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Statistical analyses can be conceptually elaborate and proce-
durally complex, and therefore it is easy to skip steps in the 
execution of the analysis and to leave out important informa-

tion in reporting the analysis. These problems can result in errone-
ous or incomplete analyses and in reports that are opaque and not 
reproducible. Bayesian analyses might be especially prone to these 
problems because of their relative novelty among applied research-
ers. The concern is pressing because Bayesian analyses are pro-
moted as having important advantages over traditional frequentist 
approaches1 and are being used in increasing numbers of publica-
tions in the behavioural sciences2.

In a review3 of the reporting of Bayesian analyses for medical 
devices, using the ROBUST (reporting of Bayes used in clinical stud-
ies) checklist4 for scoring, only 24% of 17 articles fully reported the 
prior, only 18% reported a sensitivity analysis, only 35% explained 
the model, and only 59% reported credible intervals. In a review5 of 
reporting of mixed-treatment comparisons analysed with Bayesian 
methods, only 52.9% of 34 articles reported the prior distribution, 
only 11.8% reported a sensitivity analysis, only 35.3% reported 
Markov chain Monte Carlo (MCMC) convergence measures, 
and only 20.6% made their computer code available. In a review6 
of Bayesian meta-analyses of N-of-1 studies, using the ROBUST 
checklist4 for scoring, 5 out of 11 reviewed articles scored 7 out of 
7 on the ROBUST list, and the remaining 6 articles scored 6 out of 
7. In most cases, all that was missing (according to the ROBUST 
criteria) was a sensitivity analysis. However, only 3 of the 11 articles 
mentioned convergence diagnostics, no articles mentioned effective 
sample size (ESS), and only 2 articles made the computer code avail-
able. In an extensive review of applied Bayesian analyses2, 55.6% out 
of 99 articles did not report the hyperparameters specified for the 
prior, 56.6% did not report checking for chain convergence, and 
87.9% did not conduct a sensitivity analysis on the impact of priors7. 
A review8 of 70 articles in epidemiologic research using Bayesian 
analysis found that 2 did not specify a model, 9 did not specify the 
computational method, 14 did not specify what software was used, 
27 did not report credible intervals, 33 did not specify what prior 
was used, and 66 did not report a sensitivity analysis, leading the 
authors to conclude that “We think the use of checklists should be 
encouraged and may ultimately improve the reporting on Bayesian 
methods and the reproducibility of research results”8.

Journal editors and authors agree that reporting guidelines 
should be encouraged9. In a survey of editors and authors10 regard-
ing the use of the guidelines for transparent reporting of evaluations 

with nonrandomized designs (TREND)11, most editors believed 
that all authors and reviewers should use reporting guidelines. 
Editors agreed that reporting guidelines need to be promoted by 
journals and by professional societies. Authors felt that they would 
be encouraged if peers used the guidelines. In the findings, the 
authors recommended10 that there should be future research to 
demonstrate the efficacy of guidelines, which would also encourage 
their adoption.

Several previous guidelines for Bayesian analyses have been pub-
lished4,7,12–22. Many consisted of cursory points with relatively little 
explanation and left out details that are important for transparency 
and reproducibility of contemporary analyses, such as aspects of 
MCMC diagnostics, different ways of reporting decisions about 
null values, and what to post online for genuine reproducibility. A 
more detailed review of the previous guidelines is presented in the 
Supplementary Information.

In developing BARG, I incorporated insights from these previ-
ous recommendations and included many additional details and 
explanations in a sequential structure. I also drew heavily from 
personal experience as a researcher who uses Bayesian analyses to 
understand data, as a reviewer who evaluates Bayesian analyses for 
transparency and reproducibility, and as an instructor of Bayesian 
courses and workshops with audiences across the social, biological 
and physical sciences, and across business and industry.

Many researchers believe that they already fulfil all the impor-
tant steps of guidelines, even if they do not know any guidelines 
or explicitly follow them23. Unfortunately, this belief is frequently 
not well founded, as revealed by surveys of the literature described 
above. Therefore researchers, authors, reviewers and editors could 
find value in the BARG, and educators and students could also 
benefit by teaching and learning why each item in the BARG is 
important24.

What is not on the BARG
The BARG recommend essential items that should be reported 
from a Bayesian analysis, but do not aspire to review best practices 
for conducting an analysis19. Despite not being a catalogue of best 
practices, the BARG help the analyst think carefully and thoroughly 
about all the steps of the analysis, and therefore to pursue best 
practices.

The BARG assume that the researcher is being forthright 
in reporting all relevant data and all relevant analyses, without 
biased culling of inconvenient findings. There are a wide variety 
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of selection processes that can bias the results that are reported. 
Selectively reporting only statistically significant effects produces 
the ‘file drawer problem’25, by which the published literature over-
represents spurious effects and underrepresents weak or null effects. 
A corollary is ‘hypothesizing after the results are known’26, which 
artificially converts exploratory research to confirmatory. Any kind 
of data sifting, model tweaking or limited selection of tests done 
with the goal of driving the frequentist P value to significance is 
often called ‘p hacking’27. A variety of ways to select data or results in 
a drive for significance are collectively called ‘questionable research 
practices’28 and the ‘garden of forking paths’29. Many of the same 
kinds of selection biases can affect Bayesian analyses. There are 
Bayesian approaches to alleviating some of these problems, such as 
providing methods for accepting null values and not merely reject-
ing them, but the BARG are not designed to prevent such question-
able research practices.

The BARG aid complete execution and reporting of the analyses 
chosen by the researcher, but are not intended to guide the design of 
studies or the reporting of designs. Nevertheless, there are Bayesian 
approaches to various design issues, such as adaptive design of 
experiments and clinical trials30 and sample size planning15,31,32.

There are different Bayesian approaches to evaluating null 
values, and the BARG attempt to be inclusive. In particular, the 
BARG describe reporting practices for interval-estimation and 
hypothesis-testing approaches. A note on terminology: a ‘null value’ 
is the value of a parameter that indicates a null effect, such as an 
effect size of zero. By contrast, a ‘null hypothesis’ is an entire model 
that has the relevant parameter fixed at its null value. An analyst 
can ‘assess a null value’ by estimating the parameter value and con-
sidering the relation of its posterior distribution to its null value. 
An analyst can ‘test a null hypothesis’ by comparing a full model 
with a restricted model that fixes the parameter at the null value. 
Hypotheses with other forms of parameter restrictions33 are also 
accommodated. The literature discusses other approaches to evalu-
ating null values34–36 that are not explicitly included in the BARG, 
and future developments in statistical practice may produce still 
others. Regardless of the specific method used, it should be able to 
decide in favour of a null and not only against a null.

The BARG do not provide specific templates or formats for 
reporting the details of analyses because there are far too many dif-
ferent types of models to cover, because Bayesian software encour-
ages novel models for which there is no conventional format and 
because conventional formats can become obsolete. Instead, 
the BARG provide general guidelines that address essentials of  
every analysis.

the BARG steps
The BARG identify essential items that should be reported from any 
Bayesian data analysis. There are six ordered steps preceded by a 
preamble, each with key items to report, as listed in Table 1. The 
steps are explained in the following sections.

The contents of the key points (Table 1) should be included 
somewhere in the report, but whether each point is reported in the 
main text or in appendices or supplementary materials depends 
on the specific outlet and audience. Some outlets have severe con-
straints on word count, or audiences who want an emphasis on 
domain theory and not on details of the analysis, which might be 
best served by summaries in the main text and further details in 
appendices or supplementary materials.

example of applying the BARG
An example of applying the BARG is provided in the Supplementary 
Information (and is also available at https://osf.io/w7cph/). The 
example considers the star ratings of two films, and evaluates the 
differences of their means and variances using parameter estimation 
and hypothesis testing. Despite the simplicity of the application, the 

write-up is quite extensive and provides an elaborate illustration of 
details from the BARG. The example is an essential component of 
this article, and the reader is strongly encouraged to consult it.

Preamble
Ideally, the report should motivate the use of Bayesian methods and 
explain the goals of the analyses (Table 1).

Some audiences are not familiar with Bayesian analysis, and 
appreciate an explanation of why the analysis is not frequen-
tist31,37,38. In the report, the benefits of Bayesian analysis, rather than 
the perceived shortcomings of frequentist approaches, should be 
emphasized. One of the benefits of Bayesian analysis is its flexibil-
ity in specifying models that are appropriate for the data. Another 
important benefit of Bayesian analysis is the ability to generate 
estimates and credible intervals for any derived parameter or pre-
dicted variable. Differences, ratios, effect sizes and novel parameter 
combinations or predicted quantities are directly computed from 
the posterior distribution (see the example in the Supplementary 
Information). Another benefit of Bayesian analysis is computation-
ally robust estimates of parameter values and their credible intervals. 
The credible intervals do not depend on large-N approximations 
(as confidence intervals often do in frequentist approaches), nor 
do credible intervals depend on which tests are intended (as confi-
dence intervals do in frequentist approaches). If there is hypothesis 
testing, another key strength of Bayesian analysis is that it provides 
methods for quantifying support in favour of the null hypothesis, 
and not only against the null hypothesis.

The goals of the analysis frame the expression of the model and 
results of the analysis. Most applications are covered by three types 
of goals listed below, where each subsequent goal builds on the pre-
ceding goal.

Description, including measurement. Data are described by 
mathematical models, and the analysis finds parameter values 
that best mimic the data. The parameter values, in the context of 
the model, describe the data. In measurement, the parameter val-
ues are thought to refer not merely to a pattern in the data but to 
a characteristic of the natural mechanism that generated the data. 
An essential aspect of description or measurement is quantifying 
the uncertainty of the estimated parameter values. The uncertainty 
is expressed by a credible interval on continuous values or on the 
probabilities of discrete values.

Prediction, including model averaging. In some applications (for 
example, any type of forecasting) a key goal is prediction of depen-
dent variables for candidate values of independent variables. How 
far the model is intended to extrapolate beyond the observed data 
should be made explicit. In most applications, prediction is based 
on a descriptive model with meaningfully interpreted parameters. 
An exception is ‘black box’ models, which have so many parameters 
and such complex model structure that the model cannot be inter-
preted meaningfully as a descriptive or measurement model, and is 
instead used for prediction only. In a Bayesian setting, prediction can 
take advantage of multiple models by taking a posterior-weighted 
average of the predictions, as in Bayesian model averaging39. In pre-
diction, an essential aspect is quantifying the uncertainty of the pre-
dicted values. The uncertainty is expressed by a credible interval on 
continuous values or on the probabilities of discrete values.

Formal model selection, including null hypothesis testing. In 
some applications, it is a goal to select a best model or hypothesis 
from a defined set of discrete possibilities. Model selection may be 
a primary goal when models are of structurally different types and 
compete to explain a domain. Tests of full versus restricted nested 
models may seek parsimonious descriptions40. For example, in mul-
tiple regression, analysts might pursue variable selection for which 
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Table 1 | List of key reporting points for the BARG

Preamble

 A. Why Bayesian. If the audience requires it, explain what benefits will be gleaned by a Bayesian analysis (as opposed to a frequentist analysis).

 B. Goals of analysis. explain the goals of the analysis. this prepares the audience for the type of models to expect and how the results will be described.

Step 1. explain the model

 A. Data variables. explain the dependent (predicted) variables and independent (predictor) variables.

 B.  Likelihood function and parameters. For every model, explain the likelihood function and all the parameters, distinguishing clearly between parameters of primary theoretical interest and 

ancillary parameters. If the model is multilevel, be sure that the hierarchical structure is clearly explained, along with any covariance structure if multivariate parameter distributions are 

used.

 c. Prior distribution. For every model, explain and justify the prior distribution of the parameters in the model.

 D.  Formal specification. Include a formal specification (mathematical or computer code) of the likelihood and prior, located either in the main text or in in publicly and persistently 

accessible online supplementary material.

 e.  Prior predictive check. especially when using informed priors but even with broad priors, it is valuable to report a prior predictive check to demonstrate that the prior really generates 

simulated data consistent with the assumed prior knowledge.

Step 2. Report details of the computation

 A. Software. report the software used, including any specific added packages or plugins.

 B. MCMC chain convergence. report evidence that the chains have converged, using a convergence statistic such as PSrF, for every parameter or derived value.

 c. MCMC chain resolution. report evidence that the chains have high resolution, using the eSS, for every parameter or derived value.

 D. If not MCMC. If using some computational procedure other than McMc, be aware of and report inherently inaccurate approximations, especially for the limits of credible intervals.

Step 3. Describe the posterior distribution

 A. Posterior predictive check. Provide a posterior predictive check to show that the model usefully mimics the data.

 B.  Summarize posterior of variables. For continuous parameters, derived variables and predicted values, report the central tendency and limits of the credible interval. explicitly state whether 

you are using density-based values (mode and HDI) or quantile-based values (median and etI), and state the mass of the credible interval (for example, 95%).

 c. BF and posterior model probabilities. If conducting model comparison or hypothesis testing, report the BF and posterior probabilities of models for a range of prior model probabilities.

Step 4. Report decisions (if any) and their criteria

 A.  Why decisions? explain why the decisions are theoretically meaningful and which decision procedure is being used. regardless of which decision procedure is used, if it addresses null 

values, it should be able to accept the null value not only reject it.

 B. Loss function. If utilities and a loss function for a decision rule are defined, these should be explained and reported.

 c. ROPE limits. If using a continuous-parameter posterior distribution as the basis for decision, state and justify the limits of the rOPe and the required probability mass.

 D.  BF, decision threshold and model probabilities. If using model comparison or hypothesis testing as the basis for a decision, state and justify the decision threshold for the posterior model 

probability, and the minimum prior model probability that would make the posterior model probability exceed the decision threshold.

 e. Estimated values too. If deciding about null values, always also report the estimate of the parameter value (central tendency and credible interval).

Step 5. Report sensitivity analysis

 A.  For broad priors. If the prior is intended to be vague or only mildly informed so that it has minimal influence on the posterior, show that other vague priors produce similar posterior 

results.

 B. For informed priors. If the prior is informed by previous research, show what posterior results from a vague prior or from a range of differently informed priors.

 c.  For default priors. If using a default prior, show the effect of varying its settings. Be sure that the range of default priors constitutes theoretically meaningful priors, and consider whether 

they mimic plausible empirically informed priors.

 D.  BFs and model probabilites. If the analysis involves model comparison or hypothesis testing, then for each prior report not only the BFs but also the posterior model probabilities for a 

range of prior model probabilities.

 e.  Decisions. If making decisions, report whether decisions change under different priors. For BFs, report changes in the minimum prior model probability needed to achieve decisive 

posterior model probability.

Step 6. make it reproducible

 A. Software and installation. explain all the software that is necessary and where to obtain it. If possible, use non-proprietary software.

 B. Software version details. the posted script should include detailed information about the software version numbers.

 c.  Script and data. Post the complete analysis script (that is, computer code) and data in a stable public repository with persistent UrLs, so that anyone can download it and exactly reproduce 

the analysis. Be sure that it is clear how to navigate the site and find relevant files, for example, with a wiki overview or readme file. If posting data, be sure that it respects privacy and 

copyright restrictions. If the original data cannot be posted publicly, it may be helpful to post dummy data of the same form so that users can verify the operation of the analysis script.

 D.  Readable for humans. Make the posted script genuinely readable by human beings. Annotate the code with thorough explanatory comments and spatially arrange the code for human 

readability.

 e. All auxiliary files. check that all the needed auxiliary files (utility scripts, image files, bibliography files, formatting files and so on) are also posted.

 F.  Runs as posted. check that the posted script and accompanying files run as is when downloaded to a different computer. the code should have no lines that load files from personal 

computer directories or non-persistent UrLs.

 G.  MCMC chains for time-intensive runs. For McMc runs that take a long time to compute, it is helpful to post an McMc chain so that people can inspect the McMc chain without having to 

wait through an entire run duration.

 H. Reproducible MCMC. to make McMc chains exactly reproducible, the pseudo-random number generators should be explicitly seeded.

these points are discussed in the main text, and an extended example is presented in Supplementary Information (also at https://osf.io/w7cph/). When reporting an analysis, the points on this list should 
be addressed in the main text or in appendices and supplementary material. the specific sequential ordering of points is suggested, and not a requirement. BF, Bayes factor; eSS, effective sample size; etI, 
equal-tailed interval; HDI, highest-density interval; McMc, Markov chain Monte carlo; PSrF, potential scale reduction factor; rOPe, region of practical equivalence.
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the goal is to select predictors that achieve a balance of parsimony 
and fit to the data. Formal null-hypothesis testing is especially rele-
vant when the null value of a parameter is qualitatively distinct from 
any small non-null values. Analysts should be careful, however, to 
avoid unnecessary ritualistic null-hypothesis testing, which can lead 
to cognitive errors and publication bias41–43.

explaining the model
The foundational idea of statistical analysis, both frequentist and 
Bayesian, is that data are understood through a mathematical 
model that mimics the data. A mathematical model is a machine 
that generates random values around a trend. The machine has 
control knobs, called parameters, that determine the location of the 
trend and the spread of the randomly generated data around that 
trend. For example, numerical data that when plotted appear as a 
unimodal histogram might be described as a normal distribution, 
which is a mathematical function that has (1) a mean parameter that 
specifies the trend location and (2) a standard deviation parameter 
that specifies the spread of random values around the trend. In this 
example, the data are understood through the normal distribution 
that mimics it. The essential goal of statistical analysis is to find a 
mathematical model and its parameter settings that usefully mimic 
the data, along with the uncertainty of those parameter settings. 
Therefore, every report of a statistical analysis (whether Bayesian 
or frequentist) must clearly explain the mathematical model and all 
of its parameters.

In Bayesian analysis (but not in frequentist analysis), an addi-
tional fundamental idea is that different parameter values have dif-
ferent credibilities, and the credibility of each parameter value can 
be represented by a relative probability value. Across the range of 
parameter values there is a probability distribution that represents 
the relative credibility of each parameter value. When the prob-
ability distribution on a parameter is very broad, there are many 
parameter values that are all weakly credible, which represents high 
uncertainty about the value of the parameter. Conversely, when the 
probability distribution on a parameter is peaked over a narrow 
range of values, the narrowness represents low uncertainty about 
the value of the parameter.

A Bayesian statistical analysis begins with a prior probability dis-
tribution across all the parameters. Data from the research at hand 
are then incorporated into the analysis, and the probability distri-
bution is shifted towards parameter values that are relatively con-
sistent with the data (and shifted away from parameter values that 
are relatively inconsistent with the data). The re-allocated credibility 
across parameter values is called the posterior distribution. In many 
routine applications, the prior distribution is very broad to repre-
sent unbiased uncertainty, but in some applications, the prior distri-
bution is informed by knowledge from previous research. Because 
the prior distribution can influence the posterior distribution, every 
report of a Bayesian analysis must clearly explain the prior distribu-
tion on the parameters.

Formally, a model in Bayesian analysis includes both the like-
lihood function, which expresses the probability of data given the 
parameter values, and the prior probability distribution, which 
expresses the probability of the parameter values before taking into 
account the novel data. For example, for data modelled by a nor-
mal distribution, the likelihood function indicates that the data y 
are distributed as a normal distribution with mean μ and standard 
deviation σ, which is written formally as y ~ normal(μ, σ), where ‘~’ 
means ‘is distributed as’. The prior distribution on the parameters 
could take many forms, but one typical prior could specify μ ~ nor-
mal(0, 10) and σ ~ lognormal(0, 10), where ‘lognormal’ refers to 
the log-normal distribution. The constants in the prior distribu-
tion are set to reflect prior knowledge of the domain, which may 
be broad and uncertain. The description of the likelihood and prior 
should include formal details expressed either mathematically or as 

well-annotated computer code. These details could be in the main 
document or in supplementary material.

When an analysis includes multiple models, as in model com-
parison or hypothesis testing, all of the models need to be clearly 
explained, including their likelihood functions, parameters and 
prior distributions. Moreover, the prior probabilities of the models 
or hypotheses should also be discussed.

Because the posterior distribution can sometimes depend 
strongly on the choice of prior distribution, a key part of reporting 
priors is justifying the choice. That is, it is not sufficient merely to 
state what prior was used, there must be a rationale for the prior. 
Two further steps are involved in justifying a prior: a prior predic-
tive check and a sensitivity analysis. A prior predictive check dis-
plays simulated data that are generated from parameter values in 
the prior distribution. The simulated data from the mathematically 
specified prior should show trends that match the trends assumed 
by prior knowledge. A sensitivity analysis considers how much the 
posterior distribution changes when the prior is changed in relevant 
ways. Sensitivity analysis is discussed in BARG step 5.

Because a key part of reporting priors is justifying them, and 
justification entails considerations of best practices, this discussion 
now ventures into best practices for setting priors. However, best 
practices are evolving, and what is noted here may be superseded in 
the future. Moreover, there may be trade-offs of costs and benefits 
among different practices, and experts may disagree on what is best 
for any particular application.

When estimating continuous parameters and using a broad 
prior intended to express great uncertainty, it should be confirmed 
that the prior really is broad on the particular scale of the data. For 
example, a prior that is broad on the scale of hair diameter might 
not be broad on the scale of distance between galaxies. When the 
prior is intended to be informed by previous data or theory, it 
should be checked that it really does accurately represent the previ-
ous data or theory. This is called a prior predictive check19,44 because 
simulated data generated from the prior distribution are examined 
and checked for consistency with the previous data or theory. One 
way of creating an informed prior is to use the posterior distribu-
tion from a set of representative data and a very broad initial prior. 
The example in the Supplementary Information demonstrates this 
technique and a prior predictive check.

When conducting model comparisons or hypothesis tests, the 
prior distributions within each model must be carefully consid-
ered so that the comparison is meaningful. A common approach 
to model comparison uses default priors that satisfy certain math-
ematical consistency properties45–48. One benefit of this approach 
is computational efficiency. Another benefit is conventionality, 
which allows default priors to be implemented in packaged soft-
ware. Moreover, with default priors, there is limited ability of differ-
ent analysts to choose arbitrary or idiosyncratic priors, and there is 
enhanced efficiency of communication among those who are famil-
iar with the default conventions. However, the default priors might 
not accurately capture the prior information or theory needed by 
the analyst. Thus, it is important to justify that the default priors 
constitute theoretically or empirically meaningful models for the 
specific application.

Another useful approach to setting priors of multiple models 
is to inform every model with the same small set of representative 
prior data. “Empirical regularities for … phenomena are often 
well established. These regularities provide an accessible and sub-
stantial source of information for constructing priors”49. The rep-
resentative data could be either actual previous data or a fictitious 
small set of data that accurately represent previously observed 
trends. In this approach, every model is initially given a very 
broad prior which is then updated with the representative data. 
The resulting posterior is used as the informed prior for the target 
data at hand. “The idea of using a small amount of training data 
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to inform the priors for model comparison has been discussed at 
length in the literature and is an active research topic. A selective 
overview was provided by Berger and Pericchi50, who discussed 
conventional default priors46, ‘intrinsic’ Bayes factors (BFs)51, 
and ‘fractional’ BFs52,53, among others”15. Both intrinsic and frac-
tional BFs take a small subset of the data to update a broad prior 
into an informed prior, and then use the remaining bulk of the 
data to compute the BF. “… we begin by sacrificing some data 
to construct informed priors. We will then show that the model 
with informed priors make more constrained, and arguably more 
sensible predictions than when we use vague priors”54. Instead 
of using a subset of the current data, priors can be informed by 
previous data. An illustration of using a small set of representa-
tive previous data to inform priors of all models is provided in 
the example in the Supplementary Information. This technique of 
informing all models with the same representative data is greatly 
facilitated by the availability of a computational technique called 
bridge sampling55,56. Bridge sampling works for arbitrary models 
and does not require simplifying assumptions required by Jeffrey’s 
default priors46,47 or the Savage–Dickey method57.

Finally, when doing model comparison or hypothesis testing, 
it is important to consider the prior probabilities of the models or 
hypotheses. In practice, the prior probabilities of the models or 
hypotheses are routinely ignored because they can be uncertain. 
However, if decisions about models are to be based on their poste-
rior probabilities, then the prior probabilities of the models should 
be considered. This issue of prior and posterior model probabilities 
is discussed further in BARG steps 3 and 4.

Reporting points for this step are included in Table 1.

Reporting details of the computation
There are many different software products that compute 
Bayesian analyses, including JAGS, WinBUGS/OpenBUGS, Stan, 
PyMC3, Pyro, dozens of R packages (https://cran.r-project.org/
view=Bayesian), JASP, Jamovi, Minitab, SAS/JMP, Stata, SPSS, 
Mplus and others. Software and features are continually evolving. 
For a list of statistical software, some of which may have Bayesian 
options, consider https://en.wikipedia.org/wiki/List_of_statistical_
software. It is up to the user to understand the specific computations 
and output of whatever software is being used.

Most contemporary Bayesian analyses are accomplished using 
MCMC15,58,59. MCMC creates a representation of a probability dis-
tribution over parameters by taking a random walk through param-
eter space, tending to walk in the high-probability regions of the 
space and only occasionally walking in the low-probability regions. 
After a long walk, the footsteps provide a high-resolution repre-
sentation of the underlying mathematical posterior distribution. 
There is nothing inherently Bayesian in MCMC; MCMC merely 
provides a high-resolution pixelated representation of the posterior 
distribution.

The MCMC random walk, called a chain, must have explored the 
parameter space sufficiently to be genuinely representative of the 
posterior distribution. There are two key aspects of the chain that 
the user must check. First, there should be evidence that the chains 
did not get stuck in some unrepresentative region of the parameter 
space but instead converged on a representative walk. A popular 
method for checking convergence is to run at least three separate 
chains and check that all the chains overlap each other, as measured 
by the potential scale reduction factor (PSRF)60, also called R-hat 
(R̂). “… [T]herethere are several other commonly implemented 
convergence diagnostics in programs such as R; for example, the 
Geweke diagnostic61, the Heidelberger and Welch diagnostic62, and 
the Raftery and Lewis diagnostic63,64 for determining the length of 
the burn-in and post-burn-in portions of the chain”7. Regardless of 
which statistic is used, the goal is to demonstrate reasonable assur-
ance that the MCMC chains are not stuck.

The second key aspect of the MCMC chain to check is the stabil-
ity of its estimates. Even if chains have converged, they might not 
be long enough to smoothly and accurately represent the distribu-
tion with high resolution. A key indicator is the ESS, which is the 
effective number of steps in the MCMC chain after the clumpiness 
of autocorrelation is factored out. The ESS has nothing to do with 
the number of points in the data, which is fixed. A less confusing 
name for ESS might be ‘effective MCMC length’, but this term is 
never used. Sufficient ESS is essential for having stable param-
eter estimates65, in particular for stable limits of credible intervals. 
Recommendations for specific best practices may differ among 
experts depending on the application. For reasonably stable esti-
mates of limits of highest-density intervals (HDIs), I recommend15 
that ESS ≥ 10,000. For stable estimates of limits of equal-tailed inter-
vals, ESS can be lower. The central tendency can be stably estimated 
with smaller ESS (when the central tendency is in a high-density 
region of the distribution)66.

Every parameter and derived value has a distinct PSRF and ESS. 
Therefore, the convergence and resolution values of every param-
eter should be reported. The main text could summarize these, with 
details being provided in the supplementary materials.

When computing BFs for model comparison or hypothesis test-
ing, different computational procedures might be used. It is up 
to the user to know what method is being used by their software. 
When MCMC underlies the computation, it is again relevant to 
report the convergence and stability of the chain. For instance, the 
example in the Supplementary Information uses bridge sampling55,56 
to compute BFs, and reports an estimate of approximation error.

Some Bayesian software uses methods other than MCMC to 
compute posterior distributions, such as integrated nested Laplace 
approximation67 or variational inference68. In these cases, it is not 
relevant to report MCMC convergence statistics. However, if the 
method is not an exact calculation of the posterior (as it would 
be when using a fully conjugate prior, for instance), there will be 
approximations inherent in the result, and any such approximations 
should be noted.

Reporting points are listed in Table 1.

Describing the posterior distribution
Statistical models can only be meaningful if they mimic the data 
in some relevant way. Therefore a prerequisite for reporting the 
parameter estimates is demonstrating that the model does indeed 
usefully describe the data. This prerequisite applies to frequentist 
and Bayesian methods. In the Bayesian framework, showing that 
the model mimics the data is called a posterior predictive check69–71.  
The predictions of the model, using parameter values from the 
posterior distribution, are compared with the actual data. There 
is no universally best way to perform a posterior predictive check, 
because different applications can have very different data struc-
tures and different aspects of data might be of different theoretical 
importance. A posterior predictive check is usually qualitative (for 
example, graphical), but quantitative posterior predictive checks are 
possible and could involve formal model selection. In any case, a 
posterior predictive check should show that the important trends 
in the data are usefully captured by the model. After the posterior 
predictive check, details of the parameters can be reported.

The marginal posterior distribution of a parameter or derived 
measure can usually be summarized adequately in words. In the vast 
majority of cases, the marginal posterior distribution of a parameter 
is unimodal and only modestly skewed, and that form can be sum-
marized in words by reporting the central tendency and limits of a 
credible interval. A conventional probability mass for the credible 
interval is 95%, but in any case the chosen credible interval proba-
bility mass must be clearly reported. The central tendency and cred-
ible interval can be based on probability density, in which case the 
report specifies the mode and 95% HDI. Alternatively, the central 
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tendency and credible interval can be based on quantiles (cumu-
lative probability), in which case the report specifies the median 
and 95% ETI. Values based on densities or on quantiles will usu-
ally be quantitatively similar except in highly skewed distributions 
or in multimodal distributions with deep troughs15,72. In any case, 
the report must clearly indicate which form (density or quantile) is 
being used.

Graphical representations of unimodal marginal distributions 
are usually redundant with the text description. Moreover, many 
applications involve tens or hundreds of parameters and derived 
variables, and including graphs of them all could be counterpro-
ductive and superfluous. Online supplementary material usually 
has less constraint on length than the main text of publications, and 
can therefore include more graphical representations. Graphical 
representations can be especially useful to explain unusual distri-
butions—for example, when truncated priors produce truncated 
posteriors.

When doing model comparison or hypothesis tests, it is conven-
tional to report the BF for pairs of models. The BF is the coefficient 
that converts the prior probabilities of the models to the posterior 
probabilities of the models, and the magnitude of the BF indicates 
the degree to which model probabilities are shifted from their prior 
probabilities47,73. A formal definition of the BF is provided in the 
Supplementary Information. The BF alone does not indicate the 
posterior model probabilities. Nevertheless, posterior probabili-
ties are the ultimate output of Bayesian inference and are essential. 
Despite the ultimate interest in posterior model probabilities, they 
are often not reported because analysts demur at committing to spe-
cific prior model probabilities.

To satisfy both the need for reporting the BF and the need for 
posterior model probabilities, I recommend that analysts report 
the BF and posterior model probabilities for a range of prior 
model probabilities. Figure 1 plots the posterior probability of a 
model as a function of its prior probability for specific values of 
the BF. The plots are a variation of the leaf plot74 for interpret-
ing diagnostic tests. In Fig. 1, I call the models null and alterna-
tive hypotheses. The titles of the panels show the null hypothesis 
as the numerator of the BF and the alternative hypothesis as the 
denominator. If we suppose the BF for the null hypothesis rela-
tive to the alternative hypothesis is 10, probabilities are shifted 
towards the null hypothesis, as shown in Fig. 1a. The curve shows 
the posterior probability of the null hypothesis as a function of 
its prior probability. For example, if the prior probability of the 
null hypothesis is 0.05, then its posterior probability is 0.34; if 

the prior probability of the null hypothesis is 0.5, then its pos-
terior probability is 0.91; and if the prior probability of the null 
hypothesis is 0.95, then its posterior probability is 0.99. Figure 1b 
shows the case in which BF = 0.1, which shifts the model prob-
abilities away from the null hypothesis. In this case, if the prior 
probability of the null hypothesis is 0.05, then its posterior prob-
ability is 0.01; if the prior probability of the null hypothesis is 0.5, 
then its posterior probability is 0.09; and if the prior probability 
of the null hypothesis is 0.95, then its posterior probability is 0.66. 
This graphical device is offered as one way to concisely convey 
information about both the BF and the posterior model prob-
ability simultaneously, without committing to a specific prior 
model probability. This is discussed further in Supplementary 
Information. The graph does not have to be included in reports, 
but it becomes even more useful in the context of making deci-
sions about models, as elaborated in BARG step 4.

Reporting points are listed in Table 1.

Reporting any decisions
The Bayesian inference per se produces the posterior distribution 
that was emphasized in step 3. Some analysts use the posterior 
distribution to make a decision about specific parameter values, 
hypotheses or models. Such a decision is an additional consider-
ation that involves establishing thresholds for each decision. This is 
exactly analogous to frequentist decision making, in which a p value 
for a particular test statistic is computed from the data and sampling 
intentions, but deciding whether the p value is significant requires 
specifying a threshold value such as 0.05.

It is important to distinguish (1) the posterior distribution pro-
duced by the Bayesian inference from (2) the decision rule and 
its thresholds, because the posterior distribution depends only on 
the data and prior distribution, whereas the decision depends on 
separate considerations such as decision thresholds and the costs 
and benefits of errors and correct decisions75. There can be agree-
ment among researchers that a particular posterior distribution is 
richly informative and robust, but disagreement regarding which 
decision procedure or threshold to use. Again, this is analogous to 
frequentist decision making, in which researchers might disagree 
about the significance threshold for making decisions76 or disagree 
about which test statistic to use (for example, a likelihood-ratio test 
of models or a direct test of parameter null value within a model). 
Importantly, if the Bayesian posterior distribution is thoroughly and 
reproducibly reported, readers who prefer different decision proce-
dures can make their own decisions.
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Fig. 1 | Posterior model probability as a function of prior model probability. a, BF = 10. b, BF = 0.1.
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A full-blown decision-theoretic approach would require speci-
fication of utilities for each possible correct or erroneous decision, 
and specification of a loss function that is minimized by the decision 
rule75,77,78. Such utilities are rarely specified in behavioural research. 
If, however, utilities and a loss function are used, they should be 
reported and explained in full.

As was emphasized in the preamble of the BARG, it should be 
considered whether decisions are needed at all, or if a declaration 
of significance is merely compliance with ritual42,43,79. Whichever 
decision procedure is used, it should be kept in mind that the deci-
sion thresholds are often merely conventional, and what counts as a 
negligible effect size should be considered, not merely whether the 
sample size of the data was large enough to ‘significantly’ favour one 
hypothesis or the other with a tiny effect80,81.

Some analysts find it useful to base decisions about null values 
by considering where the posterior distribution falls relative to the 
null value. With these decision rules, when the bulk of the poste-
rior distribution falls sufficiently close to the null value, then the 
null value is ‘accepted’ and when the bulk of the posterior distri-
bution falls sufficiently far away from the null value, then the null 
value is ‘rejected’. The threshold for being sufficiently close or far 
away goes by different names, but I will refer to it as the region of 
practical equivalence (ROPE) to the null value. The ROPE limits 
are established by practical and theoretical considerations before 
seeing the results81. Some decision rules consider only the propor-
tion of the posterior distribution that falls within the ROPE82. Other 
decision rules consider the relationship of the credible interval to 
the ROPE81,83. If this type of decision rule is used, it is important to 
report the ROPE and its justification.

Some analysts find it useful to base decisions about null val-
ues by formalizing the null value as a distinct model, called the 
null hypothesis, and doing Bayesian model comparison of the null 
hypothesis and an alternative hypothesis. This approach posits dis-
tinct prior probability mass at (or in a narrow region near) the null 
value. As explained in step 3, the BF quantifies the shift in model 
probabilities away from the prior model probabilities. Basing a deci-
sion on the BF alone is tantamount to assuming that the prior prob-
ability of the null hypothesis is fixed at 0.50. For example, in disease 
diagnosis, the BF of a diagnostic test result can be derived directly 
from the rates of false negatives and false positives, and basing diag-
nostic decisions on the BF ignores the base rate of the disease and 
instead assumes that the base rate of the disease is 50%. As another 
example, testing the existence of extrasensory perception (the ‘psi 
effect’), using the BF assumes that the prior probability of the psi 
effect is 50%, but “it is appropriate to hold very low prior odds of a 
psi effect, and appropriate [prior] odds may be as extreme as mil-
lions, billions, or even higher against psi. Against such [prior] odds, 
a BF of even 330 to 1 seems small and inconsequential in practi-
cal terms”84. Therefore, I recommend that reports include not only 
the BF, but also what prior model probability would be needed for 
the posterior model probability to exceed a decision threshold, as 
explained next.

Figure 1 shows the BF curve that plots posterior model prob-
ability as a function of prior model probability. The curve can be 
marked at a criterion posterior model probability for accepting or 
rejecting to make visually explicit the range of prior model prob-
abilities that result in exceeding the decision criterion. Examples 
are shown in Fig. 2, using a criterion posterior probability of 0.95, 
which means the winning model is at least 19 times more probable 
than the losing model. In Fig. 2a, with BF = 10, the annotated hori-
zontal line near the top indicates that to decide to ‘accept’ the null 
hypothesis with posterior probability of at least 0.95, the prior prob-
ability of the null hypothesis must be at least 0.655. In Fig. 2b, with 
BF = 0.1, the annotated horizontal line near the bottom indicates 
that to decide to ‘reject’ the null hypothesis with posterior probabil-
ity no greater than 0.05, the prior probability of the null hypothesis 

must be no greater than 0.345. These graphical displays are offered 
as useful visualizations to relate BFs to posterior model probabilities 
and decision thresholds. The essential information to report is the 
BF, the criterion posterior model probability for accept (or reject), 
and the minimum (or maximum) prior model probability needed 
to exceed that decision threshold. To be clear, this recommendation 
is unique to the BARG, but would be very useful to help researchers 
understand the implications of BFs. A Bayesian treatment of uncer-
tain prior model probabilities is provided in ref. 85.

If deciding about null values, the decision about the null value 
should never be reported without reporting the estimate of the 
parameter value (that is, its central tendency and credible interval). 
This is crucial to forestall fallacies of black-and-white thinking and 
to facilitate meta-analysis31,43,86.

Typically, reports of decisions are integrated with reports of 
descriptions. Nevertheless, the two topics are separated as distinct 
steps in the BARG to emphasize that they are separate issues. The 
reporting points apply even if reports of decisions are interspersed 
among the descriptions. Care should be taken in the report to dis-
tinguish the summary of the posterior distribution from the deci-
sion procedure. Reporting points are listed in Table 1.

Reporting sensitivity analysis
The researcher should always conduct an analysis of how sensi-
tive the posterior distribution is to the choice of prior distribution. 
Different types of applications tend to have different sensitivities to 
the prior. Applications with small datasets tend to be more sensi-
tive to the prior than applications with large datasets. In continuous 
parameter estimation with broad priors, the posterior is typically 
not very sensitive to the choice of prior, and sensitivity analy-
ses can be minimal if the prior is truly broad relative to the pos-
terior (though unanticipated sensitivity can arise; for example, on 
higher-level covariance priors7). By contrast, when using a strongly 
informed prior it is important to demonstrate the results from other 
priors. And when doing model selection or hypothesis testing, the 
BF can sometimes be very sensitive to the choice of prior within 
models, so a sensitivity analysis is crucial.

A prior specification may involve numerous constants that 
specify the location, scale, covariance and shape (for example, skew 
or kurtosis) of the prior distribution on the parameters. Note that 
there can be many more prior constants than there are estimated 
parameters; for example, a normal prior on a single parameter 
involves two constants (the mean and standard deviation). Some 
models may involve tens or hundreds of prior constants. Because 
of combinatorial explosion (for example, C prior constants, each 
with L candidate values, result in LC combinations), it is unrealis-
tic to factorially manipulate all the prior constants and assess their 
impact on the posterior distribution. For instance, the example in 
the Supplementary Information involves a model with 6 parameters 
and C = 27 prior constants. Therefore, the analyst must selectively 
consider changes to the prior that are theoretically relevant or that 
address the concerns of a reasonable sceptic.

If using representative data to inform all models, then it may be 
useful to try different sets of representative data. The example in the 
Supplementary Information shows results using three priors: (1) a 
generic broad prior, (2) a prior informed by comparable data other 
than the target data, and (3) a prior informed by a representative 
subsample of the target data.

If using default priors, it may be useful to vary the uncertainty of 
the prior on the effect size. For example, Wagenmakers, Verhagen 
and Ly87 considered BFs for a Pearson correlation parameter, ρ. The 
null hypothesis set ρ ≡ 0, and the sensitivity analysis considered pri-
ors for the alternative hypothesis that remained centred on ρ = 0 but 
varied from flat to strongly peaked. This family of variation might 
not accurately capture empirically informed priors, which involve 
priors centred at observed effect sizes not at zero. An example using 
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empirically informed priors was also provided in what they called a 
‘replication’ BF88 that used the entire dataset from a previous study 
(which can create a fairly narrow alternative prior), rather than a 
small representative dataset (which yields a broader alternative 
prior that nevertheless captures the trends) as in the example in the 
Supplementary Information.

Assessing differences between posterior distributions from dif-
ferent priors is itself a complex issue. The posterior distribution 
is a joint distribution on a multidimensional parameter space. It 
is conceivable that parameter correlations may change while their 
marginal distributions remain relatively unchanged. Typically, how-
ever, analysts are concerned primarily with the individual param-
eter marginal distributions. Two useful ways to visually compare 
distributions are superimposed density curves and superimposed 
cumulative-distribution curves. Density curves are especially 
useful for visually highlighting the modes and HDIs, whereas 
cumulative-distribution curves are especially useful for visually 
highlighting medians and ETIs. Density curves are inherently 
distorted by smoothing kernels, whereas cumulative-distribution 
curves are limited only by the pixel resolution of the display. The 
example in the Supplementary Information provides illustrations. 
It can be wasteful of page space to make graphs for every parameter 
in a model, especially in models with tens or hundreds of param-
eters. Whether or not visual graphs are displayed, it is important to 
include numerical tables showing the central tendency and credible 
interval for the marginal posterior distribution of every parameter 
or relevant derived measure for every prior, either in the main text 
or in appendices or supplementary material.

When assaying sensitivity of BFs to choice of prior, it is con-
ceivable to superimpose several BF curves (as in Fig. 2), but this 
would be cluttered and difficult to read. Therefore, BFs from differ-
ent priors may be best presented in tabular format along with the 
minimum prior probabilities required to achieve decisive posterior 
probability.

Procedures for conducting a convincing sensitivity analysis may 
depend strongly on the specific model and data, and such proce-
dures are still being developed89–93. The choice of other priors to 
compare is crucial, yet can be controversial. In applications for 
which the duration of each individual MCMC is long, an exhaus-
tive sensitivity analysis may take a very long time, and efficien-
cies may need to be introduced. Therefore the guidelines here are 
general, and the analyst is encouraged to explore the literature for 

model-specific recommendations. Ultimately, the analyst must be 
thoughtful in exploring plausibly interesting variations in the prior 
and be forthright in presenting the results. Because of the poten-
tial length of a thorough presentation, online supplementary mate-
rial may be needed and is encouraged (see ‘Make it reproducible’ 
(BARG step 6)). Reporting points are listed in Table 1.

making it reproducible
For an analysis to be reproducible, it should be thoroughly and 
transparently explained in the first place, and the preceding points 
have been designed with this goal in mind. A final and important 
part of reproducibility is making the computer code and data easily 
available to others by posting them at a public and persistent web-
site. The data, code and other files should be findable, accessible, 
interoperable and reusable (the FAIR principles94,95). Of the several 
essential points listed in Table 1, I highlight two: first, make the 
computer code readable by human beings. Annotate the computer 
code with explanatory comments, and arrange the code with ample 
spaces between terms and indented breaks across lines so that a 
human being can visually parse the syntax. Second, check that the 
computer code runs as posted when it is downloaded to another 
computer. This helps to verify that all necessary files and directories 
are set for use by third parties.

encouraging use of guidelines
Despite the existence of previous guidelines for reporting research, 
guidelines are rarely mentioned in reports and are probably 
rarely consulted. If the BARG are to be useful, they must be used. 
Researchers have argued that reporting guidelines may have ben-
efits and should be endorsed by journals across many fields9,96–101. 
It has been observed that “Journals promoting [guidelines] were 
both key motivators and awareness mechanisms; peers and educa-
tional workshops were also important influencing factors to a lesser 
degree”102. The recommendations of the International Committee of 
International Journal Editors103 state that “Journals are encouraged 
to ask authors to follow … guidelines because they help authors 
describe the study in enough detail for it to be evaluated by editors, 
reviewers, readers, and other researchers …”.

When promoting guidelines such as the BARG, we must avoid 
promoting mindless statistical rituals that perversely encourage 
questionable research practices41,42 and embracing a culture of obe-
dient compliance that shames individual practitioners79. The BARG 
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Fig. 2 | Decision threshold for posterior model probability with corresponding prior model probability. a,b, Decision thresholds on posterior model 
probabilities are plotted as dashed horizontal lines, with BF values of 10 (a) and 0.1 (b). Where the posterior probability exceeds the decision threshold, 
the decision threshold lines are marked by solid segments and annotated with the corresponding prior model probability. ‘Prior s.t. post > 0.95’ means the 
prior model probability such that the posterior model probability is greater than 0.95. the two panels show different BFs.
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avoid mindless compliance with ritualized norms by encouraging 
reflective application of essentials to produce thoughtful, thorough, 
transparent and reproducible Bayesian analyses.

The BARG have assimilated many previous checklists and guide-
lines, but also include additional points, organization, explanation 
and an extended example (Supplementary Information). If research-
ers, authors, editors, reviewers, educators and students thoughtfully 
follow the BARG, statistical analyses may be better in quality, trans-
parency, impact and reproducibility. Statistical methods and prac-
tices are continually evolving, but the key points emphasized by the 
BARG should be applicable for years to come.

Received: 15 June 2020; Accepted: 7 July 2021;  
Published online: 16 August 2021

References
 1. Vandekerckhove, J., Rouder, J. N. & Kruschke, J. K. Editorial: Bayesian 

methods for advancing psychological science. Psychonomic Bull. Rev. 25, 
1–4 (2018).

 2. van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M. & 
Depaoli, S. A systematic review of Bayesian articles in psychology: the last 
25 years. Psychol. Methods 22, 217–239 (2017).

 3. Pibouleau, L. & Chevret, S. Bayesian statistical method was underused 
despite its advantages in the assessment of implantable medical devices.  
J. Clin. Epidemiol. 64, 270–279 (2011).

 4. Sung, L. et al. Seven items were identified for inclusion when reporting  
a Bayesian analysis of a clinical study. J. Clin. Epidemiol. 58, 261–268 
(2005).

 5. Sobieraj, D. M. et al. Methods used to conduct and report Bayesian mixed 
treatment comparisons published in the medical literature: a systematic 
review. BMJ Open 3, e003111 (2013).

 6. Zhai, J. et al. Reporting of core items in hierarchical Bayesian analysis for 
aggregating N-of-1 trials to estimate population treatment effects is 
suboptimal. J. Clin. Epidemiol. 76, 99–107 (2016).

 7. Depaoli, S. & van de Schoot, R. Improving transparency and replication in 
Bayesian statistics: the WAMBS-checklist. Psychological Methods 22, 
240–261 (2017).

 8. Rietbergen, C., Debray, T. P. A., Klugkist, I., Janssen, K. J. M. & Moons, K. 
G. M. Reporting of Bayesian analysis in epidemiologic research should 
become more transparent. J. Clin. Epidemiol. 86, 51–58 (2017).

 9. Simera, I. The EQUATOR network: supporting editors in publishing 
well-reported health research. Sci. Editor 37, 15–16 (2014). 18.

 10. Fuller, T., Pearson, M., Peters, J. & Anderson, R. What affects authors’ and 
editors’ use of reporting guidelines? Findings from an online survey and 
qualitative interviews. PLoS ONE 10, e0121585 (2015).

 11. TREND Group. Improving the reporting quality of nonrandomized 
evaluations of behavioral and public health interventions: the TREND 
statement. Am. J. Public Health 94, 361–366 (2004).

 12. Spiegelhalter, D. J., Myles, J. P., Jones, D. R. & Abrams, K. R. Bayesian 
methods in health technology assessment: a review. Health Technol. Assess. 
4, 1–130 (2000).

 13. Gatsonis, C. & Goodman, S. Bayesian Standards in Science—Standards for 
Reporting of Bayesian Analyses in the Scientific Literature (The BaSiS Group, 
2001); http://lib.stat.cmu.edu/bayesworkshop/2001/BaSis.html

 14. Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R and BUGS 
(Academic, 2011).

 15. Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and 
Stan, 2nd edn (Academic, 2015).

 16. Lang, T. A. & Altman, D. G. Basic statistical reporting for articles published 
in biomedical journals: the ‘statistical analyses and methods in the 
published literature’ or the SAMPL guidelines. Int. J. Nurs. Stud. 52,  
5–9 (2015).

 17. Baldwin, S. A. & Larson, M. J. An introduction to using Bayesian linear 
regression with clinical data. Behav. Res. Ther. 98, 58–75 (2017).

 18. van de Schoot, R., Veen, D., Smeets, L., Winter, S. D. & Depaoli, S. in Small 
Sample Size Solutions (eds van de Schoot, R. & Miocevic, M.) 30–49 
(Routledge, 2020).

 19. van de Schoot, R. et al. Bayesian statistics and modelling. Nat. Rev. Methods 
Prim. 1, 3 (2021).

 20. Appelbaum, M. et al. Journal article reporting standards for quantitative 
research in psychology: the APA Publications and Communications Board 
task force report. Am. Psychol. 73, 3–25 (2018).

 21. van Doorn, J. et al. The JASP guidelines for conducting and reporting a 
Bayesian analysis. Psychonomic Bull. Rev. 28, 813–826 (2021).

 22. Aczel, B. et al. Discussion points for Bayesian inference. Nat. Hum. Behav. 
4, 561–563 (2020).

 23. Sharp, M. K., Glonti, K. & Hren, D. Online survey about the STROBE 
statement highlighted divergent views about its content, purpose, and value. 
J. Clin. Epidemiol. 123, 100–106 (2020).

 24. Pullenayegum, E. M., Guo, Q. & Hopkins, R. B. Developing critical 
thinking about reporting of Bayesian analyses. J. Stat. Educ. 20, 1 (2012).

 25. Rosenthal, R. The ‘file drawer problem’ and tolerance for null results. 
Psychol. Bull. 86, 638–641 (1979).

 26. Kerr, N. L. HARKing: hypothesizing after the results are known. Pers. Soc. 
Psychol. Rev. 2, 196–217 (1998).

 27. Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: 
undisclosed flexibility in data collection and analysis allows presenting 
anything as significant. Psychol. Sci. 22, 1359–1366 (2011).

 28. John, L. K., Loewenstein, G. & Prelec, D. Measuring the prevalence of 
questionable research practices with incentives for truth telling. Psychol. Sci. 
23, 524–532 (2012).

 29. Gelman, A. & Loken, E. The statistical crisis in science: data-dependent 
analysis—a “garden of forking paths”—explains why many statistically 
significant comparisons don’t hold up. Am. Sci. 102, 460–466 (2014).

 30. Berry, S. M., Carlin, B. P., Lee, J. J. & Müller, P. Bayesian Adaptive Methods 
for Clinical Trials (CRC Press, 2011).

 31. Kruschke, J. K. & Liddell, T. M. The Bayesian new statistics: hypothesis 
testing, estimation, meta-analysis, and power analysis from a Bayesian 
perspective. Psychon. Bull. Rev. 25, 178–206 (2018).

 32. Schönbrodt, F. D. & Wagenmakers, E.-J. Bayes factor design analysis: 
planning for compelling evidence. Psychon. Bull. Rev. 25, 128–142 (2018).

 33. Morey, R. D. & Rouder, J. N. Bayes factor approaches for testing interval 
null hypotheses. Psychol. Methods 16, 406–419 (2011).

 34. Kelter, R. Analysis of Bayesian posterior significance and effect size indices 
for the two-sample t-test to support reproducible medical research. BMC 
Med. Res. Method. 20, 88 (2020).

 35. Makowski, D., Ben-Shachar, M. S., Chen, S. H. A. & Lüdecke, D. Indices of 
effect existence and significance in the Bayesian framework. Front. Psychol. 
10, 2767 (2019).

 36. Stanton, J. M. Evaluating equivalence and confirming the null in the 
organizational sciences. Organ. Res. Methods 24, 491–512 (2020).

 37. Pek, J. & Van Zandt, T. Frequentist and Bayesian approaches to data 
analysis: evaluation and estimation. Psychol. Learn. Teach. 19, 21–35 (2020).

 38. Wagenmakers, E.-J., Lee, M., Lodewyckx, T. & Iverson, G. J. in Bayesian 
Evaluation of Informative Hypotheses (eds Hoijtink, H., Klugkist, I. & 
Boelen, P. A.) 181–207 (Springer, 2008). https://doi.
org/10.1007/978-0-387-09612-4_9

 39. Hoeting, J. A., Madigan, D., Raftery, A. E. & Volinsky, C. T. Bayesian model 
averaging: a tutorial. Stat. Sci. 14, 382–401 (1999).

 40. Myung, I. J. & Pitt, M. A. Applying Occam’s razor in modeling cognition:  
a Bayesian approach. Psychon. Bull. Rev. 4, 79–95 (1997).

 41. Gigerenzer, G. Mindless statistics. J. Soc. Econ. 33, 587–606 (2004).
 42. Gigerenzer, G., Krauss, S. & Vitouch, O. in The Sage Handbook of 

Quantitative Methodology for the Social Sciences (ed. Kaplan, D.)  
391–408 (Sage, 2004).

 43. Wasserstein, R. L. & Lazar, N. A. The ASA’s statement on p-values: context, 
process, and purpose. Am. Stat. 70, 129–133 (2016).

 44. Schad, D. J., Betancourt, M. & Vasishth, S. Toward a principled Bayesian 
workflow in cognitive science. Psychol. Methods 26, 103–126 (2021).

 45. Berger, J. O. & Mortera, J. Default bayes factors for nonnested hypothesis 
testing. J. Am. Stat. Assoc. 94, 542–554 (1999).

 46. Jeffreys, H. Theory of Probability (Oxford Univ. Press, 1961).
 47. Ly, A., Verhagen, J. & Wagenmakers, E.-J. Harold Jeffreys’s default Bayes 

factor hypothesis tests: explanation, extension, and application in 
psychology. J. Math. Psychol. 72, 19–32 (2016).

 48. Rouder, J. N., Morey, R. D., Speckman, P. L. & Province, J. M. Default Bayes 
factors for ANOVA designs. J. Math. Psychol. 56, 356–374 (2012).

 49. Lee, M. D. & Vanpaemel, W. Determining informative priors for cognitive 
models. Psychon. Bull. Rev. 25, 114–127 (2018).

 50. Berger, J. O. & Pericchi, L. R. in IMS Lecture Notes—Monograph Series, Vol. 
38 (ed. Lahiri, P.) 135–207 (2001).

 51. Berger, J. O. & Pericchi, L. R. The intrinsic Bayes factor for model selection 
and prediction. J. Am. Stat. Assoc. 91, 109–122 (1996).

 52. O’Hagan, A. Fractional Bayes factors for model comparison. J. R. Stat. Soc. 
57, 99–138 (1995).

 53. O’Hagan, A. Properties of intrinsic and fractional Bayes factors. Test 6, 
101–118 (1997).

 54. Kary, A., Taylor, R. & Donkin, C. Using Bayes factors to test the predictions 
of models: a case study in visual working memory. J. Math. Psychol. 72, 
210–219 (2016).

 55. Gronau, Q. F. et al. A tutorial on bridge sampling. J. Math. Psychol. 81, 
80–97 (2017).

 56. Gronau, Q. F., Singmann, H. & Wagenmakers, E.-J. bridgesampling: an R 
package for estimating normalizing constants. J. Stat. Softw. 92, 1–29 
(2020).

NAtuRe HumAN BeHAviouR | VOL 5 | OctOBer 2021 | 1282–1291 | www.nature.com/nathumbehav1290

http://lib.stat.cmu.edu/bayesworkshop/2001/BaSis.html
https://doi.org/10.1007/978-0-387-09612-4_9
https://doi.org/10.1007/978-0-387-09612-4_9
http://www.nature.com/nathumbehav


Review ARticleNATURE HUmAN BEHAvioUR

 57. Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H. & Grasman, R. Bayesian 
hypothesis testing for psychologists: a tutorial on the Savage–Dickey 
method. Cogn. Psychol. 60, 158–189 (2010).

 58. Brooks, S., Gelman, A., Jones, G. L. & Meng, X.-L. Handbook of Markov 
Chain Monte Carlo (CRC Press, 2011).

 59. Van Ravenzwaaij, D., Cassey, P. & Brown, S. D. A simple introduction to 
Markov chain Monte Carlo sampling. Psychon. Bull. Rev. 25, 143–154 (2018).

 60. Brooks, S. P. & Gelman, A. General methods for monitoring convergence of 
iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).

 61. Geweke, J. Evaluating the Accuracy of Sampling-Based Approaches to the 
Calculation of Posterior Moments (Federal Reserve Bank of Minneapolis, 
1991).

 62. Heidelberger, P. & Welch, P. D. Simulation run length control in the 
presence of an initial transient. Oper. Res. 31, 1109–1144 (1983).

 63. Raftery, A. E. & Lewis, S. How Many Iterations in the Gibbs Sampler? (Univ. 
of Washington, 1991); https://apps.dtic.mil/dtic/tr/fulltext/u2/a640705.pdf

 64. Raftery, A. E. & Lewis, S. How many iterations in the Gibbs sampler? 
Bayesian Stat. 4, 763–773 (1992).

 65. US Food and Drug Administration. Guidance for the Use of Bayesian 
statistics in Medical Device Clinical Trials (2010).

 66. Gong, L. & Flegal, J. M. A practical sequential stopping rule for 
high-dimensional Markov chain Monte Carlo. J. Comput. Graph. Stat. 25, 
684–700 (2016).

 67. Rue, H. et al. Bayesian computing with INLA: a review. Annu. Rev. Stat. 
Appl. 4, 395–421 (2017).

 68. Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a review 
for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017).

 69. Berkhof, J., Van Mechelen, I. & Hoijtink, H. Posterior predictive checks: 
principles and discussion. Comput. Stat. 15, 337–354 (2000).

 70. Gelman, A. & Shalizi, C. R. Philosophy and the practice of Bayesian 
statistics. Br. J. Math. Stat. Psychol. 66, 8–38 (2013).

 71. Kruschke, J. K. Posterior predictive checks can and should be Bayesian: 
comment on Gelman and Shalizi, philosophy and the practice of Bayesian 
statistics. Br. J. Math. Stat. Psychol. 66, 45–56 (2013).

 72. Hyndman, R. J. Computing and graphing highest density regions.  
Am. Statistician 50, 120–126 (1996).

 73. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90,  
773–795 (1995).

 74. Coulthard, M. G. & Coulthard, T. The leaf plot: a novel way of presenting 
the value of tests. Br. J. Gen. Pract. 69, 205–206 (2019).

 75. Lindley, D. V. The distinction between inference and decision. Synthese 36, 
51–58 (1977).

 76. Benjamin, D. J. et al. Redefine statistical significance. Nat. Hum. Behav. 2, 
6–10 (2018).

 77. Berger, J. O. Statistical Decision Theory and Bayesian Analysis, 2nd edn 
(Springer, 1985).

 78. Robert, C. P. The Bayesian Choice, 2nd edn (Springer, 2007).
 79. Fiedler, K. in The Social Psychology of Morality (eds Forgas, J. P. et al.) 

215–235 (Routledge, 2016).
 80. Dienes, Z. How do I know what my theory predicts? Adv. Methods Pract. 

Psychol. Sci. 2, 364–377 (2019).
 81. Kruschke, J. K. Rejecting or accepting parameter values in Bayesian 

estimation. Adv. Methods Pract. Psychol. Sci. 1, 270–280 (2018).
 82. Wellek, S. Testing Statistical Hypotheses of Equivalence and Noninferiority 

2nd edn (Chapman & Hall/CRC Press, 2010).
 83. Dienes, Z. How to use and report Bayesian hypothesis tests. Psychol. 

Conscious. Theory Res. Pract. 8, 9–26 (2021).
 84. Rouder, J. N., Morey, R. D. & Province, J. M. A Bayes factor meta-analysis 

of recent extrasensory perception experiments: comment on Storm, 
Tressoldi, and Di Risio (2010). Psychol. Bull. 139, 241–247 (2013).

 85. Kruschke, J. K. Uncertainty of prior and posterior model probability: 
implications for interpreting Bayes factors. Preprint at https://doi.
org/10.31219/osf.io/edh7j (2021).

 86. Cumming, G. The new statistics: why and how. Psychological Sci. 25,  
7–29 (2014).

 87. Wagenmakers, E.-J., Verhagen, J. & Ly, A. How to quantify the  
evidence for the absence of a correlation. Behav. Res. Methods 48,  
413–426 (2016).

 88. Verhagen, J. & Wagenmakers, E.-J. Bayesian tests to quantify the result of a 
replication attempt. J. Exp. Psychol. Gen. 143, 1457–1475 (2014).

 89. Depaoli, S., Yang, Y. & Felt, J. Using Bayesian statistics to model uncertainty 
in mixture models: a sensitivity analysis of priors. Struct. Equ. Modeling 24, 
198–215 (2017).

 90. Ley, E. & Steel, M. F. J. On the effect of prior assumptions in Bayesian 
model averaging with applications to growth regression. J. Appl. Econ. 24, 
651–674 (2009).

 91. Müller, U. K. Measuring prior sensitivity and prior informativeness in large 
Bayesian models. J. Monetary Econ. 59, 581–597 (2012).

 92. Roos, M., Martins, T. G., Held, L. & Rue, H. Sensitivity analysis for 
Bayesian hierarchical models. Bayesian Anal. 10, 321–349 (2015).

 93. Van Erp, S., Mulder, J. & Oberski, D. L. Prior sensitivity analysis in default 
Bayesian structural equation modeling. Psychol. Methods 23, 363 (2018).

 94. Lamprecht, A.-L. et al. Towards FAIR principles for research software.  
Data Sci. 3, 37–59 (2020).

 95. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data 
management and stewardship. Sci. Data 3, 1–9 (2016).

 96. Hua, F., Walsh, T., Glenny, A.-M. & Worthington, H. Surveys on reporting 
guideline usage in dental journals. J. Dent. Res. 95, 1207–1213 (2016).

 97. Sims, M. T. et al. Trial registration and adherence to reporting guidelines in 
cardiovascular journals. Heart 104, 753–759 (2018).

 98. Wayant, C., Smith, C., Sims, M. T. & Vassar, M. Hematology journals  
do not sufficiently adhere to reporting guidelines: a systematic review.  
J. Thromb. Haemost. 15, 608–617 (2017).

 99. Sims, M. T., Checketts, J. X., Wayant, C. & Vassar, M. Requirements for trial 
registration and adherence to reporting guidelines in critical care journals: 
a meta-epidemiological study of journals’ instructions for authors.  
Int. J. Evid. Based Healthc. 16, 55–65 (2018).

 100. Caron, J. E., March, J. K., Cohen, M. B. & Schmidt, R. L. A survey of the 
prevalence and impact of reporting guideline endorsement in pathology 
journals. Am. J. Clin. Pathol. 148, 314–322 (2017).

 101. Courtney Mustaphi, C. J. et al. Guidelines for reporting and archiving 210Pb 
sediment chronologies to improve fidelity and extend data lifecycle. Quat. 
Geochronol. 52, 77–87 (2019).

 102. Sharp, M. K. et al. Using the STROBE statement: survey findings 
emphasized the role of journals in enforcing reporting guidelines. J. Clin. 
Epidemiol. 116, 26–35 (2019).

 103. International Committee of Medical Journal Editors. Recommendations for 
the Conduct, Reporting, Editing, and Publication of Scholarly Work in 
Medical Journals (2019).

Acknowledgements
I thank M. Kalish and B. Motz for comments on a preliminary version of this manuscript.

Competing interests
The author declares no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41562-021-01177-7.

Correspondence should be addressed to J.K.K.

Peer review information Nature Human Behaviour thanks Daniel Heck, Johnny van 
Doorn, Rens van de Schoot and the other, anonymous, reviewer(s) for their contribution 
to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as 

you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not included in the article’s 
Creative Commons license and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2021

NAtuRe HumAN BeHAviouR | VOL 5 | OctOBer 2021 | 1282–1291 | www.nature.com/nathumbehav 1291

https://apps.dtic.mil/dtic/tr/fulltext/u2/a640705.pdf
https://doi.org/10.31219/osf.io/edh7j
https://doi.org/10.31219/osf.io/edh7j
https://doi.org/10.1038/s41562-021-01177-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/nathumbehav

	Bayesian Analysis Reporting Guidelines

	What is not on the BARG

	The BARG steps

	Example of applying the BARG

	Preamble

	Description, including measurement. 
	Prediction, including model averaging. 
	Formal model selection, including null hypothesis testing. 

	Explaining the model

	Reporting details of the computation

	Describing the posterior distribution

	Reporting any decisions

	Reporting sensitivity analysis

	Making it reproducible

	Encouraging use of guidelines

	Acknowledgements

	Fig. 1 Posterior model probability as a function of prior model probability.
	Fig. 2 Decision threshold for posterior model probability with corresponding prior model probability.
	Table 1 List of key reporting points for the BARG.




