

SYSTEMS ENGINEERING AND DESIGN 2275

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2020
https://doi.org/10.1017/dsd.2020.25

AN ASSUMPTION NETWORK-BASED APPROACH TO SUPPORT
MARGIN ALLOCATION AND MANAGEMENT

S. El Fassi , M. D. Guenov and A. Riaz

Cranfield University, United Kingdom

 s.el-fassi@cranfield.ac.uk

Abstract

Presented is an approach to support margin allocation and management via a graph-theoretical

network of assumptions. In contrast to the document-centric approach, the network captures

assumptions dependencies, and enables an algorithmic process supporting margin allocation and

management. Ultimately, this methodology is intended to assist decision-makers in managing

assumptions and examining their impact on an architecture. Explicitly linking margins to

assumptions allows to support mitigating their risk of invalidity. The approach is demonstrated

with a conceptual aircraft design example.

Keywords: conceptual design, decision making, uncertainty, assumption management, margin

1. Introduction

The conceptual design of novel products is characterised by significant uncertainty due to lack of

knowledge. Such uncertainty is referred to as epistemic uncertainty (Kiureghian and Ditlevsen, 2009),

and can impede the design process. In order to proceed with the design, assumptions are introduced to

fill the knowledge gap. However, the uncertainty inherent in the assumptions constitutes a risk that has

to be mitigated, especially at early-stage design where about 70% of the budget is committed

(INCOSE, 2015). In this regard, design margins are traditionally assigned as a risk mitigation strategy

in order to account for the different uncertainties in addition to providing flexibility (Eckert et al.,

2019).

Although the current systems engineering processes (e.g. INCOSE-TP-2003-002-04 (INCOSE, 2015),

ISO/IEC/IEEE 15288 (ISO, 2015), and NASA SP-2016-6105 (NASA, 2016)) already support working

with assumptions by explicitly documenting and reviewing them as the design progresses, this traditional

document-centric approach is not suited for innovative design which is likely to require making an

intractable amount of assumptions. In fact, a recent study that surveyed practitioners showed that simply

documenting explicit assumptions has little benefit (Sadlauer et al., 2017). Furthermore, lack of formal

and systematic allocation and management of design margins in practice can lead to assigning margins

that are either too optimistic, such that there is an increased risk of major re-design, or too conservative,

such that the system becomes over-designed, thus adversely impacting its performance.

Thus, a novel approach is proposed in this paper to support design margins allocation and

management via a graph-theoretical network of architectural assumptions. The scope is restricted to

the conceptual design stage, and systematic assumption maintenance following the acquisition of new

knowledge, or when new assumptions are made, forms part of future work.

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.25

2276 SYSTEMS ENGINEERING AND DESIGN

In the rest of the paper, background information and the state-of-the-art are presented in Section 2. The

proposed approach is described in Section 3. Section 4 demonstrates the approach with an aircraft

conceptual design use case. Finally, conclusions are drawn in Section 5 along with stating future work.

2. Background and state-of-the-art

2.1. System architecting and the RFLP paradigm

Complex systems design is characterised by defining a system architecture, which is “the embodiment

of concept, the allocation of physical/informational function to the elements of form, and the definition

of relationships among the elements and with the surrounding context” (Crawley et al., 2016).

Functional reasoning, i.e. defining the functions to be performed by the system, plays a central role in

system architecting (Umeda and Tomiyama, 1997). One approach to functional reasoning is the RFLP

paradigm (Kleiner and Kramer, 2013), which is based on the VDI 2206 standard Design methodology

for mechatronic systems (VDI, 2004). It considers that functional reasoning is distributed over four

notional domains: Requirements, Functional, Logical and Physical, which can be defined as follows:

 Requirements domain (R): contains the requirements which can be hierarchically decomposed.

The requirements are mapped to the functions that fulfil them in the Functional domain.

 Functional domain (F): contains the functions that the system must perform, which can also be

hierarchically decomposed. The functions are mapped to the components that realise them.

 Logical domain (L): contains the solutions (components) realising the system functions, in

addition to their connectivity (via ports).

 Physical domain (P): contains a 3D CAD design model which essentially captures the

spatial/topological relationships amongst the components.

Recently, Bile et al. (2018) proposed to augment RFLP with a Computational domain (C) for

automated systems sizing, followed by a graph-theoretical structure that captures the dependencies

between the RFLC domains (Guenov et al., 2020).

Architectural decisions are in fact the most impactful design decisions, given that most of the budget is

committed at the early stage. Therefore, it is of the utmost importance to examine their sensitivity to

the assumptions (Crawley et al., 2016). The following section reviews architectural assumptions and

the existing documentation and management approaches.

2.2. Architectural assumptions

It is acknowledged that many definitions of the concept assumption exist, in addition to the fact that the

distinction between closely related concepts such as axiom, premise, or presupposition varies throughout

the literature (Berner, 2017). The most commonly adopted definition of assumption remains the

dictionary one, e.g. “a thing that is accepted as true or as certain to happen, without proof” (Oxford

English Dictionary), or “something that you accept as true without question or proof” (Cambridge

Dictionary). A similar definition is adopted in the field of artificial intelligence, where an assumption is

“something which is accepted in the absence of evidence to the contrary” (Ramsey, 1988).

However, such definitions are incomplete as they do not capture some essential characteristics of

assumptions. Some of these characteristics were defined by Yang et al. (2018) in the context of software

development, where assumptions are: (i) subjective, i.e. can be seen as assumptions by some

stakeholders, or design decisions by others, (ii) related to other software artefacts, such as requirements

or components, (iii) dynamic, i.e. evolve with time, and (iv) context-dependent, i.e. could be valid in one

project, and invalid in another. Furthermore, assumptions are inherently uncertain, and the degree of

confidence in making them varies based on the strength of background knowledge.

Therefore, the concept of assumption may not have a concise definition as it has many characteristics,

but rather requires a definition that reflects its many aspects. Thus, the following definition is proposed:

An assumption is a context-dependent belief, with a varying degree of confidence, that requires

justification to become knowledge. An architectural assumption bridges the gap between

available knowledge and knowledge required to proceed with the conceptual design.

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.25

SYSTEMS ENGINEERING AND DESIGN 2277

Formal and semi-formal methods have been developed to manage assumptions in the field of software

engineering. Lewis et al. (2004) proposed the Assumption Management System that allows to extract

and record software assumptions from Java source code into a repository. However, the assumptions

have to be recorded as structured comments within the source code, and assumptions capturing and

management are conducted after the architecture is defined. Tirumala (2006) proposed an assumptions

management framework for software systems which sets some policies on assumption selection and

validation, i.e. “a relevant subset of assumptions can be validated or flagged as invalid automatically

as the system evolves”. Although such a capability allows reducing the cost of managing assumptions,

this framework is restricted to assumptions on software components, meaning that the dependencies

between assumptions and other architectural elements (such as requirements) are not considered.

Recently, Yang et al. (2018) proposed another approach which includes a documentation framework

that records dependencies both amongst assumptions, and between assumptions and other software

artefacts. Such knowledge about dependency is crucial in assessing the impact of assumptions on the

overall architecture, but the lack of support for capturing such dependencies highly increases the effort

needed for systematic assumption management. Moreover, the lack of assumption’s uncertainty

assessment in this framework (and the other frameworks) could be actually misleading the decision-

makers into thinking that all assumptions are made with the same degree of confidence, in addition to

preventing from prioritising the significant amount of assumptions in the case of innovative design.

Compared to software engineering, there is a lack of systematic approaches to manage assumptions in

physical systems design. This results in relying on conservative margins to manage epistemic

uncertainty. Such lack may be explained by three main factors. First, the traditional document-centric

approach of physical systems engineering, as opposed to software architectures being readily available

in a computerised format. Second, the traditional, less rigorous representation of physical systems

architectures, as opposed to software architectures being readily represented in formal logic, thus

impeding artificial reasoning. Third, the fact that design margins pertain to the physical domain, thus

transcending the realm of software engineering.

2.3. Margin allocation and management

Traditionally, margins have been used as a strategy to mitigate the risk associated with epistemic

uncertainty. There exist many terms and definitions for the concept of margin. One definition was

proposed by Eckert et al. (2019) where a design margin is the extent to which the value of a design

parameter exceeds what is needed to fulfil the requirements, thus accounting for the uncertainties in

addition to providing flexibility. Effectively, the designed system becomes more capable, withstands

worse environments, and lasts longer than necessary (McManus and Hastings, 2005).

Although margins are typically assigned in a highly conservative manner in practice, some formal

methods based on probabilistic allocation have been developed, such as Thunnissen (2004) who

proposed a six-steps method based on propagating the design variables’ uncertainty through a Monte

Carlo simulation, and then a margin is allocated based on the 95th, 99th or 99.9th percentile of the

probability distributions of the outputs of interest. Zang et al. (2015) proposed another probabilistic

strategy where margins are assigned to aircraft sizing and performance models. Basically, a set of

random outputs is obtained by sampling uncertain design variables, from which probabilities of

constraint satisfaction are calculated. The strategy is then to satisfy the probability of success while

optimising a figure of merit. The same strategy is then used in the “Sculpting” approach (Cooke et al.,

2015) to generate parallel coordinates plots that assist decision-making about margin allocation.

However, assuming subjective probability distributions, especially in the presence of high epistemic

uncertainty characterising conceptual design, remains an issue. In fact, the arbitrary and unjustified

use of probability distributions due to lack of knowledge has been recognised as a common flaw in

aerospace engineering (Zaidi et al., 2014). Thus, it prompts us to question how reliable such

probabilistic strategies are in the first place. Furthermore, probabilistic approaches treat computational

models independently of the related architectural domains, as opposed to the RFLP(C) paradigm

presented in Section 2.1.

Other limitations have been discussed by Eckert et al. (2019) which include the lack of a method for

allocating suitable margins, as well as the lack of tracking tools to capture margins and their rationale.

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.25

2278 SYSTEMS ENGINEERING AND DESIGN

Margins are assigned to parameters in order to mitigate the risk associated with epistemic uncertainty.

Knowing that assumptions are made to fill the knowledge gap characterising epistemic uncertainty, it is

argued in this paper that margins should explicitly mitigate the risk associated with architectural

assumptions being invalid, by providing flexibility in order to absorb resulting architectural changes,

while the assumptions themselves would represent the rationale behind margin allocation. This leads to

the proposed approach in Section 3, which would constitute an alternative to the probabilistic strategies.

3. Proposed approach

Figure 1 illustrates the flowchart of the proposed approach, where the first step is to capture and codify

architectural assumptions using an object-oriented approach, then the uncertainty inherent to each

assumption is assessed based on the strength of the background knowledge, followed by capturing the

dependencies both amongst assumptions, and between assumptions and other architectural elements. All

the aforementioned steps lead to generating a graph-theoretical assumption network which, as opposed to

the traditional document-centric approach, is compatible with the Model-Based Systems Engineering

methodology. The network is to be maintained when new knowledge is acquired in order to keep

consistent and up-to-date records of the assumptions made, which would be accessible to all stakeholders.

Finally, the network is used as an input to support margin allocation and management.

Figure 1. Flowchart of the proposed approach

As stated earlier, systematic network maintenance is out of the paper’s scope as it forms part of future

work. For the time being, maintenance consists of capturing new assumptions, and manually updating

the status, confidence and dependencies of existing assumptions in order to enable Algorithm 2 (step 4).

3.1. Step 1: capturing architectural assumptions

To capture and codify assumptions, an object-oriented approach is adopted, as illustrated by the data

structure in Figure 2. The <<assumption>> attributes are described as follows:

 status: a string that can take one of the following values {Awaiting evaluation, Valid, Invalid}.

 description: a textual description of the assumption, as well as the rationale behind it.

 confidence: a string that represents the level of confidence in making the assumption, and can

take one of the following values {High, Moderate, Low} in Step 2.

 dependency: an array that stores the relationships captured in Step 3.

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.25

SYSTEMS ENGINEERING AND DESIGN 2279

Figure 2. Data structure underlying the network (adapted from Guenov et al., 2020)

3.2. Step 2: assessing assumptions’ inherent uncertainty

Although assumptions are made to fill the knowledge gap, i.e. dealing with epistemic uncertainty, they

themselves are inherently uncertain due to the varying strength of the background knowledge.

Therefore, reasoning with assumptions in order to assess risks and allocate margins as a mitigation

strategy has to be supported by assessing the associated uncertainty.

For this purpose, the attribute confidence is used to reflect the degree of confidence in making the

assumption, based on the strength of the following background knowledge aspects: Data, Models, and

Expert agreement. For this purpose, the guidelines proposed by Flage and Aven (2009) are adopted:

 confidence = High if all of the following conditions are met: (i) Much reliable data are

available; (ii) The phenomena involved are well understood, the models used are known to

give predictions with the required accuracy; and (iii) There is broad agreement among experts.

 confidence = Low if one or more of the following conditions are met: (i) Data are not

available or are unreliable; (ii) The phenomena involved are not well understood, high fidelity

models are not applicable / models are non-existent or believed to give poor predictions;

and/or (iii) There is a lack of agreement among experts.

 confidence = Moderate as an intermediate state, e.g.: (i) Some reliable data are available; and

(ii) The phenomena involved are well understood, but the models used are considered simple.

The value of the attribute confidence is to be assigned manually based on the architect’s assessment.

3.3. Step 3: capturing assumptions’ dependency

We distinguish between two types of dependency: Inter-domain dependency, which refers to the

relationships between assumptions and other architectural elements (e.g., requirements), and Intra-

domain dependency, which refers to the relationships amongst assumptions.

3.3.1. Inter-domain dependency

The graph-theoretical structure proposed by Guenov et al. (2020) is used as part of the proposed

approach in order to evaluate the impact assumptions have on the different architectural domains

(RFLC), where R contains the Requirement objects ρi, F contains the Function objects φi, L contains

the Component objects σi, and C contains both the Model objects μi and the Parameter objects pi.

To capture the inter-domain dependencies, the aforementioned graph-theoretical structure is extended

by introducing an Assumption domain (A) containing the Assumption objects αi.

The following inter-domain dependency links are then defined:

 αi↔ρi: occurs when interpreting top-level requirements or deriving new requirements.

 αi↔φi: occurs as part of the rationale behind defining the functions.

 αi↔σi: occurs as part of the rationale behind selecting the solutions.

 αi↔μi: refers to the assumptions associated with the computational model selection.

 αi↔pi: occurs when assigning a value to an uncertain parameter.

The proposed links form the edges Ei of 5 undirected bipartite graphs: GR(α, ρ, ER), GF(α, φ, EF), GC(α,

σ, EC), GM(α, μ, EM), GP(α, p, EP) corresponding to αi↔ρi, αi↔φi, αi↔σi, αi↔μi, and αi↔pi, respectively.

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.25

2280 SYSTEMS ENGINEERING AND DESIGN

The relationships between the architectural elements Requirement, Function, Component, Model and

Parameter are already captured by the graph-theoretical structure proposed by Guenov et al. (2020).

3.3.2. Intra-domain dependency

When an assumption is dependent on another one, it can either strengthen or weaken it as it is

validated. Therefore, we distinguish between two types of intra-domain dependency links:

 Assumption i (Ai) constrains Assumption j (Aj): if confidence in Ai increases, confidence in

Aj increases as a result. This is a strengthening relationship that can be attributed to two

sources: the first source is architecture definition under the RFLP(C) paradigm, e.g. selecting a

solution dictates which computational model to use, thus an assumption on the solution would

automatically constrain an assumption on the corresponding model. The second source is

assumption derivation, i.e. Ai causes Aj.

This constitutes a directed edge (from Ai to Aj) in the assumption network.

 Ai conflicts with Aj: at least one of the two assumptions is invalid. This is a weakening

relationship since an increased confidence in one assumption increases the likelihood of the

other assumption being invalid.

This constitutes an undirected edge in the assumption network.

The proposed links form the edges of a mixed graph MG(α, Econs, Econf), where Econs refers to the edges

of the constraint link, and Econf refers to the edges of the conflict link. This provides an approach to

capture dependencies amongst assumptions, and simplifies the Relationship viewpoint (Yang et al.,

2017) by proposing two, mutually exclusive relationships.

3.4. Step 4: allocating and managing design margins

This section describes the algorithmic process that supports design margins allocation and management.

3.4.1. Algorithm 1: margin allocation support

Algorithm 1 enables allocating margins with respect to sets of assumptions for which they are mitigating

their associated risk, in addition to recording the margins within a list (Algorithm 1, Lines 1-5). Thus, it

enables to capture margins, and their rationale that consists of the associated assumptions. Then, a rule is

tested to check if a margin addresses assumptions corresponding to only one of the following: (1)

uncertain parameters which values are assigned by the architect (i.e. independent variables, or root nodes

in the graph), subject to performance requirements; (2) outputs of uncertain models (i.e. dependent

variables, or intermediate and leaf nodes in the graph) (Algorithm 1, Lines 6-14). The aforementioned

rule is aimed at reducing margin redundancy.

 Algorithm 1: Margin allocation support

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Input: Assumptions {αi}, Margins {Mi}, EP and EM (from Step 3)

Output: Set of allocated margins: M = {M1, M2, …, Mi, …, Mn}, set of assumptions αj addressed

 by margin Mi: AMi = {α1, α2, …, αj, …, αp}

Create two empty lists M and AMi

Add allocated margins to M

∀ Mi ∈ M, add assumptions αj mitigated by margin Mi to AMi

if ∃ αj: αj ∉ AMi then

 Notify user to mitigate the risk associated with αj by new/existing margin

Let μ be a model, where x is an input and y is an output. Let My be the margin assigned to y

if hasParentNode(x) = True then

 x is a dependent parameter

 if ∃ αj ∈ AMy: αj↔μ ∉ EM then

 Notify user that My cannot mitigate the risk associated with αj

else

 x is an independent parameter

 if ∃ αj ∈ AMy: αj↔x ∈ EP then

 Notify user that My cannot mitigate the risk associated with αj

Return M, and {AMi, ∀ Mi ∈ M}

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.25

SYSTEMS ENGINEERING AND DESIGN 2281

3.4.2. Algorithm 2: margin management support

Algorithm 2 enables updating previously assigned margins when the assumption network is updated

following a maintenance (e.g. some assumptions are validated, or conflicts are resolved). The algorithm

consists of four rules which are checked to notify the user about the affected margins to be reviewed.

Rule 1 consists of monitoring the confidence and status of assumptions so that, as their uncertainty

decreases, their associated margin must be reduced. Rule 2 states that if the confidence in a constraining

assumption increases (or is validated), then the margin associated with the constrained assumption must

be reduced. Rule 3 states that if an assumption α1 conflicts with α2, and the confidence in α1 increases, it

implies that the likelihood of α2 being invalid increases. Consequently, the margin associated with α2

must be increased. Moreover, if a conflict between assumptions is resolved, the margins associated with

these assumptions must be reduced as a result of the lower risk of invalidity. Rule 4 states that if a new

assumption is added to the set associated with an existing margin, then that margin must be increased.

Such an approach also enables to capture the rationale associated with changes to the margins.

 Algorithm 2: Margin management support

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Input: M, {AMi, ∀ Mi ∈ M}, Econs and Econf (from Step 3)

Output: Notification to update Mi

//Changes in the attributes of ∀ αj ∈ AMi, ∀ Mi ∈ M trigger the following rules

//Rule 1

if (confidence(αj) increases) ∥ (status(αj) = “Valid”) then

 Notify user to reduce Mi

else if confidence(αj) decreases then

 Notify user to increase Mi

else if status(αj) = “Invalid” then

 Notify user to revisit Mi depending on new assumption

//Rule 2

if (αj = Econs(x,2), ∀ x) & [(confidence(Econs(x,1)) increases) ∥ (status(Econs(x,1)) = “Valid”)] then

 Notify user to reduce Mi

else if (αj = Econs(x,2), ∀ x) & (confidence(Econs(x,1)) decreases) then

 Notify user to increase Mi

//Rule 3

if (αj = Econf(x,1), ∀ x) & (confidence(Econf(x,2)) increases) then

 Notify user to increase Mi

else if αj no longer belongs to Econf then

 Notify user to reduce Mi

//Rule 4

if a new assumption is added to AMi then

 Notify user to increase Mi

4. Demonstration

The proposed approach is demonstrated with the following use case. Let us consider the conceptual

design of a lightweight fighter aircraft to replace the Lockheed Martin F-16, as described by Raymer

(2018). The new design is characterised by the use of a novel (unproven) capability that transforms the

shape of the tail from a “V” shape to a vertical tail, depending on the flight speed, for stability and

control. Additionally, the design includes a novel engine, with a low Technology Readiness Level

(TRL), to reduce fuel consumption. Assumptions made during the conceptual design stage are listed in

Table 1, and captured using the proposed data structure as illustrated in Figure 3. The status of all the

assumptions is initially set as the default value ‘Awaiting evaluation’, and the confidence values are

arbitrarily assigned for the sake of demonstration. After capturing the individual assumptions and

assessing their uncertainty (steps 1 and 2, respectively), the assumptions’ dependencies are then captured

as edges of a graph-theoretical network, as illustrated in Figure 3. Both types of dependency, i.e. inter-

domain and intra-domain, are demonstrated. For instance, the structure is assumed to be made of

composite material, which translates to the inter-domain edge α8 ↔ σ4 (refer to Figure 3). Deciding to go

with a low TRL engine led to assuming an existing engine for the purpose of sizing and analysis, which

in turn led to assuming a particular value of the Specific Fuel Consumption to adjust for the advanced

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.25

2282 SYSTEMS ENGINEERING AND DESIGN

technology. These assumptions translate to the constraint edges α3 → α4 and α4 → α5, respectively.

Additionally, assumption α10 states that 83% of the fuselage volume is to be occupied by bladder fuel

tanks, whereas α11 states that 20% of the fuselage volume is to be occupied by the missiles bay. 83% +

20% > 100% implies there is a conflict, which translates to the conflict edge α10 ↔ α11.

Table 1. List of demonstration assumptions

Assumption Description Confidence

α1 Tail convert function Convert from V-tail (subsonic) to vertical tail (supersonic) Moderate

α2 Unproven tech Unproven technology assumed to be feasible High

α3 Rubber engine Low Technology Readiness Level, rubber engine is assumed Low

α4 Engine for analysis Existing turbofan engine is assumed for sizing and analysis Moderate

α5 SFC adjustment Assumed reduction of 20% in the Specific Fuel Consumption

(SFC) to adjust for advanced technology

Low

α6 Airfoil Airfoil of type 64 A006 is assumed High

α7 Stat model suitable Statistical model assumed to be suitable Moderate

α8 Composite structure Composite structure is assumed as a solution High

α9 We adjusted for tail Empty weight adjusted by +200 lb for impact of tail Moderate

α10 Vtanks/V Assume that integral wing tanks occupy 85% of wing volume,

and bladder fuselage tanks occupy 83% of fuselage volume

High

α11 Vbay/Vfuse Assume missiles bay occupies 20% of fuselage volume Moderate

Figure 3. Conceptual representation of the assumption network

After creating the assumption network, the algorithmic process described in Section 3.4 is employed

to support margin allocation and management. The computational model for aircraft weight estimation

(μ4) is considered for demonstration and illustrated in Figure 4, where Mx refers to the margin assigned

to parameter x (e.g. MAR is the margin assigned to the Aspect Ratio (AR)).

Following the process defined by Algorithm 1, the allocated margins are captured and recorded as a set

M={MSFC, MAR, MWe/Wo}, along with their associated assumptions representing their rationale, i.e.

𝑨𝑴𝑺𝑭𝑪
={α4, α5}, 𝑨𝑴𝑨𝑹

={α7} and 𝑨𝑴𝑾𝒆/𝑾𝒐
={α8, α9}. For instance, a margin of -8% is assigned to AR,

which also mitigates the risk of transonic pitch-up, and brings the initial estimate down to AR = 3.5.

Moreover, as shown in Figure 4, each margin is addressing only assumptions linked through the network

to either the parameter or model’s output it is assigned to. Thus, there is no need to assign a margin to

Wo in order to account for uncertainty in Wf/Wo and We/Wo. Otherwise, a margin on Wo (MWo), such that

𝑨𝑴𝑾𝒐
={α4, α5, α7, α8, α9}, would be identified by Algorithm 1 (Lines 11-14) as redundant since SFC

(p4.1) is a root node, and the statement {(α4 ∈ 𝑨𝑴𝑾𝒐
) & (α4 ↔ p4.1 ∈ EP)} would become true.

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.25

SYSTEMS ENGINEERING AND DESIGN 2283

Figure 4. Aircraft weight estimation model (derived from Raymer, 2018)

Furthermore, when new assumptions are added and existing assumptions are revised as new

knowledge is acquired, the rules defined in Algorithm 2 would allow to notify the lead systems

engineer to revisit the affected margins accordingly, as well as to record the rationale associated with

changes to margins. For instance, it is decided with certainty, later in the design process, that the

structure is to be made of composite material. Thus, α8 is validated and transformed into a design

decision. Therefore, Rule 1 of Algorithm 2 allows to notify the systems engineer to reduce MWe/Wo as a

result of a reduced set of assumptions to be managed: From Algorithm 2 (Lines 1-2), status(α8) =

“Valid” (i.e. 𝑨𝑴𝑾𝒆/𝑾𝒐
 reduces to {α9}) ⇒ MWe/Wo is to be reduced. Furthermore, the airfoil type is

fixed, meaning that status(α6) = “Valid”. Therefore, Rule 2 (Lines 7-8) allows to notify the systems

engineer to reduce MAR as a result of validating the assumption α6, which was constraining α7.

5. Conclusions and future work

Presented in this paper is an approach to support design margins allocation and management via a graph-

theoretical network of assumptions. The approach builds upon software engineering concepts and

extends assumption management for software systems to physical systems through explicitly linking

assumptions to design margins. The network enables capturing assumptions dependencies through the

RFLP paradigm, thus allowing the examination of the impact assumptions have on the architecture. Two

algorithms have been proposed to support margin allocation and management: the first algorithm

provides a means to capture margins and identify instances of margin redundancy, and the second

algorithm makes use of the confidence and dependency of assumptions in order to update assigned

margins as new knowledge is acquired. Furthermore, the proposed approach enhances collaborative

design due to its compatibility with the Model-Based Systems Engineering methodology.

Current limitations of the proposed approach include its scalability, which is affected by manual

network maintenance. For instance, retracting invalid assumptions without revising all the associated

assumptions and design decisions (which can be manually intractable in a large-scale project) can lead

to contradictions. Thus, a systematic approach to maintain the network’s consistency is needed.

Future work includes visualising uncertainty within the assumption network, developing a systematic

approach to maintain the network’s consistency, and evaluating the applicability and usefulness of the

proposed approach by practitioners from industry.

References

Berner, C.L. (2017), Contributions to Improved Risk Assessments: To Better Reflect the Strength of Background

Knowledge, [PhD Thesis], University of Stavanger.

Bile, Y. et al. (2018), “Towards Automating the Sizing Process in Conceptual (Airframe) Systems Architecting”,

2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA, Reston,

Virginia. https://doi.org/10.2514/6.2018-1067

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.2514/6.2018-1067
https://doi.org/10.1017/dsd.2020.25

2284 SYSTEMS ENGINEERING AND DESIGN

Cooke, R.M. et al. (2015), “Sculpting: A Fast, Interactive Method for Probabilistic Design Space Exploration

and Margin Allocation”, 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,

AIAA, Reston, Virginia. https://doi.org/10.2514/6.2015-3440

Crawley, E., Cameron, B. and Selva, D. (2016), System Architecture: Strategy and Product Development for

Complex Systems, Pearson Education Limited, Essex.

Eckert, C., Isaksson, O. and Earl, C. (2019), “Design margins: a hidden issue in industry”, Design Science, Vol.

5 No. 9, pp. 1–24. https://doi.org/10.1017/dsj.2019.7

Flage, R. and Aven, T. (2009), “Expressing and communicating uncertainty in relation to quantitative risk

analysis”, Reliability: Theory & Applications, Vol. 4 No. 2 (13), pp. 9–18.

Guenov, M.D. et al. (2020), “Computational Framework for Interactive Architecting of Complex Systems”,

Systems Engineering. Forthcoming.

INCOSE (2015), INCOSE Systems Engineering Handbook, In: Walden, D.D., Roedler, G.J., Forsberg, K.J.,

Hamelin, R.D. and Shortell, T.M. (Eds.), John Wiley & Sons, Inc., Hoboken, New Jersey.

ISO (2015), ISO/IEC/IEEE 15288: Systems and Software Engineering - System Life Cycle Processes,

International Organization for Standardization, Geneva.

Kiureghian, A. Der and Ditlevsen, O. (2009), “Aleatory or epistemic? Does it matter?”, Structural Safety, Vol.

31 No. 2, pp. 105–112. https://doi.org/10.1016/j.strusafe.2008.06.020

Kleiner, S. and Kramer, C. (2013), “Model Based Design with Systems Engineering Based on RFLP Using V6”,

In: Abramovici, M. and Stark, R. (Eds.), Smart Product Engineering, Springer, Berlin, Heidelberg, pp. 93–

102. https://doi.org/10.1007/978-3-642-30817-8_10

Lewis, G.A., Mahatham, T. and Wrage, L. (2004), CMU/SEI-2004-TN-021: Assumptions Management in

Software Development, Carnegie Mellon University, Pittsburgh, Pennsylvania.

McManus, H. and Hastings, D. (2005), “A Framework for Understanding Uncertainty and its Mitigation and

Exploitation in Complex Systems”, INCOSE International Symposium, Vol. 15 No. 1, pp. 484-503.

https://doi.org/10.1002/j.2334-5837.2005.tb00685.x

NASA (2016), NASA SP-2016-6105 Rev2: NASA Systems Engineering Handbook, National Aeronautics and

Space Administration.

Ramsey, A. (1988), Formal Methods in Artificial Intelligence, Cambridge University Press, Cambridge.

Raymer, D. (2018), Aircraft Design: A Conceptual Approach, Sixth Edition, AIAA, Washington, DC.

https://doi.org/10.2514/4.104909

Sadlauer, A., Hehenberger, P. and Zeman, K. (2017), “The influence of documenting assumed values of product

properties on the number of iterations in the design process - first observations”, International Journal of

Information Technology and Management, Vol. 16 No. 1, pp. 73–90. https://doi.org/10.1504/IJITM.2017.080951

Thunnissen, D.P. (2004), “Method for Determining Margins in Conceptual Design”, Journal of Spacecraft and

Rockets, Vol. 41 No. 1, pp. 85–92.

Tirumala, A.S. (2006), An Assumptions Management Framework for Systems Software, [PhD Thesis],

University of Illinois at Urbana-Champaign.

Umeda, Y. and Tomiyama, T. (1997), “Functional reasoning in design”, IEEE Expert, Vol. 12 No. 2, pp. 42–48.

https://doi.org/10.1109/64.585103

VDI (2004), VDI 2206: Design Methodology for Mechatronic Systems, Verein Deutscher Ingenieure, Düsseldorf.

Yang, C., Liang, P. and Avgeriou, P. (2018), “Evaluation of a process for architectural assumption management

in software development”, Science of Computer Programming, Vol. 168, pp. 38–70. https://doi.org/

10.1016/j.scico.2018.08.002

Yang, C. et al. (2017), “An industrial case study on an architectural assumption documentation framework”,

Journal of Systems and Software, Vol. 134, pp. 190–210. https://doi.org/10.1016/j.jss.2017.09.007

Zaidi, T., Jimenez, H. and Mavris, D.N. (2014), “Quantifying Random Variable Dependence Structure Through

Copulas Theory for Probabilistic Assessment”, 14th AIAA Aviation Technology, Integration, and

Operations Conference, AIAA, Reston, Virginia. https://doi.org/10.2514/6.2014-2171

Zang, T.A. et al. (2015), “A Strategy for Probabilistic Margin Allocation in Aircraft Conceptual Design”, 16th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA, Reston, Virginia.

https://doi.org/10.2514/6.2015-3443

https://doi.org/10.1017/dsd.2020.25 Published online by Cambridge University Press

https://doi.org/10.2514/6.2015-3440
https://doi.org/10.1017/dsj.2019.7
https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.1007/978-3-642-30817-8_10
https://doi.org/10.1002/j.2334-5837.2005.tb00685.x
https://doi.org/10.2514/4.104909
https://doi.org/10.1504/IJITM.2017.080951
https://doi.org/10.1109/64.585103
https://doi.org/10.1016/j.scico.2018.08.002
https://doi.org/10.1016/j.scico.2018.08.002
https://doi.org/10.1016/j.jss.2017.09.007
https://doi.org/10.2514/6.2014-2171
https://doi.org/10.2514/6.2015-3443
https://doi.org/10.1017/dsd.2020.25

