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Mathematics and Maxwell’s equations give a characteristic
time scale for magnetic reconnection [1].

The reconnection time is the ideal evolution time mul-
tiplied a term that depends logarithmically on non-
ideal effects. τrec = τev ln (Rm). Rm is magnetic Reynolds number.

This result follows from ~B depending non-trivially on three spatial coordinates and
mathematics and physics concepts traditionally ignored in reconnection theory.

Related mathematics and physics explain [1] why temperature equilibrates in a room in of order
ten minutes instead of weeks. See Aref’s 1984 paper “Stirring by chaotic advection” [2].

Will explain required concepts, traditionally ignored in re-
connection theory, and give simple illustrative examples.



Central Mathematics Concept: Chaotic Flows

A flow is chaotic when neighboring pairs of streamlines
d~x/dt = ~v(~x, t) in a non-zero volume of space separate
exponentially.

A flow is not chaotic when the only exponentiation of streamlines is due to an X-point.

Chaotic flows are by definition deterministic and can be simple and smooth. Essen-
tially all natural flows are chaotic.

A divergence-free flow in two dimensions, vx = −∂h/∂y and vy = ∂h/∂x, is generally chaotic when
the Hamiltonian (streamfunction) h(x, y, t) has a non-trivial dependence on all three variables.

Although chaos is defined by infinitesimally separated pairs of streamlines, stream-
lines also exponentiate apart when separated by a distance less than a, the character-
istic spatial scale of ~v(~x, t).

When streamlines are separated by a distance greater than a they fold back on themselves and their
separation increases only diffusively—in simple cases as

√
t.
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Chaotic Flow ~v = ẑ× ~∇h in a Circular Disk [3]

h(x, y, t) =

(
1−
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a2

)3

h̃(x, y, t);
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a2

τ

(
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(
ω0
t

τ

)
+ c1x cos

(
ω1
t

τ

)
+ c2y sin

(
ω2
t

τ

)
+ c3xy cos

(
ω3
t

τ

))
.

Term depending on r2 ≡ x2 + y2 keeps flow confined to interior of disk.

Chose c0 = 0, c1 = c2 = c3 = 1/4 and ω1 = 6π,ω2 =

4π,ω3 = 0; the constant τ is the periodicity or transit time.
Textbook cases of chaos have the circular flow term c0 large and ω0 = 0, but this term

cannot be strong in the drive for coronal loops for it tends to make them kink.

Observed coronal loops must have a footpoint drive that
is consistent with their existence and include terms that
are slowly varying in (x, y) to have the large scale expo-
nentiation that leads to fast reconnection.
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Frobenius Norm as the Measure of Exponentiation

A streamline started at x0, y0 is located at ~x = x(x0, y0, t)x̂+

y(x0, y0, t)ŷ at time t. The Frobenius norm is

∥∥∥∥∥ ∂x
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)2

+

(
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)2

+

(
∂y

∂y0

)2

.

Deterministic chaos in math means the Frobenius norm
increases exponentially in a finite volume of space—not
just on the separatrix of an X-point.

The Frobenius norm of a divergence-free flow equals
√

Λ2
u + 1/Λ2

u of a Singular Value Decomposition
(SVD) of the Jacobian matrix using two unitary matrices

↔
U and

↔
V with Λu ≥ Λs,(

∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

)
=
↔
U ·
(

Λu 0

0 Λs

)
·
↔
V †.

Chaos is implied when Λu > cu exp(t/τL) as t → ∞ with cu and τL constants. When flow is divergence
free, Λs = 1/Λu. SVD analysis is more difficult and less accurate but gives more information.

4



Points Started on a Circle of Radius a/100

The starting points are on the perimeter of the tiny black
circle centered at x/a=0.17 and y/a=-0.45. The red points are
the streamline locations after ten transit times.

Note the large spread in the number exponentiations.
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Points Started on the Perimeters of Small Circles
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Exponentiation Properties
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Mathematics of Vector Representations in 3D

Any vector ~E(~x) can be represented in three-space using
another vector ~B(~x) that has no zeros in the region,

~E = −~u× ~B − ~∇Φ + E ~∇`.
Φ is a single valued potential, and ` is the distance along the vector ~B. Field lines of
~B are given by d~x/d` = ~B/B at a given point in time. For nulls in ~B see [4, 5].

The component of ~E along ~B gives b̂ · ~E = −∂Φ/∂` + E , where E is a constant along
~B, which must be chosen to make Φ single-valued. When ~B lies on toroidal surfaces,

E = lim
L→∞

∫ L
0
~E · d~̀
L

.

The components of ~E perpendicular to ~B determine ~u⊥, which are the two components
of ~u that are perpendicular to ~B. E is essentially the electromotive force.

An implication is that Faraday’s Law is equivalent to
∂ ~B

∂t
= ~∇× (~u⊥× ~B −E ~∇`).
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Implications of ∂ ~B

∂t
= ~∇× (~u⊥× ~B −E ~∇`)

In 1958, Newcomb proved [6]: When E = 0, the magnetic field lines
move with the velocity ~u⊥(~x, t) and do not break.

Proven using the Clebsch representation, ~B = ~∇ψ × ~∇Θ and showing ∂ψ/∂t + ~u⊥ ·
~∇ψ = 0 and ∂Θ/∂t + ~u⊥ · ~∇Θ = 0.

Reconnection occurs when E 6= 0.

The velocity of the plasma ~v in which ~B is embedded has no direct relevance to
reconnection despite common opinion.

The velocity of the plasma relative to the magnetic field lines, (~v − ~u⊥) determined by
η⊥~j⊥, Hall terms, and Pfirsch-Schlüter currents, which means j|| driven by ~∇ · ~j⊥.
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Ideal Magnetic Energy Evolution [1]
The energy equation for ideal evolving magnetic field is,

∂

∂t

(
B2

2µ0

)
+ ~∇ ·

(
B2

2µ0

~u⊥

)
= −

(
B2

2µ0

)(
~∇ · ~u⊥+ 2~u⊥ · ~κ

)
.

Integral of left-hand side over a volume gives the change in energy in a region bounded
by a perfect conductor due to the motion of that conductor.

A large exchange in energy occurs within the volume unless ~∇·~u⊥+2~u⊥ ·~κ = 0.

Two spatial coordinates across ~B are required to make
~∇ · ~u⊥+ 2~u⊥ · ~κ = 0.

A third coordinate along ~B is required for a line to
change connections.

In 2D, an ideal flow ~u⊥ can not give an exponential en-
hancement of reconnection as it can in 3D.
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Two-Dimensional Reconnection Theory I
Two-dimensional reconnection would be an extremely specialized topic were it not for

the traditional assumption that reconnection in general could be understood using two
dimensional models.

In 1988, Schindler, Hesse, and Birn gave the two requirements for reconnection

to compete with an ideal evolution in two-dimensional systems [7]:

1. The reconnection must occur in a region of width ∆d ≡
η/µ0u⊥, where ∆d is called the distinguishability distance—more later.

2. The current density in that region must be j ≈ Brec/µ0∆d

with Brec the reconnecting field.

The magnetic Reynolds numberRm ≡ a/∆d, where a is the system scale across ~B,
can reach 1012 in the solar corona.

In 3D with ~u⊥ chaotic, the current density is smaller by a factor
(

ln(Rm)
)
/Rm, when

reconnection competes with evolution, and lies in many thin but wide ribbons along ~B.
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Two-Dimensional Reconnection Theory II
It is commonly thought that a near-

singular current density is a requirement
for reconnection to be significant.

Little research has been done on the time scale for the
formation of a current density j ∝ Rm. The natural time scale is ∼ RmτA with τA the
time scale for shear Alfvén to propagate along the field lines [3, 8].

Most research has been on the maintenance of a near-singular current density, which
requires methods for getting plasma out of the way of field lines approaching the recon-
nection layer.
This gives ion dynamics an importance in 2D that it doesn’t have in 3D.

Modern reconnection theory has focused on plasmoids
[9] as a method of quickly removing plasma from a two-
dimensional reconnection region.
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Distinguishability Distance, ∆d [3]
Physics implies that when two magnetic field lines are

closer than ∆d at any point on their trajectories, then they
are indistinguishable. That is, they have reconnected.

A simple parallel Ohm’s Law has E|| = ηj|| +
(

c
ωpe

)2
µ0

∂j||
∂t , which gives

∂

∂t

(
~B −

(
c

ωpe

)2

∇2 ~B

)
= ~∇×

(
~u⊥ × ~B

)
− η

µ0
~∇×~j||.

In 3D reconnection, the flow u⊥ varies on the scale a and j|| ∼ B/µ0a. Resistive
reconnection competes with evolution when |~∇×~j||| ∼ j||/∆d with

∆d =
η

µ0u⊥
,

similar in effect to numerical diffusion in a code. The current density j|| lies in many
thin, ∼ ∆d, ribbons along the magnetic field.

The left-hand side implies ∆d ≥ c
ωpe

, similar in effect to a finite grid in a code.
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Simplified Model of Coronal Loops [3]
A perfectly conducting cylinder of heightL and radius a enclosing

an ideal pressureless plasma.

Bottom and sides of cylinder are stationary. The top flows with a
velocity ~vt = ẑ× ~∇ht(x, y, t). The initial magnetic field is ~B0 =
B0ẑ. Use the stream function discussed earlier for ht(x, y, t).
============================================

∆max/∆min is the ratio of the maximum to
the minimum separation of a neighboring pair
of magnetic field lines.

Because lines of B are fixed at the bottom but exponentially
separate at the top, ∆max/∆min increases exponentially.

When ∆max/∆min ≈ a/∆d, lines will lose their separate
identities and reconnect when the time equals

(Evolution-Time)× ln (a/∆d), or τrec = τev ln (Rm).
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Parallel Current K ≡ µ0j||
B [3]

Ampere’s law implies [3, 10] spatial average of |KL| >∼ # of e-folds in a distance L.

~∇ ·~j = 0 is equivalent to ~B · ~∇K = ~B · ~∇×
(
µ0
~fL

B2

)
where ~fL ≡ ~j × ~B.

Assuming the plasma is pressureless, the only way to balance the Lorentz force ~fL is
plasma inertia, which means the shear Alfvén wave.

When the evolution is slow compared to the transit time of shear Alfvén waves
along the magnetic field lines,K is a constant along each magnetic field line.

An ideal evolution implies
∂K

∂t
=
∂Ω

∂`
, where Ω ≡ ẑ · ~∇× ~u⊥ and

∂

∂`
≡
~B

B
· ~∇.

When
∂K

∂`
= 0, Ω = Ωt(x0, y0, t)

`

L
and

∂K(x0, y0, t)

∂t
=

Ωt

L
,

K can increase no faster than linearly in time.
15



Points Started on a Circle of Radius a/100

The starting points are on the perimeter of the tiny black
circle centered at x/a=0.17 and y/a=-0.45. The red points are
the streamline locations after ten transit times.

Note the large spread in both the number exponentiations
and in the current density K.
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Thousand Points Started on the Perimeter of the Small
Circle
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Points Started Uniformly Over the Region r < a

Large Frobenius
norms are associated
with large current den-
sities, but the spatial
correlation is not high.

Red implies K is neg-
ative and black posi-
tive.

Need typical |KL| >∼ ln(Frobenius norm) for consistency with Ampere’s law [3, 10].
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Points Started Uniformly Over Region r < a
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Discussion
1. When the ideal magnetic field line evolution velocity ~u⊥ is

chaotic, magnetic reconnection will occur on a time scale∼
10a/u⊥ with the current density lying in thin but broad ribbons with a magnitude
only logarithmically, ∼ 10, bigger than its nominal value, Brec/µ0a.

2. Once reconnection starts, static force balance is frequently
lost, and u⊥ → VA, where VA is the Alfvén speed. This explains Parker’s observation
[11] that the typical reconnection speed is ∼ 0.1VA. Would expect ∼ VA/ ln(Rm) with ln(Rm) ∼ 20.

3. A chaotic ~u⊥ is not energetically possible in two coordinate
models, which makes two-dimensional theory of little relevance for understand-
ing reconnection in nature and the laboratory.

4. When tokamak magnetic surfaces respond to ideal
perturbations they can have exponential increases in
∆max/∆min separations between magnetic surfaces when
the ideal displacement is comparable to the distance be-
tween low order rational surfaces [12]. The separation between two
magnetic field lines in a surface is bounded, which makes the Lyapunov exponent zero.
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