We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Our space age technology enables global communication, navigation, and power distribution that has given rise to our 'smart', interconnected and spacefaring world. Much of the infrastructure modern society depends on, to live on Earth and to explore space, is susceptible to space weather storms originating from the Sun. The Second Edition of this introductory textbook is expanded to reflect our increased understanding from more than a dozen scientific missions over the past decade. Updates include discussions of the rapidly expanding commercial space sector, orbital debris and collision hazards, our understanding of solar-terrestrial connections to climate, and the renewed emphasis of human exploration of the Moon and Mars. It provides new learning features to help students understand the science and solve meaningful problems, including some based on real-world data. Each chapter includes learning objectives and supplements that provide descriptions of the science and learning strategies to help students and instructors alike.
This text on the theory and applications of network science is aimed at beginning graduate students in statistics, data science, computer science, machine learning, and mathematics, as well as advanced students in business, computational biology, physics, social science, and engineering working with large, complex relational data sets. It provides an exciting array of analysis tools, including probability models, graph theory, and computational algorithms, exposing students to ways of thinking about types of data that are different from typical statistical data. Concepts are demonstrated in the context of real applications, such as relationships between financial institutions, between genes or proteins, between neurons in the brain, and between terrorist groups. Methods and models described in detail include random graph models, percolation processes, methods for sampling from huge networks, network partitioning, and community detection. In addition to static networks the book introduces dynamic networks such as epidemics, where time is an important component.
This popular undergraduate quantum mechanics textbook is now available in a more affordable printing from Cambridge University Press. Unlike many other books on quantum mechanics, this text begins by examining experimental quantum phenomena such as the Stern-Gerlach experiment and spin measurements, using them as the basis for developing the theoretical principles of quantum mechanics. Dirac notation is developed from the outset, offering an intuitive and powerful mathematical toolset for calculation, and familiarizing students with this important notational system. This non-traditional approach is designed to deepen students' conceptual understanding of the subject, and has been extensively class tested. Suitable for undergraduate physics students, worked examples are included throughout and end of chapter problems act to reinforce and extend important concepts. Additional activities for students are provided online, including interactive simulations of Stern-Gerlach experiments, and a fully worked solutions manual is available for instructors.
This textbook offers a detailed and uniquely self-contained presentation of quantum and gauge field theories. Writing from a modern perspective, the author begins with a discussion of advanced dynamics and special relativity before guiding students steadily through the fundamental principles of relativistic quantum mechanics and classical field theory. This foundation is then used to develop the full theoretical framework of quantum and gauge field theories. The introductory, opening half of the book allows it to be used for a variety of courses, from advanced undergraduate to graduate level, and students lacking a formal background in more elementary topics will benefit greatly from this approach. Williams provides full derivations wherever possible and adopts a pedagogical tone without sacrificing rigour. Worked examples are included throughout the text and end-of-chapter problems help students to reinforce key concepts. A fully worked solutions manual is available online for instructors.
Written for a two-semester graduate course in Quantum Mechanics, this comprehensive text helps develop the tools and formalism of Quantum Mechanics and its applications to physical systems. It suits students who have taken some introductory Quantum Mechanics and Modern Physics courses at undergraduate level, but it is self-contained and does not assume any specific background knowledge beyond appropriate fluency in mathematics. The text takes a modern logical approach rather than a historical one and it covers standard material, such as the hydrogen atom and the harmonic oscillator, the WKB approximations and Bohr-Sommerfeld quantization. Important modern topics and examples are also described, including Berry phase, quantum information, complexity and chaos, decoherence and thermalization, nonstandard statistics, as well as more advanced material such as path integrals, scattering theory, multiparticles and Fock space. Readers will gain a broad overview of Quantum Mechanics, as solid preparation for further study or research.
The author – a leading theoretical cosmologist – expands on his widely acclaimed lecture notes in this self-contained textbook, suitable for the advanced undergraduate or starting graduate level. Presenting the key theoretical foundations of cosmology and describing the observations that have turned the subject into a precision science, the author keeps the student in mind on every page by explaining concepts step-by-step, in an approachable manner. After describing the dynamics of the homogeneous universe, the book traces the evolution of small density fluctuations, which were created quantum-mechanically during inflation and are today observed in the cosmic microwave background and the large-scale structure of the universe. The book is ideally suited as a course companion or for self-study. With all necessary background material covered, students have everything they need to establish an unrivalled understanding of the subject. Complete with many worked examples, figures, and homework problems, this textbook is a definitive resource for advanced students in physics, astronomy and applied mathematics.
Python is one of the most popular programming languages, widely used for data analysis and modelling, and is fast becoming the leading choice for scientists and engineers. Unlike other textbooks introducing Python, typically organised by language syntax, this book uses many examples from across Biology, Chemistry, Physics, Earth science, and Engineering to teach and motivate students in science and engineering. The text is organised by the tasks and workflows students undertake day-to-day, helping them see the connections between programming tools and their disciplines. The pace of study is carefully developed for complete beginners, and a spiral pedagogy is used so concepts are introduced across multiple chapters, allowing readers to engage with topics more than once. “Try This!” exercises and online Jupyter notebooks encourage students to test their new knowledge, and further develop their programming skills. Online solutions are available for instructors, alongside discipline-specific homework problems across the sciences and engineering.
Mathematics instruction is often more effective when presented in a physical context. Schramm uses this insight to help develop students' physical intuition as he guides them through the mathematical methods required to study upper-level physics. Based on the undergraduate Math Methods course he has taught for many years at Occidental College, the text encourages a symbiosis through which the physics illuminates the math, which in turn informs the physics. Appropriate for both classroom and self-study use, the text begins with a review of useful techniques to ensure students are comfortable with prerequisite material. It then moves on to cover vector fields, analytic functions, linear algebra, function spaces, and differential equations. Written in an informal and engaging style, it also includes short supplementary digressions ('By the Ways') as optional boxes showcasing directions in which the math or physics may be explored further. Extensive problems are included throughout, many taking advantage of Mathematica, to test and deepen comprehension.
This advanced undergraduate physics textbook presents an accessible treatment of classical mechanics using plain language and clear examples. While comprehensive, the book can be tailored to a one-semester course. An early introduction of the Lagrangian and Hamiltonian formalisms gives students an opportunity to utilize these important techniques in the easily visualized context of classical mechanics. The inclusion of 321 simple in-chapter exercises, 82 worked examples, 550 more challenging end-of-chapter problems, and 65 computational projects reinforce students' understanding of key physical concepts and give instructors freedom to choose from a wide variety of assessment and support materials. This new edition has been reorganized. Numerous sections were rewritten. New problems, a chapter on fluid dynamics, and brief optional studies of advanced topics such as general relativity and orbital mechanics have been incorporated. Online resources include a solutions manual for instructors, lecture slides, and a set of student-oriented video lectures.
Clarity, readability, and rigor combine in the third edition of this widely used textbook to provide the first step into general relativity for advanced undergraduates with a minimal background in mathematics. Topics within relativity that fascinate astrophysics researchers and students alike are covered with Schutz's characteristic ease and authority, from black holes to relativistic objects, from pulsars to the study of the Universe as a whole. This third edition contains discoveries by astronomers that require general relativity for their explanation; two chapters on gravitational waves, including direct detections of gravitational waves and their observations' impact on cosmological measurements; new information on black holes and neutron stars; and greater insight into the expansion of the Universe. Over 300 exercises, many new to this edition, give students the confidence to work with general relativity and the necessary mathematics, while the informal writing style and worked examples make the subject matter easily accessible.
Analog and digital electronics are an important part of most modern courses in physics. Closely mapped to the current UGC CBCS syllabus, this comprehensive textbook will be a vital resource for undergraduate students of physics and electronics. The content is structured to emphasize fundamental concepts and applications of various circuits and instruments. A wide range of topics like semiconductor physics, diodes, transistors, amplifiers, Boolean algebra, combinational and sequential logic circuits, and microprocessors are covered in lucid language and illustrated with many diagrams and examples for easy understanding. A diverse set of questions in each chapter, including multiple-choice, reasoning, numerical, and practice problems, will help students consolidate the knowledge gained. Finally, computer simulations and project ideas for projects will help readers apply the theoretical concepts and encourage experiential learning.
SciLab is a free open-source computing and graphics tool that allows students to learn physical and mathematical concepts with ease. Computing in SciLab has been designed for undergraduate students of physics and electronics following the CBCS-LOCF syllabus, and with extensive coverage of concepts, it focuses primarily on the applications of SciLab in improving the problem-solving skills of readers. All these tools are classroom-tested and focus on data visualization and numerical computing with SCILAB. The book covers important topics like linear algebra, matrices, plotting tools, curve fitting, differential equations, integral calculus, Fourier analysis, and equation solving.
Written for a two-semester Master's or graduate course, this comprehensive treatise intertwines theory and experiment in an original approach that covers all aspects of modern particle physics. The author uses rigorous step-by-step derivations and provides more than 100 end-of-chapter problems for additional practice to ensure that students will not only understand the material but also be able to apply their knowledge. Featuring up-to-date experimental material, including the discovery of the Higgs boson at CERN and of neutrino oscillations, this monumental volume also serves as a one-stop reference for particle physics researchers of all levels and specialties. Richly illustrated with more than 450 figures, the text guides students through all the intricacies of quantum mechanics and quantum field theory in an intuitive manner that few books achieve.
Many systems form crystalline phases over significant ranges of temperature and density. A perfect crystal may be thought of as a lattice with a periodically repeated basic structural unit – which may itself have a non-trivial structure – filling all of space. The electronic properties of the solid state are strongly influenced by such periodic crystalline lattices. Periodicity implies symmetry, with significant implications for the physics of condensed matter. Unlike for many other applications tending to emphasize symmetries that are continuous, symmetries important in condensed matter often involve combinations of discrete and continuous symmetries because of the propagation of waves through discrete lattice structures. For every crystal structure there are two lattices of physical significance.
Box 19.1 introduced the Fermi current–current theory of weak interactions. In the interest of simplicity it was illustrated there for leptonic weak currents. For hadronic weak currents we might expect that the strong interactions would renormalize such matrix elements substantially from their leptonic values. However, the hadronic matrix elements are found to be much less renormalized than might be expected. As we shall see, this is because of symmetries that partially protect the currents from renormalization by strong interactions.
Phase transitions are germane to our discussion of symmetry and broken symmetry because they often are characterized by a change in the symmetry properties of a system. For example, a ferromagnet corresponds classically to a large set of atomic spins all aligned approximately in the same direction, which establishes a macroscopic state having a preferred spatial direction that breaks rotational invariance.