖𝜂‖2
𝐿2 (𝑋 ) = Vol(𝑌, 𝛾0)/‖𝜂‖2

𝐿2 (𝑌 ) ,

and since X is a double covering of Y, we get the result by setting

𝐶 (𝑘) = 2{2−
1
4 𝐶EH

0 𝐶EH
1 Vol(P1, 𝜔FS)𝜏(P1, 𝜔FS)}𝑘 . (8.1)

This completes the proof. �

Theorem 8.2. Let 𝛾 be a Kähler form on Y in the sense of orbifolds. Then the following equality holds:

𝜏(𝑌, 𝛾)Vol(𝑌, 𝛾)
𝜏(𝑌, 𝜔𝜂)Vol(𝑌, 𝜔𝜂)

=

⎧⎪⎪⎨⎪⎪⎩
∏

𝔭∈Sing(𝑌 )

(
𝜔2

𝜂

𝛾2

)
(𝔭)

⎫⎪⎪⎬⎪⎪⎭
− 5

32

exp

{
− 1

24

∫
𝑌

log

(
𝜔2

𝜂

𝛾2

)
𝑐2 (𝑌, 𝛾)

}
.

Proof. Let 𝔭 ∈ Sing(𝑌 ), and let (U𝔭, 0) ⊂ (C2, 0) be an open subset that uniformises the germ (𝑌,𝔭).
We have an isomorphism (𝑌,𝔭) � (C2/Γ𝔭, 0) of germs, where Γ𝔭 = Z/4Z = 〈𝑖〉, such that 𝜔𝜂 and 𝛾 lift
to Kähler metrics on U𝔭. Following Ma [32], we define𝑌Σ as the union𝑌Σ := 𝑌 𝑖	𝑌 𝑖2 	𝑌 𝑖3 , where𝑌 𝑖𝜈 =
{𝔭𝑖𝜈 }𝔭∈Sing(𝑌 ) and the germ (𝑌 𝑖𝜈 ,𝔭𝑖𝜈 ) is equipped with orbifold structure (𝑌 𝑖𝜈 ,𝔭𝑖𝜈 ) � (C2/〈𝑖𝜈〉, 0).

Recall that the characteristic class TdΣ (𝑇𝑌 ) supported on the singular locus of Y appears in the
Riemann-Roch theorem for orbifolds, for which we refer the reader to, for example, [32]. By the anomaly
formula for Quillen metrics for orbifolds [32], we get

log
(

𝜏(𝑌, 𝛾)Vol(𝑌, 𝛾)
𝜏(𝑌, 𝜔𝜂)Vol(𝑌, 𝜔𝜂)

)
=

1
4

∫
𝑌 Σ

T̃d
Σ (𝑇𝑌 ; 𝛾, 𝜔𝜂) +

1
24

∫
𝑌
𝑐1𝑐2 (𝑇𝑌 ; 𝛾, 𝜔𝜂)

=
1
4

∑
𝔭∈Sing(𝑌 )

3∑
𝜈=1

⎡⎢⎢⎢⎢⎣
(

T̃d
e

)
𝜈/2

(𝑇𝑈𝔭; 𝛾, 𝜔𝜂)
⎤⎥⎥⎥⎥⎦
(0,0)

(𝔭) + 1
24

∫
𝑌
𝑐1𝑐2 (𝑇𝑌 ; 𝛾, 𝜔𝜂) (2,2) .

(8.2)
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Here, for 𝜃 ∈ R and a square matrix A, we define
(

Td
e

)
𝜃
(𝐴) := det

(
𝐼

𝐼−𝑒−(𝜋𝑖𝜃+𝐴)

)
, and (8Td/e)𝜃 is the

Bott-Chern secondary class associated to (Td/e) 𝜃 (𝐴) such that for any holomorphic vector bundle E
and Hermitian metrics h, ℎ′ on E

−𝑑𝑑𝑐

(
T̃d
e

)
𝜃

(𝐸 ; ℎ, ℎ′) =
(

Td
e

)
𝜃

(
− 1

2𝜋𝑖
𝑅(𝐸, ℎ)

)
−

(
Td
e

)
𝜃

(
− 1

2𝜋𝑖
𝑅(𝐸, ℎ′)

)
.

Similarly, 𝑐1𝑐2 is the Bott-Chern secondary class associated to the invariant polynomial 𝑐1 (𝐴)𝑐2(𝐴)
such that for any holomorphic vector bundle E and Hermitian metrics h, ℎ′ on E

−𝑑𝑑𝑐𝑐1𝑐2 (𝐸 ; ℎ, ℎ′) = 𝑐1 (𝐸, ℎ)𝑐2(𝐸, ℎ) − 𝑐1 (𝐸, ℎ′)𝑐2(𝐸, ℎ′).

For 𝐴 = diag(𝜆1, 𝜆2), we have(
Td
e

)
𝜈
2

(𝐴) = 1
(1 − 𝑖−𝜈)2

{1 − 𝑖−𝜈

1 − 𝑖−𝜈
𝑐1 (𝐴) +𝑂 (2)}.

Thus we get

3∑
𝜈=1

⎡⎢⎢⎢⎢⎣
(

T̃d
e

)
𝜈
2

(𝑇𝑈𝔭; 𝛾, 𝜔𝜂)
⎤⎥⎥⎥⎥⎦
(0,0)

(𝔭) = −
3∑

𝜈=1

𝑖−𝜈

(1 − 𝑖−𝜈)3
𝑐1 (𝑇𝑈𝔭; 𝛾, 𝜔𝜂) (𝔭)

=
5
8
𝑐1 (𝑇𝑈𝔭; 𝛾, 𝜔𝜂) (𝔭) = −

5
8

log
(
𝜔2

𝜂/𝛾2
)
(𝔭).

(8.3)

On the other hand, by the same computations as in equation (3.3), we get

𝑐1𝑐2(𝑇𝑌 ; 𝛾, 𝜔𝜂) (2,2) = − log
(
𝜔2

𝜂/𝛾2
)
𝑐2 (𝑇𝑌, 𝛾). (8.4)

Substituting equation (8.3) and equation (8.4) into equation (8.2), we get the result. �

Theorem 8.3. For every Ricci-flat log-Enriques surface (𝑌, 𝜔), one has

Vol(𝑌, 𝜔)
4−𝑘

8 𝜏(𝑌, 𝜔) = 𝐶 (𝑘)−1 𝜏𝑀 (𝑋, 𝜃)
1
2 ,

where 𝐶 (𝑘) is the same constant as in Theorem 8.1.

Proof. We put 𝛾 = 𝛾0 in Theorem 8.2. Then we get by Theorem 8.1

𝜏(𝑌, 𝜔𝜂)Vol(𝑌, 𝜔𝜂) = 𝜏(𝑌, 𝛾0)Vol(𝑌, 𝛾0)
4−𝑘

8 Vol(𝑌, 𝛾0)
4+𝑘

8

× {
∏

𝔭∈Sing(𝑋 )

(
𝜔2

𝜂

𝛾2
0

)
(𝔭)}

5
32 exp

[
1

24

∫
𝑌

log

(
𝜔2

𝜂

𝛾2
0

)
𝑐2 (𝑌, 𝛾0)

]

= 𝐶 (𝑘)−1𝜏𝑀 (𝑋, 𝜃)
1
2 Vol(𝑌, 𝛾0)

4+𝑘
8 ×

∏
𝔭∈Sing(𝑋 )

{
| 𝑓𝔭 (0) |2

Vol(𝑌, 𝛾0)
‖𝜂‖2

𝐿2 (𝑌 )

}− 5
32

× exp

[
− 1

24

∫
𝑌

log

{
𝜂 ∧ 𝜂

𝛾2
0/2!

· Vol(𝑌, 𝛾0)
‖𝜂‖2

𝐿2 (𝑌 )

}
𝑐2 (𝑌, 𝛾0)

]
× {

∏
𝔭∈Sing(𝑋 )

(
𝜔2

𝜂

𝛾2
0

)
(𝔭)}

5
32 exp

[
1
24

∫
𝑌

log

(
𝜂 ∧ 𝜂

𝛾2
0/2!

)
𝑐2 (𝑌, 𝛾0)

]
.
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Since | 𝑓𝔭 (0) |2 = [𝜂 ∧ 𝜂/(𝛾2
0/2!)] (𝔭) = [𝜔2

𝜂/𝛾2
0] (𝔭), we get

𝜏(𝑌, 𝜔𝜂)Vol(𝑌, 𝜔𝜂)

= 𝐶 (𝑘)−1𝜏𝑀 (𝑋, 𝜃)
1
2 Vol(𝑌, 𝛾0)

4+𝑘
8 ×

∏
𝔭∈Sing(𝑋 )

(
| 𝑓𝔭 (0) |2

Vol(𝑌, 𝛾0)
Vol(𝑌, 𝜔𝜂)

)− 5
32

× {
∏

𝔭∈Sing(𝑋 )
| 𝑓𝔭 (0) |2}

5
32 exp

[
− 1

24

∫
𝑌

log
{

Vol(𝑌, 𝛾0)
Vol(𝑌, 𝜔𝜂)

}
𝑐2 (𝑌, 𝛾0)

]
= 𝐶 (𝑘)−1𝜏𝑀 (𝑋, 𝜃)

1
2 Vol(𝑌, 𝛾0)

4+𝑘
8

(
Vol(𝑌, 𝛾0)
Vol(𝑌, 𝜔𝜂)

)− 5
32 𝑘

exp
[
−16 − 𝑘

32
log

(
Vol(𝑌, 𝛾0)
Vol(𝑌, 𝜔𝜂)

)]
= 𝐶 (𝑘)−1𝜏𝑀 (𝑋, 𝜃)

1
2 Vol(𝑌, 𝜔𝜂)

4+𝑘
8 ,

where we used the second assertion of Proposition 5.1 to get the second equality. This proves the
result. �

Theorem 8.4. Let 𝛾 be a Kähler form on Y in the sense of orbifolds, and let 𝛯 ∈ 𝐻0 (𝑌, 𝐾 ⊗2
𝑌 ) \ {0} be

a nowhere vanishing bicanonical form on Y. Then

𝜏𝑘 (𝑌 ) := 𝜏(𝑌, 𝛾)Vol(𝑌, 𝛾) ‖𝛯 ‖−
4+𝑘

8
𝐿1 (𝑌 )

⎧⎪⎪⎨⎪⎪⎩
∏

𝔭∈Sing(𝑌 )

(
𝛾2/2!
|𝛯 |

)
(𝔭)

⎫⎪⎪⎬⎪⎪⎭
5
32

× exp
[

1
24

∫
𝑌

log
(
|𝛯 |

𝛾2/2!

)
𝑐2 (𝑌, 𝛾)

]
is independent of the choices of 𝛾 and 𝛯 , where |𝛯 | :=

√
𝛯 ⊗ 𝛯 is the Ricci-flat volume form on Y

induced by 𝛯 . In fact,

𝜏𝑘 (𝑌 ) = 𝐶 (𝑘)−1𝜏𝑀 (𝑋, 𝜃)
1
2 .

Proof. Let 𝜔 be a Ricci-flat Kähler form on Y in the sense of orbifolds such that 𝜔2/2! = |𝛯 |. Since
Vol(𝑌, 𝜔) = ‖𝛯 ‖𝐿1 (𝑌 ) , we get by Theorem 8.3

Vol(𝑌, 𝜔)𝜏(𝑌, 𝜔) = Vol(𝑌, 𝜔)
4+𝑘

8 Vol(𝑌, 𝜔)
4−𝑘

8 𝜏(𝑌, 𝜔) = 𝐶 (𝑘)−1 ‖𝛯 ‖
4+𝑘

8
𝐿1 (𝑌 ) 𝜏𝑀 (𝑋, 𝜃)

1
2 . (8.5)

Let 𝜉 ∈ 𝐻0 (𝑋, 𝐾𝑋 ) be a nowhere vanishing holomorphic 2-form on 𝑋 such that (𝑝 ◦ 𝜋)∗𝛯 = 𝜉⊗2.
Since 𝜔 = 𝜔𝜉 : that is, 𝜔2/2! = 𝜉 ∧ 𝜉 = |𝛯 |, we get by Theorem 8.2

𝜏(𝑌, 𝛾)Vol(𝑌, 𝛾)
𝜏(𝑌, 𝜔)Vol(𝑌, 𝜔) =

⎧⎪⎪⎨⎪⎪⎩
∏

𝔭∈Sing(𝑌 )

(
|𝛯 |

𝛾2/2!

)
(𝔭)

⎫⎪⎪⎬⎪⎪⎭
− 5

32

exp
[
− 1

24

∫
𝑌

log
(
|𝛯 |

𝛾2/2!

)
𝑐2 (𝑌, 𝛾)

]
. (8.6)

Comparing equation (8.5) and equation (8.6), we get

𝜏(𝑌, 𝛾)Vol(𝑌, 𝛾) = 𝐶 (𝑘)−1𝜏𝑀 (𝑋, 𝜃)
1
2 ‖𝛯 ‖

4+𝑘
8

𝐿1 (𝑌 )

⎧⎪⎪⎨⎪⎪⎩
∏

𝔭∈Sing(𝑌 )

(
|𝛯 |

𝛾2/2!

)
(𝔭)

⎫⎪⎪⎬⎪⎪⎭
− 5

32

× exp
[
− 1

24

∫
𝑌

log
(
|𝛯 |

𝛾2/2!

)
𝑐2 (𝑌, 𝛾)

]
.

(8.7)
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From equation (8.7), we get 𝜏𝑘 (𝑌 ) = 𝐶 (𝑘)−1𝜏𝑀 (𝑋, 𝜃)1/2. Since the right-hand side is independent of
the choices of 𝛾 and 𝛯 , so is 𝜏𝑘 (𝑌 ). This completes the proof. �

8.2. Del Pezzo surfaces and an explicit formula for the invariant 𝜏𝑘
In this subsection, we give an explicit formula for 𝜏𝑘 as an automorphic function on the Kähler moduli
of Del Pezzo surfaces. Let 1 ≤ 𝑘 ≤ 9. We define the unimodular Lorentzian lattices 𝐿𝑘 and U(−1) as

𝐿𝑘 :=
(
1 0
0 −𝐼9−𝑘

)
(𝑘 ≠ 8), 𝐿8 :=

(
1 0
0 −1

)
or

(
0 1
1 0

)
,

U(−1) :=
(

0 −1
−1 0

)
.

We fix an isometry of lattices Λ𝑘 � U(−1) ⊕ 𝐿𝑘 and identify Λ𝑘 with U(−1) ⊕ 𝐿𝑘 .
Let V be a Del Pezzo surface of degree k: that is,

𝑘 = deg𝑉 =
∫
𝑉
𝑐1 (𝑉)2.

Then 𝑉 = Bl9−𝑘 (P2) is the blowing-up of P2 at 9 − 𝑘 points in general position when 𝑘 ≠ 8. When
𝑘 = 8, 𝑉 � Σ0 or Σ1, where Σ𝑛 = P(OP1 ⊕OP1 (𝑛)) is the Hirzebruch surface. Notice that Σ0 = P1 ×P1

and Σ1 = Bl1 (P2). When 𝑉 � Σ0, 𝐻2(𝑉, Z) endowed with the cup product pairing is isometric to 𝐿𝑘 by
identifying 𝐻, 𝐸1, . . . , 𝐸9−𝑘 with the standard basis of 𝐿𝑘 , where 𝐻 ∈ 𝐻2 (𝑉, Z) is the class obtained
from the hyperplane class of 𝐻2(P2, Z) and 𝐸𝑖 (𝑖 = 1, . . . , 9− 𝑘) are the classes of exceptional divisors.
Similarly, 𝐻 (𝑉, Z) endowed with the Mukai pairing is isometric to Λ𝑘 . In what follows, we identify 𝐿𝑘

(respectively, Λ𝑘 ) with 𝐻2 (𝑉, Z) (respectively, 𝐻 (𝑉, Z)) in this way.
Recall that the type IV domain Ω𝑘 associated with Λ𝑘 was defined in Section 2.4. We identify

Ω𝐻 (𝑉 ,Z) with the tube domain 𝐻2(𝑉, Z) ⊗ R + 𝑖 C𝐻 2 (𝑉 ,Z) ⊂ 𝐻2 (𝑉, C) via the map

𝐻2 (𝑉, Z) ⊗ R + 𝑖 C𝐻 2 (𝑉 ,Z) � 𝑦 → [exp(𝑦)] :=
[(

1, 𝑦, 𝑦2/2
)]
∈ Ω𝐻 (𝑉 ,Z) , (8.8)

where C𝐻 2 (𝑉 ,Z) := {𝑣 ∈ 𝐻2(𝑉, R); 𝑣2 > 0} is the positive cone of 𝐻2 (𝑉, R). Through the isomorphism
given by equation (8.8), 𝑂 (𝐻 (𝑉, Z)) acts on 𝐻2(𝑉, R) + 𝑖 C𝐻 2 (𝑉 ,Z) .

LetK𝑉 ⊂ C𝐻 2 (𝑉 ,Z) be the Kähler cone of V: that is, the cone of 𝐻2 (𝑉, R) consisting of Kähler classes
on V. Let Eff (𝑉) ⊂ 𝐻2(𝑉, R) be the effective cone of V: that is, the dual cone of the Kähler cone K𝑉 .

Definition 8.5. Define the infinite product Φ𝑉 (𝑧) on 𝐻2(𝑉, Z) ⊗ R + 𝑖K𝑉 by

Φ𝑉 (𝑧) := 𝑒𝜋𝑖 〈𝑐1 (𝑉 ) ,𝑧 〉
∏

𝛼∈Eff (𝑉 )
(1 − 𝑒2𝜋𝑖 〈𝛼,𝑧 〉)𝑐

(0)
𝑘
(𝛼2)

×
∏

𝛽∈Eff (𝑉 ) , 𝛽/2≡𝑐1 (𝑉 )/2mod 𝐻 2 (𝑉 ,Z)
(1 − 𝑒𝜋𝑖 〈𝛽,𝑧 〉)𝑐

(1)
𝑘
(𝛽2/4) ,

where {𝑐 (0)𝑘 (𝑙)}𝑙∈Z, {𝑐 (1)𝑘 (𝑙)}𝑙∈Z+𝑘/4 are defined by the generating functions∑
𝑙∈Z

𝑐 (0)𝑘 (𝑙) 𝑞𝑙 =
𝜂(2𝜏)8𝜃A1 (𝜏)𝑘

𝜂(𝜏)8𝜂(4𝜏)8
,

∑
𝑙∈ 𝑘

4 +Z

𝑐 (1)𝑘 (𝑙) 𝑞𝑙 = −8
𝜂(4𝜏)8𝜃A1+1/2(𝜏)𝑘

𝜂(2𝜏)16 .

Here 𝜃A1+𝜖 /2(𝜏) :=
∑

𝑛∈Z 𝑞 (𝑛+𝜖 /2)
2 and 𝜂(𝜏) := 𝑞1/24 ∏

𝑛>0 (1 − 𝑞𝑛).
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Let C+
𝐻 2 (𝑉 ,Z) be the connected component of C𝐻 2 (𝑉 ,Z) that contains K𝑉 , and let Ω+

𝐻 (𝑉 ,Z) be
the component of Ω𝐻 (𝑉 ,Z) corresponding to 𝐻2 (𝑉, R) + 𝑖 C+

𝐻 2 (𝑉 ,Z) via the isomorphism given by
equation (8.8). By Borcherds [8, Th. 13.3] (compare [44]), Φ𝑉 (𝑧) converges absolutely for those
𝑧 ∈ 𝐻2 (𝑉, R) + 𝑖K𝑉 with !𝑧 � 0 and extends to an automorphic form on Ω+

𝐻 (𝑉 ,Z) for 𝑂+(𝐻 (𝑉, Z)) of
weight deg𝑉 + 4 with zero divisor div(Φ𝑉 ) =

∑
𝑑∈𝐻 (𝑉 ,Z) , 𝑑2=−1 𝑑⊥ under the identification 𝐻2(𝑉, R) +

𝑖 C+
𝐻 2 (𝑉 ,Z) � Ω+

𝐻 (𝑉 ,Z) .
Recently, an explicit Fourier series expansion of Φ𝑉 (𝑧) is discovered by Gritsenko [22, Cor. 5.1].

It is also remarkable that Φ𝑉 is the denominator function of a generalised Kac-Moody algebra, whose
real and imaginary simple roots are explicitly given by the Fourier series expansion of Φ𝑉 [23, §6.2,
Th. 6.1 Eq. (6.1), (6.10)]. In this sense, the series of Borcherds products Φ𝑉 associated to Del Pezzo
surfaces is quite analogous to the Borcherds Φ-function of rank 10.

We define the Petersson norm of Φ𝑉 (𝑧) by

‖Φ𝑉 (𝑧)‖2 := 〈!𝑧,!𝑧〉4+deg𝑉 |Φ𝑉 (𝑧) |2,

where 𝑧 ∈ 𝐻2(𝑉, R) + 𝑖 C+
𝐻 2 (𝑉 ,Z) . Then ‖Φ𝑉 ‖2 is an 𝑂+(𝐻 (𝑉, Z))-invariant 𝐶∞ function on Ω+

𝐻 (𝑉 ,Z) .
Hence ‖Φ𝑉 ‖2 is identified with a 𝐶∞ function on Mdeg𝑉 in the sense of orbifolds.

Theorem 8.6. Let 1 ≤ 𝑘 ≤ 9. There exists a constant 𝐶 (𝑘) > 0 depending only on k such that for every
2-elementary 𝐾3 surface (𝑋, 𝜃) of type 𝑀𝑘 := Λ𝑘 (2)⊥,

𝜏𝑀𝑘 (𝑋, 𝜃) = 𝐶 (𝑘) ‖Φ𝑉 (𝜛(𝑋, 𝜃))‖−1/2,

where 𝑘 = deg𝑉 .

Proof. See [44, Th. 4.2 (1)] and [45, Th. 0.1]. �

Theorem 8.7. Let 1 ≤ 𝑘 ≤ 9. Then there exists a constant 𝐶𝑘 > 0 depending only on k such that for
every good log-Enriques surface Y with #Sing(𝑌 ) = deg𝑉 ,

𝜏deg𝑉 (𝑌 ) = 𝐶deg𝑉 ‖Φ𝑉 (𝜛(𝑌 ))‖−1/4.

Proof. We set 𝑘 = deg𝑉 . When 𝑘 = 2, we define 𝑉 = Σ0 when Y is of even type and 𝑉 = Σ1 when Y is
of odd type. Let (𝑋, 𝜃) be the 2-elementary 𝐾3 surface of type 𝑀𝑘 associated to Y. By the definition of
the period of Y, we have 𝜛(𝑌 ) = 𝜛(𝑋, 𝜃). Hence

‖Φ𝑉 (𝜛(𝑌 ))‖ = ‖Φ𝑉 (𝜛(𝑋, 𝜃))‖. (8.9)

By Theorems 8.4, 8.6 and equation (8.9), we get

𝜏𝑘 (𝑌 ) = 𝐶 (𝑘)−1𝜏𝑀𝑘 (𝑋, 𝜃)1/2 = 𝐶 (𝑘)−1𝐶 (𝑘) ‖Φ𝑉 (𝜛(𝑋, 𝜃))‖−1/4

= 𝐶 (𝑘)−1𝐶 (𝑘) ‖Φ𝑉 (𝜛(𝑌 ))‖−1/4.
(8.10)

Setting 𝐶𝑘 := 𝐶 (𝑘)−1𝐶 (𝑘) in equation (8.10), we get the result. �

8.3. The quasi-pullback of Φ𝑉

We define the Kähler moduli of V by

KM(𝑉) := (𝐻2(𝑉, R) + 𝑖 C+
𝐻 2 (𝑉 ,Z) )/𝑂

+(𝐻 (𝑉, Z)) � Ω+
𝐻 (𝑉 ,Z) /𝑂

+(𝐻 (𝑉, Z)).

Since 𝐻 (𝑉, Z) � Λdeg𝑉 , we have KM(𝑉) = Mdeg𝑉 , where the orthogonal modular variety M𝑘 was
defined in Section 2.4. Let 𝜋 : 𝑉 := Bl𝑝 (𝑉) → 𝑉 be the blow-up of V at p, and let 𝐸 := 𝜋−1(𝑝) be the
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exceptional curve of 𝜋. Then we have a map of cohomologies 𝜋∗ : 𝐻 (𝑉, Z) → 𝐻 (𝑉, Z), which induces
the canonical identification

𝐻 (𝑉, Z) � 𝜋∗𝐻 (𝑉, Z) = {[𝑥] ∈ 𝐻 (𝑉, Z); 〈[𝐸], 𝑥〉 = 0}.

Since [𝐸] is a norm (−1)-vector of 𝐻2 (𝑉, Z), this implies that KM(𝑉) is identified with a component
of the Heegner divisor of norm (−1)-vectors of KM(𝑉). Since 𝑂 (𝐻 (𝑉, Z)) acts transitively on the
norm (−1)-vectors of 𝐻 (𝑉, Z) except the case deg𝑉 = 7 – that is, 𝐻 (𝑉, Z) � U⊕2 ⊕ 〈−1〉 – KM(𝑉)
coincides with the Heegner divisor of norm (−1)-vectors of KM(𝑉) when deg𝑉 ≠ 7. When deg𝑉 = 7,
the Heegner divisor of norm (−1)-vectors of KM(𝑉) consists of two components; one is given by
KM(𝛴0), and the other is given by KM(𝛴1), where 𝛴𝑛 = P(OP1 ⊕OP1 (𝑛)) is the Hirzebruch surface.
In the following theorem, we use the convention that a Del Pezzo surface of degree 0 is an Enriques
surface.

Theorem 8.8. Φ𝑉 is the quasi-pullback of Φ𝑉 to KM(𝑉) = [𝐸]⊥, up to a constant. Namely, in the
infinite product expression in Definition 8.5, the following equality holds:

Φ𝑉 = Const.
Φ𝑉 (·)
〈·, [𝐸]〉

����
[𝐸 ]⊥

,

where 〈𝑧, [𝐸]〉 is the linear form on 𝐻2 (𝑉, C) defined by the norm (−1)-vector [𝐸].

Proof. The result is a special case of [29, Th. 1.1]. See also [29, Example 3.17]. �

This theorem can be summarised in the following diagrams:

KM(Enr) ⊃ KM(dP1) ⊃ · · · ⊃ KM(dP7) ⊃ KM(Σ1) ⊃ KM(P2)
ΦEnr → ΦdP1 → · · · → ΦdP7 → ΦΣ1 → ΦP2

𝜂1−8284−8 → 𝜂1−8284−8𝜃 → · · · → 𝜂1−8284−8𝜃7 → 𝜂1−8284−8𝜃8 → 𝜂1−8284−8𝜃9

and

KM(dP7) ⊃ KM(Σ0)
ΦdP7 → ΦΣ0

𝜂1−8284−8𝜃7 → 𝜂1−8284−8𝜃8

where the inclusion implies the embedding as the discriminant divisor, the arrow in the second line
implies the quasi-pullback (up to a constant), and the arrow in the third line describes the change
of elliptic modular form for Γ0(4) corresponding to Φ𝑉 . We remark that there are no inclusions of
KM(P2) into KM(Σ0).

9. The invariant 𝜏𝑘 and the BCOV invariant

9.1. The BCOV invariant of log-Enriques surfaces

In this subsection, we prove that the invariant 𝜏𝑘 is viewed as the BCOV invariant of good log-Enriques
surfaces. Recall that for a compact connected Kähler orbifold (𝑉, 𝛾), the BCOV torsion 𝑇BCOV (𝑉, 𝛾) is
defined as

𝑇BCOV (𝑉, 𝛾) := exp(−
∑

𝑝,𝑞≥0
(−1) 𝑝+𝑞 𝑝𝑞 𝜁 ′𝑝,𝑞 (0)),

where 𝜁𝑝,𝑞 (𝑠) is the spectral zeta function of the Laplacian �𝑝,𝑞 acting on (𝑝, 𝑞)-forms on V in the
sense of orbifolds. As before, the analytic torsion of the trivial line bundle on V is denoted by 𝜏(𝑉, 𝛾).
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Lemma 9.1. If dim𝑉 = 2, then the following equality holds:

𝑇BCOV (𝑉, 𝛾) = 𝜏(𝑉, 𝛾)−2.

Proof. Since�𝑝,𝑞 and�2−𝑞,2−𝑝 are isospectral via the Hodge ∗-operator, we have 𝜁𝑝,𝑞 (𝑠) = 𝜁2−𝑞,2−𝑝 (𝑠).
Since �𝑝,𝑞 and �𝑞,𝑝 are isospectral via the complex conjugation, we have 𝜁𝑝,𝑞 (𝑠) = 𝜁𝑞,𝑝 (𝑠). Using
these relations, we have

− log𝑇BCOV (𝑉, 𝛾) = 4𝜁 ′0,0 (0) − 4𝜁 ′0,1 (0) + 𝜁 ′1,1 (0). (9.1)

Since 𝜁0,0 (𝑠) − 𝜁0,1 (𝑠) + 𝜁0,2 (𝑠) = 0 and 𝜁1,0 (𝑠) − 𝜁1,1 (𝑠) + 𝜁1,2 (𝑠) = 0, we have 4𝜁 ′0,0 (0) − 4𝜁 ′0,1 (0) =
−4𝜁 ′0,2 (0) and 𝜁 ′1,1 (0) = 𝜁 ′1,0 (0) + 𝜁

′
1,2 (0) = 𝜁 ′1,0 (0) + 𝜁

′
0,1 (0) = 2𝜁 ′0,1 (0). Substituting these into equation

(9.1), we get the result. �

Now we have the following:

Theorem 9.2. Let Y be a good log-Enriques surface with k singular points. Let 𝛾 be a Kähler form on
Y in the sense of orbifolds, and let 𝛯 ∈ 𝐻0(𝑌, 𝐾 ⊗2

𝑌 ) \ {0} be a nowhere vanishing bicanonical form on
Y. Then

𝜏BCOV (𝑌 ) := 𝑇BCOV (𝑌, 𝛾)Vol(𝑌, 𝛾)−2 ‖𝛯 ‖
4+𝑘

4
𝐿1 (𝑌 )

⎧⎪⎪⎨⎪⎪⎩
∏

𝔭∈Sing(𝑌 )

(
𝛾2/2!
|𝛯 |

)
(𝔭)

⎫⎪⎪⎬⎪⎪⎭
− 5

16

× exp
[
− 1

12

∫
𝑌

log
(
|𝛯 |

𝛾2/2!

)
𝑐2(𝑌, 𝛾)

]
is independent of the choices of 𝛾 and 𝛯 . In fact,

𝜏BCOV (𝑌 ) = 𝜏𝑘 (𝑌 )−2 = 𝐶−2
𝑘 ‖Φ𝑉 (𝜛(𝑌 ))‖

1
2 ,

where 𝐶𝑘 is the same constant as in Theorem 8.7.

Proof. Since 𝜏BCOV (𝑌 ) = 𝜏𝑘 (𝑌 )−2 by Theorem 8.4 and Lemma 9.1, we get the first claim. The second
claim follows from Theorem 8.7. �

We call 𝜏BCOV (𝑌 ) the BCOV invariant of Y. When 𝛾 is Ricci-flat and |𝛯 | = 𝛾2/2!, we have the
following simple expression:

𝜏BCOV (𝑌 ) = 𝑇BCOV (𝑌, 𝛾)Vol(𝑌, 𝛾)
𝑘−4

4 . (9.2)

As in the case of Enriques surfaces, the BCOV invariant of good log-Enriques surfaces is expressed by
the Peterssion norm of a Borcherds product. In particular, the BCOV invariant of log-Enriques surfaces
is not a birational invariant, for the birational equivalence classes of log-Enriques surfaces consist of a
single class.

Problem 9.3. For a good log-Enriques surface Y, there exists a log-Enriques surface 𝑌 ′ with a unique
singular point admitting a birational morphism 𝑌 → 𝑌 ′ (compare [47]). In general, the singularity of
𝑌 ′ is worse than those of Y. Can one construct a holomorphic torsion invariant of 𝑌 ′ using some ALE
instanton instead of the Eguchi-Hanson instanton? If this is the case, compare the holomorphic torsion
invariants between Y and 𝑌 ′.

Problem 9.4. Let Y be a good log-Enriques surface. Let 𝑝 : 𝑌 → 𝑌 be a resolution such that 𝑝−1 (Sing𝑌 )
is a disjoint union of smooth (−4)-curves. Compare the BCOV invariant of Y and that of the pair
(𝑌, 𝑝−1 (Sing𝑌 )) defined by Zhang [49].
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Problem 9.5. Can one construct a holomorphic torsion invariant of log-Enriques surfaces with index
≥ 3 and prove its automorphy?

9.2. The BCOV invariant of certain Borcea-Voisin type orbifolds

Let Y be a good log-Enriques surface with k singular points, and let X be the canonical double covering
of Y. Then X is a nodal 𝐾3 surface with k nodes endowed with an anti-symplectic involution 𝜄 with a
fixed point set Sing 𝑋 = {𝑝1, . . . , 𝑝𝑘 }. Let T be an elliptic curve. We define

𝑉 = 𝑉(𝑋, 𝜄,𝑇 ) := (𝑋 × 𝑇)/(𝜄 × (−1)𝑇 ).

Then V is a Calabi-Yau orbifold of dimension 3. Let 𝑉 be the Borcea-Voisin orbifold

𝑉 = 𝑉(𝑋,𝜃,𝑇 ) := (𝑋 × 𝑇)/(𝜃 × (−1)𝑇 ),

where 𝜋 : 𝑋 → 𝑋 is the minimal resolution of X and 𝜃 is the involution on 𝑋 induced from 𝜄. As before,
we set 𝐸𝑖 := 𝜋−1 (𝑝𝑖) � P1. The birational morphism from 𝑉 to V induced by 𝜋 is denoted again by 𝜋.
Then 𝜋 : 𝑉 → 𝑉 is a partial resolution such that the k cyclic quotient singularities of type ( 1

4 ,
1
4 ,

1
2 ) of

V are replaced by the milder cyclic quotient singularities of type ( 1
2 ,

1
2 , 0). As an application of some

results in Section 8, we compare the BCOV invariants between 𝑉 and V.
Let 𝛾𝑋 (respectively, 𝛾𝑋 ) be a Ricci-flat Kähler from on X (respectively, 𝑋), and let 𝛾𝑇 be the flat

Kähler form with Vol(𝑉, 𝛾𝑇 ) = 1. Let 𝜋1 : 𝑉 → 𝑌 = 𝑋/𝜄 and 𝜋2 : 𝑉 → 𝑇/(−1)𝑇 be the projections.
Similarly, let �̃�1 : 𝑉 → 𝑋/𝜃 and �̃�2 : 𝑉 → 𝑇/(−1)𝑇 be the projections. We define a Ricci-flat Kähler
form 𝛾 (respectively, �̃�) on V (respectively, 𝑉) by

𝛾 := 𝜋∗1𝛾𝑋 + 𝜋∗2𝛾𝑇 , �̃� := �̃�∗1𝛾𝑋 + �̃�∗2𝛾𝑇 .

Since Sing(𝑋 × 𝑇) = ({𝑝1} × 𝑇) 	 · · · 	 ({𝑝𝑘 } × 𝑇), we have

Sing𝑉 = ({𝑝1} × 𝑇/(−1)𝑇 ) 	 · · · 	 ({𝑝𝑘 } × 𝑇/(−1)𝑇 ) 	 (𝑋 𝜄 × 𝑇 [2])
= ({𝑝1} × 𝑇/(−1)𝑇 ) 	 · · · 	 ({𝑝𝑘 } × 𝑇/(−1)𝑇 ) 	 (Sing 𝑋 × 𝑇 [2]),

where 𝑇 [2] denotes the points of order 2 of T. Similarly,

Sing𝑉 = 𝑋 𝜃 × 𝑇 [2] = (𝐸1 × 𝑇 [2]) 	 · · · 	 (𝐸𝑘 × 𝑇 [2]).

Hence the 1-dimensional strata of Sing𝑉 (respectively, Sing𝑉) consist of k-copies of the quotient
𝑇/(−1)𝑇 (respectively, 4-copies of 𝐸1, . . . , 𝐸𝑘 ), which are endowed with the flat orbifold Kähler form
𝛾𝑇 (respectively, Kähler form 𝛾𝑋 |𝐸𝑖 induced from 𝛾𝑋 ).

Recall from [46, (6.12)] that the orbifold BCOV invariant of V is defined by

𝜏orb
BCOV (𝑉) = 𝑇BCOV (𝑉, 𝛾)Vol(𝑉, 𝛾)−3+ 𝜒orb (𝑉 )

12 Vol𝐿2 (𝐻2 (𝑉, Z), 𝛾)−1

×
𝑘∏

𝑖=1
𝜏({𝑝𝑖} × (𝑇/(−1)𝑇 ), 𝛾𝑇 )−1Vol(𝑇/(−1)𝑇 , 𝛾𝑇 )−1

= 𝑇BCOV (𝑉, 𝛾)Vol(𝑉, 𝛾)−3+ 𝜒orb (𝑉 )
12 Vol𝐿2 (𝐻2 (𝑉, Z), 𝛾)−12𝑘𝜏(𝑇, 𝛾𝑇 )−

𝑘
2 ,

(9.3)

where we used the facts 𝜏(𝑇/(−1)𝑇 , 𝛾𝑇 ) = 𝜏(𝑇, 𝛾𝑇 )1/2 and Vol(𝑇/(−1)𝑇 , 𝛾𝑇 ) = 1/2 to get the second
equality and Vol𝐿2 (𝐻2 (𝑉, Z), 𝛾) is the covolume of the lattice 𝐻2(𝑉, Z)fr := 𝐻2(𝑉, Z)/Torsion with
respect to the 𝐿2 metric induced by 𝛾. (In what follows, for a finitely generated Z-module M, we set
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𝑀fr := 𝑀/Tors(𝑀).) For the definition of 𝜒orb(𝑉), see [46, (6.2)]. By [46, Prop. 6.2], 𝜒orb(𝑉) coincides
with the Euler characteristic of a crepant resolution of V. Similarly, we have

𝜏orb
BCOV (𝑉) = 𝑇BCOV (𝑉, �̃�)Vol(𝑉, �̃�)−3+ 𝜒orb (𝑉 )

12 Vol𝐿2 (𝐻2(𝑉, Z), �̃�)−1

× {
𝑘∏

𝑖=1
𝜏(𝐸𝑖 , 𝛾𝑋 |𝐸𝑖 )Vol(𝐸𝑖 , 𝛾𝑋 |𝐸𝑖 )}−4.

Let 𝑞 : 𝑋 × 𝑇 → 𝑉 and 𝑞 : 𝑋 × 𝑇 → 𝑉 be the quotient maps. Let 𝐻2(𝑋 × 𝑇, Z)+ (respectively,
𝐻2 (𝑋 × 𝑇, Z)+) be the invariant subspace with respect to the 𝜄 × (−1)𝑇 (respectively, 𝜃 × (−1)𝑇 )-
action on 𝑋 × 𝑇 (respectively, 𝑋 × 𝑇). We define 𝐻2(𝑋, Z)+ and 𝐻2(𝑋, Z)+ in the same way. Let
𝑟 := rkZ𝐻

2 (𝑋, Z)+ and �̃� := rkZ𝐻
2 (𝑋, Z)+. Then �̃� = 𝑟 + 𝑘 = 10 + 𝑘 . The maps of cohomologies

𝑞∗ : 𝐻2 (𝑉, Z)fr → 𝐻2(𝑋 × 𝑇, Z)+fr = 𝐻2(𝑋, Z)+fr ⊕ 𝐻2(𝑇, Z),

𝑞∗ : 𝐻2 (𝑉, Z)fr → 𝐻2(𝑋 × 𝑇, Z)+ = 𝐻2(𝑋, Z)+ ⊕ 𝐻2(𝑇, Z),

have finite cokernel. Let disc(𝐻2 (𝑋, Z)+fr) be the discriminant of the lattice 𝐻2(𝑋, Z)+fr with respect
to the intersection pairing 〈·, ·〉 on 𝐻2 (𝑋, Z)fr ⊂ 𝐻2 (𝑋, Q). Namely, if {e1, . . . , e𝑟 } is a basis of
𝐻2 (𝑋, Z)fr, then disc(𝐻2 (𝑋, Z)+fr) := det(〈e𝑖 , e 𝑗〉). Obviously, |Coker 𝑞∗ |, |Coker 𝑞∗ |, disc(𝐻2(𝑋, Z)+fr),
disc(𝐻2(𝑋, Z)+) depend only on k. Recall that the constant 𝐶 (𝑘) was defined in equation (8.1), which
is the kth power of the product of the normalised analytic torsion of the Eguchi-Hanson instanton and
the analytic torsion of P1 endowed with the Fubini-Study metric, up to a universal constant.

Theorem 9.6. The following equality holds:

𝜏orb
BCOV (𝑉)
𝜏orb

BCOV (𝑉)
= 2−𝑘−4𝐶 (𝑘)8

(
|Coker 𝑞∗ |
|Coker 𝑞∗ |

)−2
(
|disc(𝐻2(𝑋, Z)+fr) |
|disc(𝐻2(𝑋, Z)+) |

)−1

.

Proof. We express 𝑇BCOV (𝑉, 𝛾) in terms of 𝜏Z2 (𝑋, 𝛾𝑋 ) (𝜄) and 𝜏(𝑇, 𝛾𝑇 ). As is easily verified, Lemmas
8.3–8.7 of [46] hold true for V without any change. Since ℎ1,1 (𝑋) = 20− 𝑘 , the coefficient 21 of 𝜁𝑇 ,+(𝑠)
in [46, Lemma 8.8] should be replaced by 21 − 𝑘 . Hence, for V, the equality corresponding to [46,
(8.28), p.357] becomes∑

𝑝,𝑞

(−1) 𝑝+𝑞 𝑝𝑞 𝜁𝑝,𝑞 (𝑠) = (24 − 𝑘)𝜁𝑇 ,+(𝑠) + 8{𝜁𝑋,+(𝑠) − 𝜁𝑋,−(𝑠)}.

As a result, we get the following equality as in the first equality of [46, (8.29), p.358]:

𝑇BCOV (𝑉, 𝛾) = 𝜏Z2 (𝑋, 𝛾𝑋 ) (𝜄)−4𝜏(𝑇, 𝛾𝑇 )−(12− 𝑘
2 ) . (9.4)

By [46, (8.29), p.358 l.2-3], we have

𝑇BCOV (𝑉, �̃�) = 𝜏Z2 (𝑋, 𝛾𝑋 ) (𝜃)
−4𝜏(𝑇, 𝛾𝑇 )−12. (9.5)

Since 𝑋 𝜃 consists of k copies of mutually disjoint P1, we get 𝜒orb(𝑉) = 𝜒orb(𝑉) = 1
2 𝜒(𝑋 × 𝑇) +

3
2 𝜒(𝑋

𝜃 × 𝑇 [2]) = 12𝑘 by [46, Prop. 6.1 and (6.3)]. Hence

Vol(𝑉, 𝛾)−3+ 𝜒orb (𝑉 )
12 = Vol(𝑉, 𝛾)−3+𝑘 = 23−𝑘 Vol(𝑋, 𝛾𝑋 )−3+𝑘 , (9.6)
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where we used the fact Vol(𝑇, 𝛾𝑇 ) = 1 and Vol(𝑉, 𝛾) = Vol(𝑋, 𝛾𝑋 )Vol(𝑇, 𝛾𝑇 )/2. Similarly,

Vol(𝑉, �̃�)−3+ 𝜒orb (𝑉 )
12 = 23−𝑘 Vol(𝑋, 𝛾𝑋 )

−3+𝑘 . (9.7)

Let {f1, . . . , f𝑟+1} be a basis of 𝐻2(𝑉, Z)fr. By definition, we have

Vol𝐿2 (𝐻2(𝑉, Z), 𝛾) = | det(〈f𝑖 , f 𝑗〉𝐿2) |,

where 〈·, ·〉𝐿2 denotes the 𝐿2 inner product on 𝐻2 (𝑉, R) induced from 𝛾. Since Vol𝐿2 (𝐻2 (𝑇, Z), 𝛾𝑇 ) = 1,
the same calculations as in [19, Lemma 13.4] yield that

Vol𝐿2 (𝐻2 (𝑉, Z), 𝛾) = |Coker 𝑞∗ |2 Vol𝐿2 (𝐻2(𝑋, Z)+fr ⊕ 𝐻2 (𝑇, Z), 𝛾𝑋 ⊕ 𝛾𝑇 )
= |Coker 𝑞∗ |2 Vol𝐿2 (𝐻2(𝑋, Z)+fr, 𝛾𝑋 )Vol(𝑋, 𝛾𝑋 )/2
= 2−(𝑟+1) |Coker 𝑞∗ |2 |disc(𝐻2 (𝑋, Z)+fr) |Vol(𝑋, 𝛾𝑋 ).

(9.8)

Similarly, we have

Vol𝐿2 (𝐻2(𝑉, Z), �̃�) = 2−(�̃�+1) |Coker 𝑞∗ |2 |disc(𝐻2(𝑋, Z)+) |Vol(𝑋, 𝛾𝑋 ). (9.9)

Substituting equations (9.4), (9.6) and (9.8) into equation (9.3) and using equation (3.7), we get

𝜏orb
BCOV (𝑉) = 2𝑟+4 |Coker 𝑞∗ |−2 |disc(𝐻2 (𝑋, Z)+fr) |

−1

× 𝜏Z2 (𝑋, 𝛾𝑋 ) (𝜄)−4Vol(𝑋, 𝛾𝑋 )−4+𝑘𝜏(𝑇, 𝛾𝑇 )−12

= 2𝑟+4 |Coker 𝑞∗ |−2 |disc(𝐻2 (𝑋, Z)+fr) |
−1

× 𝜏(𝑋, 𝛾𝑋 )−4𝜏Z2 (𝑋, 𝛾𝑋 ) (𝜄)−4Vol(𝑋, 𝛾𝑋 )−4+𝑘𝜏(𝑇, 𝛾𝑇 )−12

= 2𝑟−𝑘 |Coker 𝑞∗ |−2 |disc(𝐻2 (𝑋, Z)+fr) |
−1𝜏(𝑌, 𝛾𝑌 )−8Vol(𝑌, 𝛾𝑌 )−4+𝑘𝜏(𝑇, 𝛾𝑇 )−12

= 2𝑟−𝑘 |Coker 𝑞∗ |−2 |disc(𝐻2 (𝑋, Z)+fr) |
−1𝐶 (𝑘)8𝜏𝑀 (𝑋, 𝜃)−4𝜏(𝑇, 𝛾𝑇 )−12,

(9.10)

where we used the equality 𝜏(𝑌, 𝛾𝑌 )2 = 𝜏(𝑋, 𝛾𝑋 )𝜏Z2 (𝑋, 𝛾𝑋 ) (𝜄) to get the third equality and Theorem
8.3 to get the last equality. Similarly, substituting equations (9.5), (9.7) and (9.9) into [46, (6.12)], we get

𝜏orb
BCOV (𝑉) = 𝜏Z2 (𝑋, 𝛾𝑋 ) (𝜃)

−4𝜏(𝑇, 𝛾𝑇 )−12{
𝑘∏

𝑖=1
𝜏(𝐸𝑖 , 𝛾𝑋 |𝐸𝑖 )Vol(𝐸𝑖 , 𝛾𝑋 |𝐸𝑖 )}−4

× 23−𝑘 Vol(𝑋, 𝛾𝑋 )
−3+𝑘2�̃�+1 |Coker 𝑞∗ |−2 |disc(𝐻2(𝑋, Z)+) |−1Vol(𝑋, 𝛾𝑋 )

−1

= 2�̃�+4−𝑘 |Coker 𝑞∗ |−2 |disc(𝐻2(𝑋, Z)+) |−1𝜏(𝑇, 𝛾𝑇 )−12

× 𝜏Z2 (𝑋, 𝛾𝑋 ) (𝜃)
−4Vol(𝑋, 𝛾𝑋 )

−4+𝑘 {
𝑘∏

𝑖=1
𝜏(𝐸𝑖 , 𝛾𝑋 |𝐸𝑖 )Vol(𝐸𝑖 , 𝛾𝑋 |𝐸𝑖 )}−4

= 2𝑟+4 |Coker 𝑞∗ |−2 |disc(𝐻2 (𝑋, Z)+) |−1𝜏𝑀 (𝑋, 𝜃)−4𝜏(𝑇, 𝛾𝑇 )−12.

(9.11)

Comparing equation (9.10) and equation (9.11), we get the result. �

We define the BCOV invariant of elliptic curve T as

𝜏BCOV (𝑇) := Vol(𝑇, 𝜔)−1 𝜏BCOV (𝑇, 𝜔) exp

[
− 1

12

∫
𝑇

log

(
𝑖 𝜉 ∧ 𝜉

𝜔

)
𝑐1 (𝑇, 𝜔)

]
,
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where 𝜔 is an arbitrary Kähler from on T. By [46, Th. 8.1], 𝜏BCOV (𝑇) is independent of the choice
of 𝜔 and is expressed by the Petersson norm of the Dedekind 𝜂-function. By definition, we have
𝜏BCOV (𝑇) = 𝜏(𝑇, 𝛾𝑇 )−1. By equation (9.10), we have the following factorisation of the orbifold BCOV
invariant of V.

Corollary 9.7. The following equality of BCOV invariants holds:

𝜏orb
BCOV (𝑉) = 2𝑟−𝑘 |Coker 𝑞∗ |−2 |disc(𝐻2 (𝑋, Z)+fr) |

−1𝜏BCOV (𝑌 )4𝜏BCOV (𝑇)12.

Proof. The result follows from equation (9.2) and the third equality of equation (9.10). �

Remark 9.8. In [46, p.357 l.7], it seems that the equality 𝐻2 (𝑋, Z) = 𝐻2 (𝑆 × 𝑇, Z)+ does not hold in
general. As the difference of these two quantities, |Coker 𝑞∗ | should appear in the formula for 𝜏orb

BCOV (𝑉)
as in equation (9.11).

Remark 9.9. In this subsection, for the sake of simplicity of notation, we adopt the definitions
Vol(𝑉, 𝛾) =

∫
𝑉
𝛾3/3! and 〈𝛼, 𝛽〉𝐿2 =

∫
𝑉
(H𝛼) ∧ ∗(H𝛽), and so on, where H(·) denotes the harmonic

projection. If we follow the tradition in Arakelov geometry, it is more natural to define the 𝐿2-inner
product by Vol(𝑉, 𝛾) = (2𝜋)− dim𝑉

∫
𝑉
𝛾3/3! and 〈𝛼, 𝛽〉𝐿2 = (2𝜋)− dim𝑉

∫
𝑉
(H𝛼) ∧ ∗(H𝛽), and so on.

Notice that in [46], this latter definition is adopted.

Problem 9.10. Is the orbifold BCOV invariant [46] a birational invariant of Calabi-Yau orbifolds? (To
our knowledge, it is still open that the BCOV invariant of KLT Calabi-Yau varieties [20] coincides
with the orbifold BCOV invariant [46].) If the answer is affirmative, then it follows from Theorem 9.6
that the normalised analytic torsion of the Eguchi-Hanson instanton will essentially be given by the
analytic torsion of P1 with respect to the Fubini-Study metric. Once a comparison formula for the BCOV
invariants for birational Calabi-Yau orbifolds is obtained, then one will get a formula for the normalised
analytic torsion of the Eguchi-Hanson instanton through Theorem 9.6.
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