
An introduction to
Category Theory

The Solutions

Harold Simmons

18 September 2011

Introduction

The book An introduction to Category Theory contains over 200 exercises of varying
degree of difficulty. However, to keep down the size no solutions are included in the book.
These pages contain a more or less complete set of solutions.

These solutions are arrange by chapter and section to match the exercises in the book. Thus
if you want the solution to exercise X.Y.Z (the Zth exercise in Section Y of Chapter X of the
book), simply go to Chapter X , Section Y here and look at the Zth solution.

These pages are in a larger format than the book. I have taken some care with the pages
breaks so that where possible a solution, or a batch of solutions, fits on a double page. Of
course, that is not always possible, and it means that some page are longer than others.

No doubt these solutions still contain typos, garbled bits, and perhaps even mistakes. I will
update this document every so often. The date on the front page and below indicates when this
version was produced.

18 September 2011

ii

Contents

1 Categories 1
1.1 Categories defined . 1
1.2 Categories of structured sets . 1
1.3 An arrow need not be a function . 6
1.4 More complicated categories . 14
1.5 Two simple categories and a bonus . 15

2 Basic gadgetry 17
2.1 Diagram chasing . 17
2.2 Monics and epics . 18
2.3 Simple limits and colimits . 24
2.4 Initial and final objects . 25
2.5 Products and coproducts . 27
2.6 Equalizers and coequalizers . 36
2.7 Pullbacks and pushouts . 43
2.8 Using the opposite category . 49

3 Functors and natural tansformations 51
3.1 Functors defined . 51
3.2 Some simple functors . 52
3.3 Some less simple functors . 53

3.3.1 Three power set functors . 53
3.3.2 Spaces, presets, and posets . 53
3.3.3 Functors from products . 56
3.3.4 Comma category . 59
3.3.5 Other examples . 61

3.4 Natural transformations defined . 68
3.5 Examples of natural transformations . 70

4 Limits and colimits in general 93
4.1 Template and diagram – a first pass . 93
4.2 Functor categories . 96
4.3 Problem and solution . 97
4.4 Universal solution . 98
4.5 A geometric limit and colimit . 99
4.6 How to calculate certain limits . 102

4.6.1 Limits in Set . 102

iii

iv Introduction

4.6.2 Limits in Pos . 103
4.6.3 Limits in Mon . 105
4.6.4 Limits in Top . 108

4.7 Confluent colimits in Set . 108

5 Adjunctions 117
5.1 Adjunctions defined . 117
5.2 Adjunctions illustrated . 124

5.2.1 An algebraic example . 124
5.2.2 A set-theoretic example . 126
5.2.3 A topological example . 128

5.3 Adjunctions uncoupled . 131
5.4 The unit and the co-unit . 135
5.5 Free and cofree constructions . 141
5.6 Contravariant adjunctions . 148

6 Posets and monoid sets 153
6.1 Posets and complete posets . 153
6.2 Two categories of complete posets . 154
6.3 Sections of a poset . 155
6.4 The two completions . 155
6.5 Three endofunctors on Pos . 156
6.6 Long strings of adjunctions . 157
6.7 Two adjunctions for R-sets . 158
6.8 The upper left adjoint . 159
6.9 The upper adjunction . 162
6.10 The lower right adjoint . 165
6.11 The lower adjunction . 167

1
Categories

1.1 Categories defined

1.1.1 Not needed? �

1.1.2 These examples are dealt with in Section 1.5. �

1.2 Categories of structured sets

1.2.1 (c) Consider the function
f(r) = αr(a)

which sends each r ∈ N to the rth iterate of α applied to a. A simple calculation shows this is
a Pno-arrow. A proof by induction shows this is the only possible arrow. �

1.2.2 Consider a pair

(A,X)
f
- (B, Y)

g
- (C,Z)

of such morphisms. We show the function composite g ◦ f is also a morphism, that is

x ∈ X =⇒ g(f(x)) ∈ Z

for each element x of A. The morphism property of f and then g gives

x ∈ X =⇒ y = f(x) ∈ Y =⇒ g(f(x)) = g(y) ∈ Z

as required. This doesn’t yet prove we have a category, but the other requirements – arrow
composition is associative, and there are identity arrows – are easy. �

1.2.3 The appropriate notion of arrow

(A,R)
f
- (B, S)

is a function between the carrying sets such that

(x, y) ∈ R =⇒ (f(x), f(y)) ∈ S

for all x, y ∈ A. This generalizes the idea used in Pre and Pos . �

1.2.4 Consider a pair of continuous maps

R
ψ

- S
φ

- T

between topological spaces. A simple calculation gives

(φ ◦ ψ)← = ψ← ◦ φ←

which is the required property. �1

2 1. Categories

1.2.5 Let R = C [A,A]. We have a binary operation ◦ on R, namely arrow composition. This
operation is associative (by one of the axioms of being a category). We also have a distinguished
element idA of R, the identity arrow on A. This is the required unit.

(Strictly speaking, this do not show that R is a monoid, for we don’t know that R is a set.
There are some categories for which C [A,A] is so large it is not a set. This is rather weired but
it shouldn’t worry us.) �

1.2.6 To show that Pfn is a category we must at least show that composition of arrows is
associative.

Consider three composible partial functions

A
f

- B
g

- C
h

- D

X
∪

6

f

-

Y
∪

6

g

-

Z
∪

6

h

-

as indicated. We must describe

h ◦ (g ◦ f) (h ◦ g) ◦ f

and show that they are the same. We need

A
g ◦ f

- C
h

- D A
f

- B
h ◦ g

- D

U
∪

6

g ◦ f |U

-

Y
∪

6

h

-

X
∪

6

f

-

V
∪

6

h ◦ g|V

-

where
a ∈ U ⇐⇒ a ∈ X and f(a) ∈ Y b ∈ V ⇐⇒ b ∈ Y and g(b) ∈ Z

for a ∈ A and b ∈ B. We also need

A
h ◦ (g ◦ f)

- D A
(h ◦ g) ◦ f

- D

L
∪

6

h ◦ (g ◦ f |U)|L

-

R
∪

6

h ◦ (g ◦ f |V)|R

-

where

a ∈ L⇐⇒

a ∈ U
and
(g ◦ f |U)(a) ∈ Z

 a ∈ R⇐⇒

a ∈ X
and
f(a) ∈ V

for a ∈ A. We show L = R and the two function composites are equal.

For a ∈ L we have a ∈ U , so that f |U(a) = f(a). Thus, remembering the definition of U
we have

a ∈ L⇐⇒ a ∈ X and f(a) ∈ Y and (g ◦ f |U)(a) ∈ Z

for a ∈ A. Remembering the definition of V we have

f(a) ∈ V ⇐⇒ f(a) ∈ Y and g(f(a)) ∈ Z

and hence
a ∈ R⇐⇒ a ∈ X and f(a) ∈ Y and (g ◦ f |U)(a) ∈ Z

for a ∈ A. This shows that L = R.

1.2. Categories of structured sets 3

Consider any a ∈ L = R. We have

a ∈ U f(a) ∈ V

so that (
g ◦ f |U

)
|L(a) =

(
g ◦ f |U

)
(a) = g(f(a))

to give
h ◦
(
g ◦ f |U

)
|L(a) = h(g(f(a)))

and (
(h ◦ g|V) ◦ f |R

)
(a)(h ◦ g|V)(f(a)) = h(g(f(a)))

that is
h ◦
(
g ◦ f |U

)
|L(a) = h(g((̄a))) =

(
(h ◦ g|V) ◦ f |R

)
(a)

to show that the two function composites are the same.
What about identity arrows? Every total function is also a partial function. Each set A

carries an identity function idA which is

A A

A

=
∪

6

idA

-

when viewed as a partial function.
Consider the composites

A
idA - A

f
- B A

f
- B

idA - B

A

=
∪

6

idA

-

X
∪

6

f

-

X
∪

6

f

-

B

=
∪

6

idB

-

where f is an arbitrary partial function. To compute these composites we first use

a ∈ L⇐⇒ a ∈ A and idA(a) ∈ X a ∈ R⇐⇒ a ∈ X and f(a) ∈ B

(for a ∈ A) to extract L,R ⊆ A. Notice that, in fact

L = X = R

but for different reasons. The arrow composites are

A
f ◦ idA - B A

idB ◦ f - B

X
∪

6

f ◦ idA|X

-

X
∪

6

idB ◦ f |X

-

and these function composites are

f ◦ idA|X = f ◦ idX = f idX ◦ fX = idB ◦ f = f

to show
f ◦ idA = f = idB ◦ f

as required. �

4 1. Categories

1.2.7 We set up a pair of translations between the two categories

Pfn

L
-

�
M

Set⊥

and then show that each 2-step goes back to where it started.
We set

LA = A ∪ {⊥} MS = S − {⊥}
for each object A of Pfn and each object S of Set⊥. In other words, L attaches the distin-
guished point, and M removes the distinguished point. Almost trivially we have

(M ◦ L)A = A (L ◦M)S = S

for each such A and S.
The way we deal with arrows is more intricate. For each arrow of Pfn

A
f

- B

X
∪

6

f

-

we let

LA
L(f)

- LB

a - f(a) for a ∈ X
a - ⊥ for a ∈ A−X
⊥ - ⊥

to obtain an arrow of Set⊥. In other words we set

L(f)(a) =

{
f(a) if a ∈ X
⊥ if a /∈ X

L(f)(⊥) = ⊥

for each a ∈ A. By the lower clause, this is an arrow of Set⊥.
Consider any arrow

S
φ

- T

of Set⊥. We extract

X ⊆MS = S − {⊥} by X = S − φ←(⊥)

that is
s ∈ X ⇐⇒ φ(s) 6= ⊥

for s ∈ S. In particular, ⊥ /∈ X . Thus we have a partial function

MS
M(φ)

- MT

X
∪

6

φ|X

-

1.2. Categories of structured sets 5

controlled by the restriction of φ to X .
These constructions give

S
L(M(φ)f)

- T

s - φ(s) for s ∈ X
s - ⊥ for s ∈MS −X
⊥ - ⊥

so that
L(M(φ) = φ

which is what we want.
For the other way round each partial function

A
f

- B

as above gives a pointed arrow

LA
φ = L(f)

- LB

which we convert back into a partial function. To do that we set

W = LA = φ←(⊥)

so that
a ∈ W ⇐⇒ φ(a) 6= ⊥ ⇐⇒ a ∈ X

for each a ∈ A. Thus
W = X

with
φ|X = f

and hence
M(L(f)) = f

as required.
Do you think that Pfn and Set⊥ are ‘essentially the same’? �

1.2.8 Showing that each of
R-Set Set-R

is a category is easy. For both categories an object is a structured set(
A (αr | r ∈ R)

)
a set A furnished with an R-indexed family of 1-placed operations on A. This family must
satisfy

αs ◦ αr = αrs αs ◦ αr = αsr

for r, s ∈ R. Note the
COVARIANCE CONTRAVARIANCE

here. For both categories an arrow(
A (αr | r ∈ R)

) f
-
(
B (βr | r ∈ R)

)
is a function f between the carriers such that

f ◦ αr = βr ◦ f
for each r ∈ R. �

6 1. Categories

1.3 An arrow need not be a function

1.3.1 Let Rm be the vector space of column vectors with m real components. Each m × n
matrix A gives a linear transformation

Rn
A
- Rm

x - Ax

and every linear transformation from Rn to Rm arises in this way from a unique m × n matrix
A. The composite of two linear transformations

Rn
B
- Rk

A
- Rm

is linear, and corresponds to the matrix product AB. �

1.3.2 The main problem is to define the composition of graph morphisms, and to show that this
composition is associative.

Consider a pair of graph morphisms.

(N,E)
f
- (M,F)

g
- (L,G)

Thus, writing ρ for σ or for τ throughout we have two commuting squares

E
f1 - F

g1 - G

N

ρE
?

f0

- M

ρF
?

g0

- L

ρG
?

that is
f0 ◦ ρE = ρF ◦ f1 g0 ◦ ρF = ρG ◦ g1

for each of the two cases of ρ. But now the outside square commutes

E
g1 ◦ f1 - G

N

ρE
?

g0 ◦ f0

- L

ρG
?

that is
g0 ◦ f0 ◦ ρE = g0 ◦ ρF ◦ f1 = ρG ◦ g1 ◦ f1

and so obtain a graph morphism. We take this as the composite of graph morphisms. An easy
exercise shows this composite is associative. �

1.3.3 Consider a composible pair of arrows of this category.

(A,R)
(f, φ)

- (B, S)
(g, ψ)

- (C, T)

1.3. An arrow need not be a function 7

In other words we have two pairs of composible functions.

A
f
- B

g
- C R �

φ
S

ψ
- T

The pair

(A,R)
(g ◦ f, φ ◦ ψ)

- (C, T)

is the composite

(A,R)
(f, φ) ◦ (g, ψ)

- (C, T)

in the category. Verifying the axioms is more or less trivial.
This is essentially the same as Example 1.3.4. The category S has been replaced by its

opposite S
op . See Example 1.5.3. �

1.3.4 Consider a pair of arrows in this category

A
f

- B
g

- C

R �
φ

S �
ψ

T

where we have separated the two components. We show that the pair

(A,R)
(g ◦ f, φ ◦ ψ)

- (C, T)

is an arrow, that is (
g ◦ f)

(
a(φ ◦ ψ)(t)

)
=
(
g ◦ f

)
(a)t

for each a ∈ A and t ∈ T . Consider such a pair a, t and let

b = f(a) s = ψ(t)

to produce b ∈ B and s ∈ S. Then(
g ◦ f)

(
a(φ ◦ ψ)(t)

)
= g
(
f(aφ(s)

)
= g
(
f(a)s

)
= g
(
bψ(t)

)
= g(b)t =

(
g ◦ f

)
(a)t

for the required result. �

1.3.5 To show the composition is associative consider three relations

A
F

- B
G

- C
H

- D

between sets. For a ∈ A and d ∈ D we have

d
(
H ◦ (G ◦ F)

)
a d

(
(H ◦G) ◦ F

)
a

⇐⇒ (∃c ∈ C)[dHc(G ◦ F)a] ⇐⇒ (∃b ∈ B)[d(H ◦G)bFa]

⇐⇒ (∃c ∈ C, b ∈ B)[dHcGbFa] ⇐⇒ (∃b ∈ B, c ∈ C)[dHcGbFa]

8 1. Categories

so that a flip of quantifiers gives the required result.
Consider a pair of functions with associated graphs.

A
f

Γ(f)
- B

g

Γ(g)
- C

For a ∈ A and c ∈ C we have

c
(
Γ(g) ◦ Γ(f)

)
a⇐⇒ (∃b ∈ B)[cΓ(g)bΓ(f)a]

⇐⇒ (∃b ∈ B)[c = g(b) & b = f(a)]

⇐⇒ c = g(f(a)) ⇐⇒ cΓ(g ◦ f)a

for the required result. �

1.3.6 (a) Suppose first that f a g, that is

f(a) ≤ b⇐⇒ a ≤ g(b)

for a ∈ S and b ∈ T . Since
f(a) ≤ f(a) g(b) ≤ g(b)

a use of this equivalence one way or the other gives

a ≤ (g ◦ f)(a) (f ◦ g)(b) ≤ b

for the first required result.
Conversely, suppose the two comparisons hold (for all a ∈ S and b ∈ T), and suppose

f(a) ≤ b a ≤ g(b)

(for some a ∈ S and b ∈ T). Since both f and g are monotone we have

a ≤ (g ◦ f)(a) ≤ g(b) f(a) ≤ (f ◦ g)(b) ≤ b

to verify the equivalence.
(b) For each a ∈ S we have

a ≤ (g ◦ f)(a)

and hence
f(a) ≤ (f ◦ g ◦ f)(a)

since f is monotone. For each b ∈ T we have

(f ◦ g)(b) ≤ b

and hence
(f ◦ g ◦ f)(a) ≤ f(a)

as a particular case. This gives
f ◦ g ◦ f = f

and the other equality follows in a similar fashion. �

1.3. An arrow need not be a function 9

1.3.7 We are given two projection pairs

A
f ∗ a f∗

f∗ ◦ f ∗ = idA
⇀B

g∗ a g∗
g∗ ◦ g∗ = idB

⇀C

that is two adjunctions with the indicated equalities. These certainly give a composite adjunc-
tion

A
h∗ a h∗

⇀C

where
h∗ = g∗ ◦ f ∗ h∗ = f∗ ◦ g∗

are the two components. But now

h∗ ◦ h∗ = f∗ ◦ g∗ ◦ g∗ ◦ f ∗ = f∗ ◦ idB ◦ f ∗ = f∗ ◦ f ∗ = idA

to show that h∗ a h∗ is a projection pair. �

1.3.8 (a) The two required adjunction properties are

Z
ι a ρ

⇀ R R
λ a ι

⇀ Z

with
m ≤ ρ(x)⇐⇒ m ≤ x λ(x) ≤ m⇐⇒ x ≤ m

for x ∈ R,m ∈ Z. From these we see that

λ(x) = bxc ρ(x) = dxe

the integer
floor ceiling

of x are the only possible functions and these do form adjunctions.
(b) For each m ∈ Z we have

λ(m) = m = ρ(m)

which gives all the required composite properties.
(c) The condition ι ◦ ρ = idZ follows by the observation of part (b). Also

(λ ◦ ι)(1/2) = λ(1/2) = 0

so that λ ◦ ι 6= idR. �

10 1. Categories

1.3.9 For a given monotone map

T
φ

- S

we require monotone maps

LT

f]
-

� φ←

f[
-
LS

with
f](Y) ⊆ X ⇐⇒ Y ⊆ φ←(X)

φ←(X) ⊆ Y ⇐⇒ X ⊆ f[(Y)

for each X ∈ LS and Y ∈ LT .
For Y ∈ LT let

f](Y) = ↓φ[Y]

the lower section of S generated by the direct image of Y across φ. For X ∈ LS and Y ∈ LT
we have

f](Y) ⊆ X ⇐⇒ φ[Y] ⊆ X

⇐⇒ (∀t ∈ T)[t ∈ Y =⇒ φ(t) ∈ X]

⇐⇒ (∀t ∈ T)[t ∈ Y =⇒ t ∈ φ←(X)] ⇐⇒ Y ⊆ φ←(X)

as required.
For Y ∈ LT let

f[(Y) =
(
↑φ[Y ′]

)′
the complement of the upper section of S generated by the direct image of the complement of
Y across φ. For X ∈ LS and Y ∈ LT we have

X ⊆ f[(Y)⇐⇒ ↑φ[Y ′] ⊆ X ′

⇐⇒ φ[Y ′] ⊆ X ′

⇐⇒ (∀t ∈ T)[t ∈ Y ′ =⇒ φ(t) ∈ X ′]
⇐⇒ (∀t ∈ T)[φ(t) ∈ X =⇒ t ∈ Y]

⇐⇒ (∀t ∈ T)[t ∈ φ←(X) =⇒ t ∈ Y] ⇐⇒ φ←(X) ⊆ Y

as required. �

1.3.10 You will find it instructive to go through the following solution of a more general exer-
cise.

Let
∇ = (N,E)

be a graph (in the sense of Exercise 1.3.2). We let

i, j, k, . . . range over N e, f, g, . . . range over E

and think of these as stocks of indexes. As with any graph there is some source and target data,
namely

σ(e)
e
- τ(e)

1.3. An arrow need not be a function 11

for each e ∈ E. We view ∇ as a template. For an arbitrary category C we produce a new
category C∇, the category of∇-diagrams on C .

An object of C∇ is a pair

A =
(
A(i) | i ∈ N

)
A =

(
A(e) | e ∈ E

)
an

N -indexed family of objects E-indexed family of arrows

of C , respectively. These families must satisfy

A(σ(e))
A(e)

- A(τ(e))

for each e ∈ E.
An arrow of C∇

(A,A)
φ

- (B,B)

is an N -indexed family of arrows of C

A(i)
φi - B(i)

such that the C -square

A(σ(e))
φσ(e) - B(σ(e))

A(τ(e))

A(e)

?

φτ(e)

- B(τ(e))

B(e)

?

commutes for each e ∈ E.
Composition of arrows is done componentwise. Given arrows

(A,A)
φ

- (B,B)
ψ

- (C, C)

in C∇, we have components

A(i)
φi - B(i)

ψi - C(i)

for each i ∈ N . We take this composite as the ith component of ψ ◦ φ.

A(i)
(ψ ◦ φ)i = ψi ◦ φi - C(i)

Of course, we need to show that this does produce an arrow of C∇, in other words that

A(σ(e))
(ψ ◦ φ)σ(e) - C(σ(e))

A(τ(e))

A(e)

?

(ψ ◦ φ)τ(e)

- C(τ(e))

C(e)

?

12 1. Categories

commutes for each e ∈ E. This square can be decomposed as

A(σ(e))
φσ(e) - B(σ(e))

ψσ(e) - C(σ(e))

A(τ(e))

A(e)

?

φτ(e)

- B(τ(e))

B(e)

?

ψτ(e)

- C(τ(e))

C(e)

?

and hence the required result is immediate.
A similar argument shows that this composition is associative. �

1.3.11 We have

(Set ↓ 1) is essentially Set

(1 ↓ Set) is essentially Set⊥

(Set ↓ 2) is essentially SetD , Sets with a distinguished subset

but with a restricted family of arrows

(2 ↓ Set) is essentially Sets with two distinguished points

where the third uses the correspondence between subsets and characteristic functions. Let’s
look at this third example.

Let
2 = {0, 1}

where here it is useful to think of 1 as ‘true’ and 0 as ‘false’. An object of Set ↓ 2 is a set A
with a carried characteristic function α.

A
α

- 2

This function α gives a subset X ⊆ A where

a ∈ X ⇐⇒ α(a) = 1

for each a ∈ A. Furthermore this set X determines α since

α(a) =

{
1 if a ∈ X
0 if a /∈ X

for each a ∈ A. There is a bijective correspondence between characteristic functions carried by
A and subsets of A. (If you have never seen this trick before, then take note. This and various
generalizations are used throughout mathematics.) This shows that the objects of Set ↓ 2 are
precisely the sets with distinguished subset.

What is an arrow of Set ↓ 2?

A
f

- B (A,X)
f
- (B, Y)

2
β

�

α -

1.3. An arrow need not be a function 13

On the left we have the official version. It is a function f for which

α = β ◦ f

holds. On the right we have the unofficial version. It is a function f with

a ∈ X ⇐⇒ α(a) = 1⇐⇒ β(f(a)) = 1⇐⇒ f(a) ∈ Y

that is an equivalence
a ∈ X ⇐⇒ f(a) ∈ Y

for each a ∈ A. An arrow of SetD is a function f with an implication

a ∈ X =⇒ f(a) ∈ Y

for each a ∈ A. Thus the two categories have the same objects but Set ↓ 2 has a more
restrictive kind of arrow. �

1.3.12 (a) Consider a composible pair of arrows of (S ↓ C ↓ T) as on the left. This gives a
commuting diagram as indicated.

S S

A f -

αS

�
B

βS

?
g - C

γS

-

A h -

αS

�
C

γS

-

T

βS

?

γT
�

αT
-

T

γT
�

αT
-

Let
h = g ◦ f

be the function composite of f and g. To show that is an arrow of (S ↓ C ↓ T) we must check
that the diagram on the right commutes. This is a simple exercise in diagram chasing (which
we look at in more detail in Section 2.1).

(b) An object I of a category is initial if for each object A there is a unique arrow I - A.
Not every category has such an object, but many do. (The category Set has an initial object,
and you might worry a bit about what it is.) If I is an initial object of C then

(I ↓ C ↓ T) (C ↓ T)

are essentially the same category.
An object F of a category is final if for each object A there is a unique arrow A - F .

Not every category has such an object, but many do. (The category Set has a final object, and
it is pretty obvious what it is.) If F is a final object of C then

(S ↓ C ↓ F) (S ↓ C)

are essentially the same category.
We look at initial and final objects in Section 2.4. �

14 1. Categories

1.4 More complicated categories

1.4.1 Let’s look at the composition of arrows. Consider a pair of arrows

A
f

- B
g

- C

of Ŝ . How might we produce the composite arrow

A
h = g ◦ f

- C

in Ŝ ? For each index i ∈ S we have a pair of functions

A(i)
fi - B(i)

gi - C(i)

between sets, and we can certainly form the function composite

A(i)
hi = gi ◦ fi- C(i)

at the index. We show this gives an arrow in Ŝ .
Consider any pair j ≤ i of comparable indexes. We have a pair of commuting squares, as

on the left

A(i)
fi - B(i)

gi - C(i) A(i)
hi - C(i)

A(j)

A(j, i)

?

fj
- B(j)

B(j, i)

?

gj
- C(j)

C(j, i)

?

A(j)

A(j, i)

?

hj
- C(j)

C(j, i)

?

and we require a commuting square, as on the right. This is a simple exercise in diagram
chasing.

There are several more little bits to be done, but all are just as easy.
This is an example of how convenient arrow-theoretic methods can be. If we always had to

expose the inner details of these objects and arrows then some calculations would be a mess.
By hiding these parts we get a clearer picture of what is going on. There are times when we
have to get inside a presheaf, but that doesn’t mean we should do it all the time. �

1.4.2 Observe that a chain complex is a special kind of presheaf with Z as the indexing poset.
The connecting arrows are module morphisms with the extra requirement is that if m + 2 ≤ n
then the connecting morphism

An - Am

is zero. Category theory can bring out similarities that are not so obvious when we have to carry
around lots of details. �

1.5. Two simple categories and a bonus 15

1.5 Two simple categories and a bonus

1.5.1 (a) The product as categories is the cartesian product as algebras.
(b) The product as categories is the cartesian product as presets. �

1.5.2 The category (S ↓ s) is the principal upper section of S above s.
The category (s ↓ S) is the principal lower section of S below s.
The category (s ↓ S ↓ t) is the convex section of S between s and t. This could be empty if

s � t. �

1.5.3 The category Sop is the poset S turned upside-down.
The category Rop is the same set with a new operation ? given by

r ? s = s ? r

for r, s ∈ R. Here ? is the old operation. �

1.5.4 It is the category A× S
op . �

2
Basic gadgetry

2.1 Diagram chasing

2.1.1 For the equational reasoning we need to label more arrows.

•
g

- •

• r -

f -

• s -

q -p
-

•

h
-

•
l

-

k -

The calculation on the left gives the equational version.

h ◦ g ◦ f = h ◦ q ◦ p ◦ f = s ◦ r = l ◦ k

•
g

- •

•
f -

•
h
-

• •

•
f -

•
q -p

-
•

h
-

• r - • s - •

• •

• l

-

k -

The diagram chase on the right gives the same result. �

2.1.2 We label the arrows as follows with q for the unlabelled arrow.

•

•

f

�
g - •

h

-
g ◦ f = r ◦ p ◦ f = r ◦ q = h

•

- r

-

p
-

Then the calculation on the right gives the required result. �

17

18 2. Basic gadgetry

2.1.3 A trip twice round the pentagram is given by the sequence

12345123451

of corners. Because various triangles collapse the result is given by

12345123451

1345123451

135123451

13523451

1352451

135241

where at each step the underline indicates the triangle that collapses. �

2.2 Monics and epics

2.2.1 (a) For instance, consider a section s which is also epic. Since s is a section we have a
composite

B
s

- A
r

- B r ◦ s = idB

which is an identity. This also shows that the parallel pair of arrows

r
- B

s
-

B s - A A

idA
-

agree, and hence
s ◦ r = idA

since s is epic. This show that r is the inverse of s.
(b) Simplify h ◦ f ◦ g in two ways. �

2.2.2 (a) In a preset there is no more than one arrow

i - j

between a given pair of elements. Thus for any parallel pair

i
-

- j

the two arrows are equal. This shows that every arrow is monic and epic.
(b) A poset is balanced precisely when it is discrete. A preset is balanced precisely when

the comparison is an equivalence. �

2.2. Monics and epics 19

2.2.3 An element is monic or epic if it is cancellable on the appropriate side.
An element is a retraction or a section if it has a one sided inverse on the appropriate side.
An element is an isomorphism if it has a two sided inverse
A monoid is balanced precisely when the set of cancellable elements is a group. �

2.2.4 To help with both parts it is convenient to use a slightly different notation. We re-name
the arrows

A
f

- B
g

- C

and we verify the following.

(m, i) If both f, g are monic then so is g ◦ f .

(m, ii) If g ◦ f is monic then so is f .

(m, iii) If both f, g are split monics then so is g ◦ f .

(m, iv) If g ◦ f is a split monic then so is f .

(e, i) If both f, g are epic then so is g ◦ f .

(e, ii) If g ◦ f is epic then so is g.

(e, iii) If both f, g are split epics then so is g ◦ f .

(e, iv) If g ◦ f is a split epic then so is g.

(c) There is an example where g ◦ f is an isomorphism but where f is not epic and g is not
monic.

Because of the symmetry it is sufficient to verify an appropriate half of (m, i-iv) and (e, i-iv).
(m, i) Suppose both f, g are monic and consider a parallel pair of arrows

X
k

-

l
- A

where the composites

X
g ◦ f ◦ k

-

g ◦ f ◦ l
- A

agree. Since g is monic the parallel pair

X
f ◦ k

-

f ◦ l
- A

agree, and hence since f is monic we have k = l, as required.

20 2. Basic gadgetry

(e, ii) Suppose g ◦ f is epic and consider a parallel pair

C
k

-

l
- X

where the composites

B
k ◦ g

-

l ◦ g
- X

agree. Then the composites

B
k ◦ g ◦ f

-

l ◦ g ◦ f
- X

agree, and hence k = l since g ◦ f is epic.
(m, iii) Suppose both f, g are split monics. Thus we have

r ◦ f = idA s ◦ g = idB

for arrows

A
f

-
�

r
B

g
-

�
s

C

as indicated. But now

r ◦ s ◦ g ◦ f = r ◦ idB ◦ f = r ◦ f = idA

to provide the required one-sided inverse of g ◦ f .
(e, iv) Suppose g ◦ f is a split epic. Thus

g ◦ f ◦ s = idB

for some arrow

A �
s

C

as indicated. But now f ◦ s provides the required one-sided inverse of g.
(c) We work in the category Set of sets. Consider any functions

A
f

- B
g

- C

where A,C are singleton sets but B is larger. In particular, f is an embedding and hence monic,
g is surjective and hence epic, and g ◦ f is an isomorphism. Because of the size of B we see
that f is not surjective and g is not injective. But, by Exercise 2.2.7 (slightly later), in Set we
have ‘monic=injective’ so that g is not monic. Also, by a simple argument (which you should
sort out) in Set we have ‘epic=surjective’ so that f is not epic. �

2.2. Monics and epics 21

2.2.5 It will help if we get a bit of notation sorted out. Let

(A, ·, ι)

be an arbitrary monoid written multiplicatively. Here we will display the operation symbol.
Consider any monoid morphism

(Z,+, 0)
f
- (A, ·, ι)

from the additively written monoid Z. Thus

f(0) = ι f(m+ n) = f(m) · f(n)

for all m,n ∈ Z. Consider any situation

N ⊂
e

- Z
f

-

g
- A where f ◦ e = g ◦ e

that is
f(m) = g(m)

for all m ∈ N. We require f = g, that is

f(−m) = g(−m)

for all m ∈ N. But, taking it slowly, for m ∈ N we have

g(−m) = g(−m) · ι
= g(−m) · f(0)

= g(−m) · f(m+ (−m))

= g(−m) · f(m) · f(−m))

= g(−m) · g(m) · f(−m))

= g(−m+m) · f(−m))

= g(0) · f(−m))

= ι · f(−m)) = f(−m)

as required. Of course, the central equality is the crucial step. �

2.2.6 The format for this solution is like that of Solution 2.2.5, but now we have more algebraic
identities we can use. Consider a situation

Z ⊂
e

- Q
f

-

g
- A where f ◦ e = g ◦ e

in Rng , that is
f(m) = g(m)

for all m ∈ Z. We require f = g, that is

f
(m
n

)
= g

(m
n

)

22 2. Basic gadgetry

for all m,n ∈ Z with n 6= 0. Consider any non-zero n ∈ Z. We have

g

(
1

n

)
= g

(
1

n

)
· f(n) · f

(
1

n

)
= g

(
1

n

)
· g(n) · f

(
1

n

)
= f

(
1

n

)
and hence

g
(m
n

)
= g(m) · g

(
1

n

)
= f(m) · f

(
1

n

)
= f

(m
n

)
as required. �

2.2.7 Suppose the category C of structured sets has a selector (S, ?). Consider any monic in
C .

A
m

- B

Consider a1, a2 ∈ A with m(a1) = m(a2). We show a1 = a2, and hence show that m is
injective. Consider the parallel pair

S
α1 -

α2

- A

with α1(?) = a1 and α2(?) = a2. Each of the two composites

S
m ◦ α1-

m ◦ α2

- B

is uniquely determined by its value at ?. But

(m ◦ α1)(?) = m(a1) = m(a2) = (m ◦ α2)(?)

so that
m ◦ α1 = m ◦ α2 to give α1 = α2

(since m is monic), and hence

a1 = α1(?) = α2(?) = a2

as required.
(b) It suffices to exhibit a selector for each of the categories.
For Set ,Pos ,Top the 1-element structure will do.
For Mon we use the monoid (N,+, 0) with ? = 0.
For Grp we use the group (Z,+, 0) with ? = 1.
For Rng we use the ring of polynomials Z[X] with ? = X .
For Set-R we use R itself with ? = 1. �

2.2.8 (a) An isomorphism in Top is usually called a homeomorphism.
See Exercise 2.2.7.
Consider a topological space S and let Sd be the set S as a discrete space. The identity

function on the set S is a bijective continuous map

Sd - S

2.2. Monics and epics 23

but is not a homeomorphism (unless S is discrete).
(b) Let’s prove the general result. Consider any situation in Top2

T
ε

- S
φ

-

ψ
- R

where ε[T] is dense in S and where
φ ◦ ε = ψ ◦ ε

holds. We require φ = ψ.
By way of contradiction suppose φ 6= ψ so that φ(s) 6= ψ(s) for some s ∈ S. Since R is T2,

this gives
φ(s) ∈ U ψ(s) ∈ V U ∩ V = ∅

for some pair U, V of open sets of S. We have

s ∈ φ←(U) ∩ ψ←(V)

and both these sets are open in S. The intersection is non-empty, and so must meet ε[T] (since
ε[T] is dense in S). This gives some t ∈ T with

ε(t) ∈ φ←(U) ∩ ψ←(V) that is (φ ◦ ε)(t) ∈ U (ψ ◦ ε)(t) ∈ V

which is the contradiction since φ ◦ ε = ψ ◦ ε and U ∩ V = ∅. �

2.2.9 (e) We produce a sequence of equalities

j ◦ f ◦ e = j ◦ g ◦ b = · · · = m ◦ l ◦ e

by passing across each face in turn. Since e is epic this gives

j ◦ f = m ◦ l

are required.
(m) A dual version of (e). �

2.2.10 We label the arrows and various cells as shown.

•
f

- •

(1)

• a-

e
-

•�
p

(4) (5) (2)

•

d
?

c- •

b
?

(3)

•

k

?

h
-

q
-

•

g

?

m
-

We are given that cells (1, 2, 3, 4) commute.

24 2. Basic gadgetry

(a) We are also given that (5) commutes. Then (2, 1, 5, 4, 3) gives

g ◦ f = m ◦ b ◦ p ◦ f = m ◦ c ◦ d ◦ f = m ◦ c ◦ q ◦ k = h ◦ k

to show that the outer cell commutes. You should also look at this in the form of a diagram
chase

(b) We have

m ◦ b ◦ a ◦ e = m ◦ b ◦ p ◦ f = g ◦ f m ◦ c ◦ d ◦ e = m ◦ c ◦ q ◦ k = h ◦ k

using (1, 2) on the left hand side and (4, 3) on the right hand side. Assuming the outer square
commutes this gives

m ◦ b ◦ a ◦ e = g ◦ f = h ◦ k = m ◦ c ◦ d ◦ e

and hence
b ◦ a = c ◦ d

by the assumed cancellative properties of m and e. �

2.3 Simple limits and colimits

2.3.1 For an arbitrary subset X of a poset the

limit colimit

is denoted ∧
X

∨
X

and called the

greatest lower bound or infimum least upper bound or supremum

of X , provided these exists, of course.
When X is empty we have∧

∅ = > (top)
∨
∅ = ⊥ (bottom)

of the poset.
When X is a singleton we have ∧

X = {s} =
∨
X

where s is the unique member of X .
When X = {a, b} we have ∧

X = a ∧ b
∨
X = a ∨ b

the
meet join

of the pair.
When S is a preset each of these notions may not determine a unique element, only a family

of equivalent elements. �

2.4. Initial and final objects 25

2.4 Initial and final objects

2.4.1 Consider any initial object I in a category. Since I is initial there is a unique endo-arrow

I - I

on I . We already know one example of such an arrow, namely the identity arrow id I . Thus this
is the only endo-arrow on I .

Consider any pair I, J of initial objects. There are unique arrows

I
f

- J J
g

- I

since
I is initial J is initial

respectively. The composite
g ◦ f f ◦ g

is an endo-arrow on
I J

respectively. By the previous observation we have

g ◦ f = id I f ◦ g = idJ

and hence f, g are an inverse pair of isomorphisms.
If F,G are two final objects, then there is a unique arrow F - G, and this is an isomor-

phism. This is proved in exactly the same way, we simply think of the arrows as pointing in the
other direction. Equivalently, we apply the ‘initial’ result to the opposite category. �

2.4.2 By the uniqueness of mediators the only endo-arrow of I is id I .
Consider any arrow

A
r

- I

and let

A �
s

I

be the unique arrow given by the initial property of I . Then r ◦ s is an endo-arrow of I , and
hence

r ◦ s = id I

by the remark in Solution 2.4.1.
By duality, each arrow

F
s

- F

from a final object is a section.

26 2. Basic gadgetry

Consider any arrow

F f - I

passing from a final object to an initial object. From above we know there are arrows

f ◦ s = id I F
�

r

�
s

I r ◦ f = idF

and the usual argument gives s = r, so that f is an isomorphism. �

2.4.3 Exercise 1.2.3 shows that (N, succ, 0) is the initial object of Pno . This fact is equivalent
to the Peano axioms.

The trivial object, with just one element, is final. �

2.4.4 The trivial group is both initial and final in Grp .
The ring Z of integers is initial in Rng . The trivial ring, with 1 = 0, is final.
The ring Z of integers is initial in Idm . There is no final object (assuming that 1 6= 0 must

hold in an integral domain).
There is neither an initial object not a final object in Fld . However, if we fix the character-

istic then there is an initial object. �

2.4.5 In Set the final object 1 is the singleton set. It doesn’t matter what its unique element is,
so let

1 = {?}

here. Each function

1 α
- A

is uniquely determined by its only value

α(?)

which is an element of A, and every element is the unique value of some such function. Thus
we have a bijection between

Set [1, A] A

as required. Now consider any composite

1 α
- A

f
- B

where α corresponds to the element a ∈ A, that is α(?) = a. The composite f ◦ α corresponds
to the element

(f ◦ α)(?) ∈ B

and this is just
f(α(?)) = f(a)

as required. �

2.5. Products and coproducts 27

2.4.6 (a) The presheaf with a singleton for each component set is the final object 1.
(b) A global element

1 - A

of a presheaf A = (A,A) selects an element

a(i) ∈ A(i)

from each component set. This choice function a(·) must satisfy

A(j, i)
(
a(i)

)
= a(j)

for each j ≤ i. �

2.5 Products and coproducts

2.5.1 The ‘algebraic’ categories are straight forward. In each case we take the cartesian product
of the two carrying sets and then furnish this in a fairly obvious way.

You may not have seen products in Pos before but they are constructed in the obvious way
using cartesian products.

You will have seen products on Top before, and may have been puzzled by the strange
construction of the product topology. The categorical description explains this. Let S and T be
a pair of topological spaces. We require a space S × T and a pair

S × T

S

p

�
T

q
-

of continuous maps where this Top-wedge has a certain universal property. We take the carte-
sian product S×T of the two sets. For the topological furnishings let’s try the smallest topology
on S × T for which both projections are continuous. Thus we take the smallest topology on
S × T for which each inverse image

p←(U) for U ∈ OS q←(V) for V ∈ OT

is open. This gives a subbase of the usual product topology. Why does this give a product
wedge in Top?

Consider any wedge

R

S

φ

�
T

ψ
-

in Top . Forget the topology for a moment. We have a wedge in Set and a product wedge in
Set . Thus there is a unique function θ such that

R

S �
p

φ

�
S × T

θ
?

q
- T

ψ

-

28 2. Basic gadgetry

commutes. It suffices to show that this function θ is continuous, for then we have a product
wedge in Top . To do that it suffices to show that θ←(W) is open in R for each subbasic open
setW of S×T . There are two kinds of such sets, and both are dealt with by the same argument.
For instance consider W = p←(U) for some U ∈ OS. For each point r ∈ R we have

r ∈ θ←(W)⇐⇒ θ(r) ∈ W = p←(U)

⇐⇒ (p ◦ θ)(r) ∈ U
⇐⇒ φ(r) ∈ U ⇐⇒ r ∈ φ←(U)

so that
θ←(W) = φ←(U)

which is open in R. �

2.5.2 The coproduct for each of

Set , Pos , Set-R, Top

can be obtained as a furnished disjoint union with the obvious insertions.
The coproduct for each of

CMon , AGrp, Mod -R

can be obtained as a furnished cartesian product with the obvious insertions.
The coproduct for each of

Mon , Grp, CRng , Rng

is formed by a more complicated construction. Details are given in Exercise 4.7.3 �

2.5.3 For two elements a, b of a poset (with arrows pointing upwards) the

meet a ∧ b join a ∨ b

is the
product coproduct

of the pair. �

2.5.4 For Set⊥-objects A and B the product in Set⊥ is given by the cartesian product A× B
with the obvious projections. The distinguished element of A× B is (⊥,⊥). The proof of this
is easier than, for instance, the Mon case.

The coproduct is more interesting. Let

A
‘
B =

(
(A− {⊥}) + (B − {⊥}

)
∪ {⊥}

the disjoint union of the two point depleted sets with a point attached. This set has three kinds
of elements

(a, 0) for a ∈ A− {⊥} (b, 1) for b ∈ B − {⊥} ⊥
and, of course, ⊥ is the distinguished point. The function

A
i
- A

‘
B

a - (a, 0) for a ∈ A− {⊥}
⊥ - ⊥

2.5. Products and coproducts 29

is an arrow of Set⊥, and there is a similar arrow

B
j
- A

‘
B

from B. These furnish A
‘
B as the coproduct. The proof is similar to that for Set . �

2.5.5 Let SetD be the category of sets each with a distinguished subset. The product is
constructed in routine way using cartesian products. However, it is worth looking at some of
the details.

This is one of the places where it is useful to distinguish between a structure and its carrying
set. Thus let

A = (A,X) B = (B, Y)

be a pair of objects of SetD . Let

A× B = (A×B,X × Y)

so this is certainly an object of SetD . By dropping down to Set consider the two projection
functions, as on the left. This is a wedge in Set .

A A

A×B
p

-

A× B
p

-

B

q
-

B

q
-

In fact, it is a product wedge in Set . We easily check that p and q are arrows of SetD , so we
have a wedge in SetD , as on the right. We show this is a product wedge in SetD .

Consider any object C = (C,Z) of SetD and wedge of SetD arrows, as on the left.

A A A

C

f
-

A× B
p

-

C

f
-

A×B
p

-

C h-

f
-

A×B
p

-

B

q
-g -

B

q
-g -

B

q
-g -

By forgetting the carried structure we obtain a wedge of Set arrows, as in the middle. But (p, q)
are a product wedge in Set , so we obtain a unique mediating Set-arrow, a function h, as on
the right. It suffices to show that h is a SetD arrow. That is a routine calculation.

The construction of the coproduct is not so obvious, but once we have seen the product
construction we can dualize. Let

A = (A,X) B = (B, Y)

be a pair of objects of SetD . Recall that in Set the coproduct

A+B =
(
A× {0}

)
∪
(
B × {1}

)

30 2. Basic gadgetry

is the union of A and B where these sets have been tagged to make them disjoint. The union

X + Y =
(
X × {0}

)
∪
(
Y × {1}

)
is a subset of A+B, and so

A+ B = (A+B,X + Y)

is an object of SetD . Consider the two insertions as on the left.

A A

A+B

i
-

A+ B

i
-

B
j

-

B
j

-

This is a coproduct wedge in Set . It is easy to check that i and j are arrow of SetD , so we
have a wedge in SetD , as on the right. By mimicking the proof for the product wedge with the
arrows reversed, we see that we have a coproduct wedge in SetD . �

2.5.6 This is a teaser which almost everyone gets wrong the first time. For sets A and B the
product and coproduct in RelA are both carried by the same set, but this is not the cartesian
product A×B. It is

A+B

the disjoint union of the sets. The members of A + B are tagged members of A and B. Thus
A+B has two kinds of elements

(a, 0) for a ∈ A (b, 1) for b ∈ B

where the tag records where the element came from. We set up relations

A
�

P

I
- A+B

Q
-

�
J

B

and show that P,Q form a product wedge, and I, J form a coproduct wedge. With z ranging
over A+B and a ∈ A, b ∈ B we let

aPz ⇐⇒ z = (a, 0)⇐⇒ zIa bQz ⇐⇒ z = (b, 1)⇐⇒ zJb

to produce the relations.
To show that P,Q form a product wedge consider any wedge from an arbitrary set X , as on

the left. We require a pair of commuting triangles

A A

X

F
-

X M-

F
-

A+B

P
6

B
G -

B

Q
?G -

for some unique relation M , as on the right.
Remembering that z ∈ A+B can have only two forms, we see that

zMx⇐⇒

(∃a ∈ A)[z = (a, 0) & aFx]

or
(∃b ∈ B)[z = (b, 1) & bGx]

2.5. Products and coproducts 31

gives a relation M of the correct type. For a ∈ A and x ∈ X we have

a(P ◦M)x⇐⇒ (∃z)[aPzMx]⇐⇒ (a, 0)Mx⇐⇒ aFx

to show that
P ◦M = F

and hence the top triangle commutes. A similar argument shows that the bottom triangle com-
mutes.

To show the uniqueness of this mediating relation consider any relation

X N - A+B

where both
P ◦N = F Q ◦N = G

hold. For a ∈ A and x ∈ X we have

(a, 0)Nx⇐⇒ aP (a, 0)Nx⇐⇒ (∃z)[aPzNx]⇐⇒ a(P ◦N)x⇐⇒ aFx

and for b ∈ B we have
(b, 1)Nx⇐⇒ bGx

by a similar argument. This gives
N = M

for the required uniqueness.
The verification that I, J form a coproduct wedge is similar. �

2.5.7 (a) We first make a general observation. Consider two instances of the same product
wedge, as on the left.

A

A×B

p
-

A×B

p
6

A×B
r
- A×B

B

q
?q -

The only arrow r, as on the right, to make the triangles commute is idA×B. This is because
mediators are unique.

With this we can show that A× 1 and A are isomorphic.
Consider the diagram on the left. Here p, q form the product wedge and g is the unique

arrow to 1. There is a unique mediator m such that

A A

A

p
-

A× 1
p
6

A× 1 p -

p
-

A m -
idA

-

A× 1
p
6

1
q
?g -

1
q
?

g

--

32 2. Basic gadgetry

the equalities
p ◦m = idA q ◦m = g

hold. Now consider the commuting diagram on the right. (The bottom cell commutes by the
nature of 1.) By the first observation we have

m ◦ p = idA×1

and hence p,m are an inverse pair of isomorphisms.
(b) Consider the diagram

A×B
α

- A

(A×B)× C = L

λ
6

B

β -

R

σ
6

= A× (B × C)

C

µ
?
�

γ
B × C

ρ
?

δ
�

where L,R are the two objects of interest and each arrow is one of the structuring projections
of one of the product wedges. There are no commuting cells in this diagram. We insert four
mediating arrows.

Firstly we obtain

L
η
- B × C A×B �

ζ
R

with
(1) δ ◦ η = β ◦ λ (3) β ◦ ζ = δ ◦ ρ
(2) γ ◦ η = µ (4) α ◦ ζ = σ

respectively. Notice that (1, 2) uniquely determine η, and (3, 4) uniquely determine ζ . Secondly
we obtain

L
φ

- R L �
ψ

R

with
(5) σ ◦ φ = α ◦ λ (7) µ ◦ ψ = γ ◦ ρ
(6) ρ ◦ φ = η (8) λ ◦ ψ = ζ

respectively. Notice that (5,6) uniquely determine φ, and (7, 8) uniquely determine ψ. We show
that φ and ψ are an inverse pair of isomorphisms.

For the diagram

A

L

α ◦ λ -

A×B
α
6

B

β
?β ◦ λ -

2.5. Products and coproducts 33

the unique mediator must be λ. But with

ξ = ψ ◦ φ

we have
α ◦ ξ = α ◦ λ ◦ ψ ◦ φ = α ◦ ζ ◦ φ = σ ◦ φ = α ◦ λ

β ◦ λ ◦ ξ = β ◦ λ ◦ ψ ◦ φ = β ◦ ζ ◦ φ = δ ◦ ρ ◦ φ = δ ◦ η = β ◦ λ
using (8, 4, 5) on the top line, and (8, 3, 6, 1) on the bottom line. Thus

λ ◦ ξ = λ

since we have just verified that λ ◦ ξ has the required mediating property.
For the diagram on the left the unique mediator must be idL.

A×B

L

λ -

L

λ6

C

µ
?µ -

µ ◦ ξ = µ ◦ ψ ◦ φ
= γ ◦ ρ ◦ φ
= γ ◦ η = µ

But using (7, 6, 2) we have the equalities on the right. This with the previous equality gives

ψ ◦ φ = ξ = idL

which is half of what we want. The other required equality

φ ◦ ψ = idR

follows by a similar argument. �

2.5.8 Let
L1 = A× C R1 = A+B

L2 = B × C R2 = C

so that
L = L1 + L2 R = R1 ×R2

are the two component objects. Let

L1

α
- A A

ιA - R1

L1

γ1 - C B
ιB - R1

L2

β
- B

L2

γ2 - C

R
ρ1 - R1 L1

λ1 - L

R
ρ2 - R2 L2

λ2 - L

be the
projections insertions

34 2. Basic gadgetry

which structure the various objects as

products coproducts

respectively. We can fit these arrows together in two ways. Let’s look at both possibilities in
parallel.

We have arrows

L1

δ11 = ιA ◦ α - R1 L2

δ12 = ιB ◦ β - R1

L1

δ21 = γ1 - R2 L2

δ22 = γ2 - R2

which give commuting triangles

L1 R1

L

λ1
?

µj - Rj

δj1
-

Li νi -

δ1i
-

R

ρ1
6

L2

λ2

6

δj2

-

R2

ρ2
?δ2i -

for i, j ∈ {1, 2}. In other words
We use the coproduct properties of L
to produce a unique mediator µj

We use the product properties of R to
produce a unique mediator νj

for the various cases. Observe that

µj ◦ λi = δji = ρj ◦ νi

(for i, j ∈ {1, 2}) uniquely determined µj and νi in terms of the δji, and these in turn are
determined by the given structuring arrows.

Next we swap the roles of L and R to obtain commuting triangles

R1 L1

L µ -

µ1
-

R

ρ1
6

L

λ1
?

ν - R

ν1

-

R2

ρ2
?µ2 -

L2

λ2

6

ν2

-

for unique mediators µ and ν. These are determined by

µj = ρj ◦ µ νi = ν ◦ λi

respectively. Either µ or ν does the required job. In fact

µ = ν

as we now show. We have
ρj ◦ µ ◦ λi = µj ◦ λi = δji

2.5. Products and coproducts 35

for each i and j, so that
νi = µ ◦ λi

for each i, and hence µ = ν.
For the counterexample consider the lantern poset

>

a

-

c

6

b

�

⊥
6 -

�

viewed as a category (with arrows pointing upwards). Then

a ∧ c = ⊥ = b ∧ c a ∨ b = >

to give
l = (a ∧ c) ∨ (b ∧ c) = ⊥ r = (a ∨ b) ∧ c = c

and hence r � l. �

2.5.9 The answer to both questions is ‘No’.
Consider a pair of abelian groups A,B with the cartesian product A×B of these. We know

this gives the categorical product of the two in both AGrp and Grp . We also know that the
two canonical insertions

A
i
- A×B �

j
B

i(a) = (a, 1) (1, b) = j(b)

gives the coproduct in AGrp . We show that for certain A,B this is not the coproduct in Grp .
For both A,B we take a copy of the 2-element group. We let

A = {1, a} with a2 = 1 B = {1, b} with b2 = 1

for the two groups. Also let
C = 〈a, b | a2 = 1 = b2〉

that is C is the group of all words in the two letters a, b where both aa and bb collapse to
the empty word. The group operation is concatenation followed by a successive collapsing of
similar letters. For instance

ababab · babab = abababbabab = ababaabab = ababbab = abaab = abb = a

and each word does have an inverse. The group C is not commutative since ab 6= ba.
Consider the diagram

A
i
- A×B �

j
B

C
g�f -

where each of f, g sends the letter to the corresponding word of length 1. Observe that each of
f, g is a group morphism (in fact, an embedding). We show there is no morphism

A×B
h
- C

36 2. Basic gadgetry

which makes the diagram commute. Thus A×B is not the coproduct of A,B in Grp . Observe
that

(a, 1)(1, b) = (a, b) = (1, b)(a, 1)

in A×B. If there is such a morphism h then

ab = h(a, 1)h(1, b)

= h
(
(a, 1)(1, b)

)
= h(a, b)

= h
(
(1, b)(a, 1)

)
= h(1, b)h(a, 1) = ba

which is contradictory. In fact, C is the coproduct of A,B in Grp . �

2.6 Equalizers and coequalizers

2.6.1 The two parts of Lemma 2.6.3 are proved in the same way. Let’s show that each equalizer
is monic.

Consider an arrow m, as on the left, which is the equalizer of a

A
m

- B B
p

-

q
- C

parallel pair, as on the right. Thus
p ◦m = q ◦m

with the appropriate universal property. To show that m is monic consider any parallel pair

X
f

-

g
- A

with
m ◦ f = h = m ◦ g

where h is the common composite. We require f = g.

X
f

-

g
- A

m
- B

p
-

q
- C

From the diagram above we have

p ◦ h = p ◦m ◦ f = q ◦m ◦ f = q ◦m ◦ g = q ◦ h

so that the universal property of m gives

h = m ◦ k

for some unique arrow k. This uniqueness ensure that f = g.

2.6. Equalizers and coequalizers 37

The proof of the equalizer version of Lemma 2.6.4 is the mirror image of the coequalizer
version. The proof can be obtained from the coequalizer version by changing one or two words
and remembering that arrows now point the other way.

The arrow l makes equal f and g. The arrow k is the equalizer of f and g. Thus there is
a unique mediator m satisfying (1). By reversing the roles of l and k we see there is a unique
mediator n satisfying (2). From (1, 2) we have

k ◦m ◦ n = l ◦ n = k = k ◦ idT and hence m ◦ n = idT

since k is monic. Similarly
n ◦m = idS

to show that m and n are an inverse pair of isomorphisms. �

2.6.2 We have a particular insertion

S ⊂
i
- A

which automatically satisfies
i(s) = s

for each s ∈ S. For the given function

X
h

- A

we have set up a triangle, as on the left

S ⊂
i
- A S ⊂

i
- A

m(x) = h(x)

X

m
6

h

-

X

n
6

h

-

for a certain function m as indicated. Trivially, for x ∈ X we have

i(m(x)) = m(x) = h(x)

so the triangle does commute.
Conversely, suppose we have some function n to make the triangle commute, as on the right.

Then for each x ∈ X we have
n(x) = i(n(x)) = h(x)

to show that n = m, and hence m has the required uniqueness. �

38 2. Basic gadgetry

2.6.3 (a) Making use of Example 2.6.5 we have

E ⊂
j

- S ⊂
i
- A

f
-

g
- B

where i ◦ j is the equalizer of the pair f, g in Set , and where i is group embedding and hence
monic in Grp .

Consider any group morphism

X
h

- A

which does make equal f and g. Working first in Set we have a commuting triangle for some
unique function n, as on the left.

E ⊂
j
- S ⊂

i
- A E ⊂

j
- S ⊂

i
- A

m = j ◦ n

X

n
6

h

-

X

n
6

h

-

m
-

With the composite arrow m we obtain the diagram, as on the right, where by construction the
left hand triangle commutes in Set , and

h = i ◦ j ◦ n = i ◦m

so the right hand triangle commutes, again in Set . We show that m is a group morphism, so
that the right hand triangle commutes in Grp .

Consider any x, y ∈ X . We require

m(xy) = m(x)m(y)

in A. But, i and h are group morphisms so that

i
(
m(xy)

)
= h(xy) = h(x)h(y) = i(m(x))i(m(y)) = i

(
m(x)m(y)

)
and i is an injection (monic in Grp), to give the required result.

This shows that h does factorize through i via some group morphism m. We show that this
is the only possible factorization. Thus suppose

h = i ◦ k

for some group morphism k. Then

i ◦ k = h = i ◦ j ◦ n = i ◦m

so that
k = m

since i is monic in Grp .

2.6. Equalizers and coequalizers 39

(b) We have a diagram

A

f
-

g
- B

k
- B/K

where k is the canonical quotient. For each a ∈ A we have

k
(
f(a)g(a)−1

)
= k(1) = 1

which leads to
k(f(a)) = k(g(a))

and hence k does make equal f and g. We show that k is the coequalizer of f and g.
Consider any group morphism

B
h

- X

which does make equal f and g. For each a ∈ A we have

h(f(a)) = h(g(a))

so that
h
(
f(a)g(a)−1

)
= h(1) = 1

and hence
f(a)g(a)−1 ∈ ker(h)

to show
F ⊆ ker(h)

and hence
K ⊆ ker(h)

by the construction of K. This shows there is a unique morphism m for which the triangle

B
h

- X

B/K

m

-

k -

commutes, and this is precisely the mediating property we require. �

2.6.4 Since the function σ is surjective there can be at most one function h] to make the diagram
commute. For s1, s2 ∈ S we have

[s1] = [s2] =⇒ s1 ∼ s2 =⇒ h(s1) = h(s2)

to show that the suggested function h] is well defined. For s ∈ S we have

(h] ◦ σ)(s) = h]
(
[s]
)

= h(s)

to show that the triangle commutes. �

40 2. Basic gadgetry

2.6.5 Let

B
β
- B/∼

b - [b]

be the constructed quotient.
Consider any a ∈ A and let

b1 = f(a) b2 = g(a)

to obtain to elements of b with b1 b2. In particular we have

b1 ∼ b2

so that
(β ◦ f)(a) = β(b1) = [b1] = [b2] = β(b2) = (β ◦ g)(a)

to show that β does make equal f and g.
Consider any function hwhich does make equal f and g. We show that h factorizes uniquely

through β. Since β is surjective, there can be at most one such factorization, so it suffices to
show that one does exist.

We use Example 2.6.6 and Exercise 2.6.4. Suppose

b1 b2

for b1, b2 ∈ B. Then
b1 = f(a) b2 = g(a)

for some a ∈ A. This gives

h(b1) = h(f(a)) = h(g(a)) = h(b2)

and hence Example 2.6.6 gives a function h] for the factorization. �

2.6.6 For the given continuous maps

S

φ
-

ψ
- T

we let

T
α

- A

be the coequalizer of the two functions φ and ψ in Set . This α is surjective. We furnish A with
the smallest topology OA for which α is continuous. This is precisely the set of all W ⊆ A
for which α←(W) ∈ OT . (You should check this. The topology is sometimes called the final
topology or the quotient topology onA.) We show that this continuous map α is the coequalizer
of the two maps φ and ψ in Top .

Trivially, α does make equal φ and ψ.

2.6. Equalizers and coequalizers 41

Consider any continuous map

T
θ

- R

which makes equal φ and ψ. At the Set level there is a unique function µ such that the following
triangle commutes.

S

φ
-

ψ
- T

α
- A

R

θ

?

µ

�

It suffices to show that µ is continuous. Consider any U ∈ OR. We require

µ←(U) ∈ OA

that is
(α← ◦ µ←)(U) = α←(µ←(U)) ∈ OT

(by the definition of OA). But

α← ◦ µ← = (µ ◦ α)← = θ←

and θ←(U) ∈ OT since θ is continuous. �

2.6.7 (a) Since the comparison ≤ is reflexive, the defined relation ∼ is reflexive. By rephrasing
the definition as

a ∼ b⇐⇒ a ≤ b and b ≤ a

we see that ∼ is symmetric. If
a ∼ b ∼ c

then
a ≤ b ≤ c and c ≤ b ≤ a

so that
a ≤ c and c ≤ a

to give
a ∼ c

to show that ∼ is transitive.
The preset S is a poset precisely when

a ≤ b ≤ a =⇒ a = b

that is
a ∼ b =⇒ a = b

and the converse implication always holds.

42 2. Basic gadgetry

(b) To show that the comparison on S/∼ is well-defined suppose

[a1] = [a2] [b1] = [b2]

for elements a1, a2, b1, b2 ∈ S. We require

a1 ≤ b1 ⇐⇒ a2 ≤ b2

and clearly, by symmetry, a proof of one of the implications will do.
From the two assumed equalities we have

a1 ∼ a2 b1 ∼ b2

and hence
a1 ≤ b1 =⇒ a2 ≤ a1 ≤ b1 ≤ b2 =⇒ a2 ≤ b2

as required.
This shows that

S
η
- S/∼

a - [a]

is well-defined and, trivially, it is monotone.
(c) Consider a monotone map

S
f

- T

from the preset S to a poset T .
For a, b ∈ S we have

a ∼ b =⇒ a ≤ b ≤ a =⇒ f(a) ≤ f(b) ≤ f(a) =⇒ f(a) = f(b)

where the last step holds since T is a poset. Since η is surjective there is at most one monotone
map f] such that

S
f

- T

S/∼
f]

-

η -

commutes. Thus it suffices to show that

f]([a]) = f(a)

(for a ∈ S) gives a well-defined monotone function.
The implications above show that f] is well-defined, and a similar argument shows that f

is monotone. The universal property gives the required function. For the general argument see
Solution 3.3.18. �

2.7. Pullbacks and pushouts 43

2.6.8 We are given that e does make equal f and g. Consider any other arrow h which makes
equal f and g, as on the left. We must show that h factorizes uniquely through e.

• •

•
e
- •

h

? f
-

g
- • •

e
- •

h

? p
- •

m

-

•
h
- •

e

?

g
- •

f

?

q
- •

e

?

Let
m = p ◦ h

and consider the right hand diagram. We have

e ◦m = e ◦ p ◦ h = q ◦ f ◦ h = q ◦ g ◦ h = h

to show that h does factorize through e.
Conversely, suppose

h = e ◦ n
for some arrow n. Then

n = p ◦ e ◦ n = p ◦ h = m

to show the required uniqueness. �

2.7 Pullbacks and pushouts

2.7.1 (a) Consider any wedge in C , as in the center. Consider also the

A A A

P

p-
C

a-
P

p -

C

a-

Bq
-

B b
-

B b
-

q
-

product wedge of the two objects A,B, as at the left. These compose to give a square, as at the
right. Of course, this square need not commute. Let

S
e

- P

be the equalizer of the parallel pair

P

a ◦ p
-

b ◦ q
- C

obtained from the square. We show that

A

S

p ◦ e -

C

a
-

B
b
-

q ◦ e
-

44 2. Basic gadgetry

is a pullback square.
Consider any commuting square

A

X

f -

C

a
-

B
b
-

g -

where the right hand side is the given wedge. Using the product property we have
A

f = p ◦ h

X h -

f
-

P

p
6

C

a

-

g = q ◦ h

B

q
?

b

-

g -

for some unique arrow h. But now

a ◦ p ◦ h = a ◦ f = b ◦ g = b ◦ q ◦ h
to show that h makes equal the parallel pair, and hence

h = e ◦m
for some unique arrow

X
m

- S

by the equalizing property. In particular, we have a commuting diagram
A

X m -

f
-

S e - P

p
6

C

a

-

B

q
?

b

-

g
-

to show that the arbitrary square from X does factorize via m through the constructed square
from S. We must show that this is the only possible factorization.

Suppose
f = p ◦ e ◦ n g = q ◦ e ◦ n

for some arrow

X
n

- S

in place of m. Then
e ◦ n = h n = m

by the uniqueness of h followed by the uniqueness of m.
(b) This follows by a dual argument to that of (a). �

2.7. Pullbacks and pushouts 45

2.7.2 Let the arrows point up the poset. All pushouts precisely when it has joins of those pairs
of elements which have a lower bound. �

2.7.3 For the first part we are given a pair of pullbacks

• c - • a - •

•

r

?
d - •

q

?
b - •

p

?

where we have labelled he arrows. Consider a pair of arrows

•

• c - • a - •

f

-

p ◦ f = b ◦ d ◦ g

•

r

?
d -

g

-

•

q

?
b - •

p

?

with the indicated commuting properties. Using the right hand pullback there is a unique arrow
h for which

•

• a -

h
-

•

f

-

f = a ◦ h d ◦ g = q ◦ h

• d -

g

-

•

q

?
b - •

p

?

commutes, as indicated. This gives us a commuting diagram

•

• c - •

h
-

d ◦ g = q ◦ h

•

r

?
d -

g

-

•

q

?

and the left hand pullback provides a unique arrow m for which

•

• c -

m

-

•

h

-

h = c ◦m g = r ◦m

•

r

?
d -

g

-

•

q

?

commutes, as indicated.

46 2. Basic gadgetry

From the equalities obtained we have

f = a ◦ h = a ◦ c ◦m g = r ◦m

to show that we have produced a factorization of f and g through a common arrowm. It remains
to show that m is the only arrow that does this job.

Consider any arrow n for which

f = a ◦ c ◦ n g = r ◦ n

holds. Then
f = a ◦ c ◦ n d ◦ g = d ◦ r ◦ n = q ◦ c ◦ n

and hence
c ◦ n = h

by the uniqueness of h. But now

c ◦ n = h r ◦ n = g

to give
n = m

by the uniqueness of m.

For the second part suppose we have commuting squares

• c - • a - •

•

r

?
d - •

q

?
b - •

p

?

where the outer cell and the right hand square are pullbacks. Suppose also we have a commuting
diagram as on the left. We must produce a

• •

• c - •

f

-
• c -

l
-

•

f

-

q ◦ f = d ◦ g

•

r

?
d -

g

-

•

q

?
•

r

?
d -

g

-

•

q

?

commuting diagram, as on the right, and show that there is only one possible arrow l. Thus we
want

f = c ◦ l (?) g = r ◦ l

for some unique arrow l.
Let’s look at what the two pullback squares give us.

2.7. Pullbacks and pushouts 47

Consider the right hand square with connecting arrows, as indicated.

• •

• a - •

a ◦ f

-
a ◦ f = a ◦m • a -

m

-

•

a ◦ f

-

d ◦ g = q ◦m

•

q

?
b -

d ◦ g

-

•

p

?
•

q

?
b -

d ◦ g

-
•

p

?

Since the square commutes we have

p ◦ a ◦ f = b ◦ q ◦ f = b ◦ d ◦ g

and hence the pullback property gives a unique arrow m with the two central equalities. In fact,
since

a ◦ f = a ◦ f d ◦ g = q ◦ f

we see that m = f .
Consider the outer cell with connecting arrows, as indicated.

• •

• a ◦ c- •

a ◦ f

-
a ◦ f = a ◦ c ◦ n • a ◦ c-

n
-

•

a ◦ f

-

g = r ◦ n

•

r

?
b ◦ d-

g
-

•

p

?
•

r

?
b ◦ d-

g

-

•

p

?

Using the calculations above we see the pullback property gives a unique arrow n with the two
central equalities. In due course we show that the required arrow l is n.

We compare the properties of m and n. We have

a ◦ f = a ◦ c ◦ n d ◦ g = d ◦ r ◦ n = q ◦ c ◦ n

and hence
c ◦ n = m = f

by the uniqueness of m. Since

f = c ◦ n g = r ◦ n

we see that l = n makes the required triangles commute. Comversely, if

f = c ◦ l g = r ◦ l then a ◦ f = a ◦ c ◦ l g = r ◦ l

and hence l = n by the uniqueness of n. �

48 2. Basic gadgetry

2.7.4 Consider any parallel pair p, q of arrows that h makes equal.

h ◦ p = h ◦ q = l

•

•

p

?

q

? k
- •

•

h

?

g
- •

f

?

We must show that p = q. By going round the square we find that

f ◦ k ◦ p = f ◦ k ◦ q

and hence, since f is monic, we have

k ◦ p = k ◦ q = r

say. This shows that both p and q make

•

• k -
-

•

r

-

•

h

?
g -

l

-

•

f

?

commutes, and hence p = q since the given square is a pullback. �

2.7.5 Suppose that f is the equalizer of the parallel pair p, q as indicated

•
k
- •

•

h

?

g
- •

f

?
•

p ◦ g
-

q ◦ g
- •

•

p

?

q

?

on the left. Since the given square does commute, we see that h makes equal the composite

2.7. Pullbacks and pushouts 49

parallel pair on the right, and we show that h actually equalizes this pair.

• • •

• k - • • k - •

r

-
• k -

m
-

•

r

-

•

h

?
g -

l

-

•

f

?
•

h

?
g -

l

-

•

f

?
•

h

?
g -

l

-

•

f

?

•

p

?

q

?
•

p

?

q

?
•

p

?

q

?

Consider any other arrow l which does make equal this pair, as on the left. Since f is the
equalizer of p, q there is a unique arrow r which makes the central diagram commute. Since
the given square is a pullback there is a unique arrow m which makes the right hand diagram
commute. From these diagrams we have

g ◦ l = f ◦ r l = h ◦m r = k ◦m

and it is the central equality that most interests us. It suffices to show that this is the only
possible factorization of l through h.

Consider any arrow n for which
l = h ◦ n

holds. It suffices to show
r = k ◦ n

for then n = m by the uniqueness of m. Since the given square commutes we have

f ◦ k ◦ n = g ◦ h ◦ n = g ◦ l

and hence the uniqueness of r gives the required result. a �

2.8 Using the opposite category

2.8.1 No solution needed? �

3
Functors and natural tansformations

3.1 Functors defined

3.1.1 A covariant functor from S to T is simply a monoid morphism from S to T . A contravari-
ant functor f from S to T is monoid ‘morphism’ that flips the elements, that is

f(rs) = f(s)f(r)

for r, s ∈ S. �

3.1.2 A covariant functor from S to T is simply a monotone map. A contravariant functor f
from S to T is an antitone map, that is

r ≤ s =⇒ f(s) ≤ f(r)

for r, s ∈ S. �

3.1.3 Consider a covariant functor

Srcop F
- Trg

using the opposite on the source. Consider any arrow

A
f

- B

of Src. This is an arrow

B
f

- A

of Srcop, and the functor F sends it to an arrow

FB
F (f)

- FA

of Trg . Thus F has flipped the direction of f . The other required properties (preservation of
composition and identity arrows) are immediate, to show that

Src
F
- Trg

is a contravariant functor.
The other part is just as easy. �

3.1.4 The composite of two functors of the same variance produces a covariant functor.
The composite of two functors of opposite variance is a contravariant functor. �

51

52 3. Functors and natural transformations

3.2 Some simple functors

3.2.1 The functors S and T select the source and target of the arrow, respectively. The diagonal
functor ∆ send each object A to the identity arrow idA. �

3.2.2 The Set-valued contravariant functors on the poset S are the presheaves on S. �

3.2.3 The
covariant contravariant

Set-valued functors from R are precisely the

left right

R-sets. It is worth looking at the details of this, and the contravariant case is potentially more
interesting.

Consider such a contravariant functor. This must send each object of R to some set. But
since R (when viewed as a category) has just one object, this object assignment produces a set,
A say.

The functor must send each arrow of R (element of R) to a function from A to A.

R
r

- R - A �
αr

A

Let αr be the 1-placed operation on A assigned to r ∈ R. The contravariance

R A

-

R
sr

-

s
-

R

r

-

A �
αsr

αs

�
A

αr

�

gives
αsr = αs ◦ αr α1 = idA

for each r, s ∈ R, where the right hand equality is the identity requirement. We now write each
operation α as a right action

A
αr - A

a - ar

to get
a(sr) = (as)r a1 = a

and so produce a right R-set. �

3.2.4 This is more or less proved by Exercise 1.3.5. �

3.2.5 Remember that C [−,−] is contravariant in the left argument and covariant in the right
argument. So what we have here is really a covariant functor

C op ×C
H
- Set

3.3. Some less simple functors 53

from the ‘twisted product’ category. In detail, for arrows

B
f

- A S
g

- T

of C we have
H(f, g) = g ◦ − ◦ f

for the arrow behaviour of H . �

3.3 Some less simple functors

3.3.1 Three power set functors

3.3.1 Only ∀(·) is liable to cause trouble. Given functions between sets

A
f

- B
g

- C

for each X ∈ PA we have(
∀(g) ◦ ∀(f)

)
(X) = ∀(g)

(
∀(f)(X)

)
= ∀(g)

(
f [X ′]′

)
= g[f [X ′]′′]′

= g[f [X ′]]′

= (g ◦ f)[X ′]′ = ∀(g ◦ f)(X)

as required. A similar proof can be done using the quantifier characterization. �

3.3.2 This is simpler than Exercise 1.3.9. A set is a discrete poset. �

3.3.2 Spaces, presets, and posets

3.3.3 (a) The specialization order of ⇑A is the given comparison on A.
(b) Almost be defintion each open set U ∈ OS is an upper section of the specialization

order. �

3.3.4 (a) Consider a monotone map

A
f

- B

between two presets, and an upper section V ∈ ΥB of the target. We require f←(V) ∈ ΥA.
Consider any x ≤ y in A with x ∈ f←(V). Then

f(x) ≤ f(y) f(x) ∈ V
so that f(y) ∈ V and hence y ∈ f←(V).

We have an object and an arrow assignment

Pre
⇑
- Top

which is trivial on arrows, so we do have a functor.

54 3. Functors and natural transformations

(b) Consider a continuous map between spaces

S
φ

- T

and consider a comparison x ≤ y in S. We require φ(x) ≤ φ(y) in T .
Consider V ∈ OT with φ(x) ∈ V . We required φ(y) ∈ V . But

x ∈ φ←(V) ∈ OS x ≤ y

so that y ∈ φ←(V), as required.
We have an object and an arrow assignment

Top
⇓
- Pre

which is trivial on arrows, so we do have a functor. �

3.3.5 Suppose first that θ is monotone and consider any U ∈ OS. We require θ←(U) ∈ ΥA.
Consider elements x, y of A with

x ∈ θ←(U) x ≤ y

so that y ∈ θ←(U) is required. We have

θ(x) ∈ U θ(x) ≤ θ(y)

(since θ is monotone), and hence
y ∈ θ(U)

since each open set of S is an upper section of S.
Secondly, suppose that θ is continuous and consider elements x ≤ y of A. We require

θ(x) ≤ θ(y). For each U ∈ OS we have

θ(x) ∈ U =⇒ x ∈ θ←(U) =⇒ y ∈ θ←(U) =⇒ θ(y) ∈ U

where the central implication holds since θ is continuous and hence θ←(U) ∈ ΥA.
These two implications show that the hom-sets

Pre [A,⇓S] Top[⇑A, S]

contain exactly the same functions. There is a trivial bijection between the two sets. �

3.3.6 For U, V ∈ OS with U ⊆ V we require O(φ)(U) ⊆ O(φ)(V). But for t ∈ T we have

t ∈ O(φ)(U) =⇒ φ(t) ∈ U ⊆ V =⇒ φ(t) ∈ V =⇒ t ∈ O(φ)(V)

for the required result.
For each pair of continuous maps

T
φ

- S
ψ

- R

we require
O(ψ ◦ φ) = O(φ) ◦ O(ψ)

3.3.2. Spaces, presets, and posets 55

that is
(ψ ◦ φ)←(U) = (φ← ◦ ψ←)(U)

for U ∈ OR. But for t ∈ T we have

t ∈ (ψ ◦ φ)←(U)⇐⇒ (ψ ◦ φ)(t) ∈ U
⇐⇒ ψ(φ(t)) ∈ U
⇐⇒ φ(t) ∈ φ←(U)

⇐⇒ t ∈ ψ←(φ←(U)) ⇐⇒ (φ← ◦ ψ←)(U)

for the required result.
Observe that a character

p : S - 2
is continuous precisely when

p←({1})

is open in S. This is because

p←(∅) = ∅ p←(2) = S

and these are open in S. For each continuous map φ and continuous character p on the target
we have a continuous character

Ξ(φ)(p) = p ◦ φ

since continuous maps are closed under composition.
To show that Ξ(φ) is monotone consider continuous characters p, q of S with p ≤ q. Then

for each t ∈ T we have

Ξ(φ)(p)(t) = p(φ(t)) ≤ q(φ(t))Ξ(φ)(q)(t)

to show
Ξ(φ)(p) ≤ Ξ(φ)(q)

as required.
Finally, for each pair of continuous maps

T
φ

- S
ψ

- R

we require
Ξ(ψ ◦ φ) = Ξ(φ) ◦ Ξ(ψ)

that is
Ξ(ψ ◦ φ)(r) =

(
Ξ(φ) ◦ Ξ(ψ)

)
(r)

for each continuous character r of R. But for such an r we have

Ξ(ψ ◦ φ)(r) = r ◦ (ψ ◦ φ)
= (r ◦ ψ) ◦ φ
= Ξ(ψ)(r) ◦ φ
= Ξ(φ)

(
Ξ(ψ)(r)

)
=
(
Ξ(φ) ◦ Ξ(ψ)

)
(r)

as required. �

56 3. Functors and natural transformations

3.3.7 To show χS(U) is continuous (for U ∈ OS) we require

χS(U)←(W) ∈ OS

for each W ∈ O2. Trivially we have

χS(U)←(∅) = ∅ χS(U)←(2) = S

so it suffices to deal with W = {1}. For each s ∈ S we have

s ∈ χS(U)←({1})⇐⇒ χS(U)(s) ∈ ({1})⇐⇒ χS(U)(s) = 1⇐⇒ s ∈ U

to give the required result.
For p ∈ ΞS with

U = p←({1}) ∈ OS

we have
p = χS(U)

and hence

OS
χS - ΞS

is a bijection. To show it is a poset isomorphism we require

U ⊆ V ⇐⇒ χS(U) ≤ χS(V)

for U, V ∈ OS. But we have

χS(U) ≤ χS(V)⇐⇒ (∀s ∈ S)[χS(U)(s) ≤ χS(V)(s)]

⇐⇒ (∀s ∈ S)[χS(U)(s) = 1 =⇒ χS(V)(s) = 1]

⇐⇒ (∀s ∈ S)[s ∈ (U =⇒ s ∈ V]

⇐⇒ U ⊆ V

as required. �

3.3.3 Functors from products

3.3.8 Let F = −×R. By construction, for each arrow

A
f

- B

the arrow

FA
F (f)

- FB

3.3.3. Functors from products 57

is the unique arrow for which

A
f

- B

FA -

pA
-

FB
pB

-

R
idR

-
qA -

R

qB
-

commutes. For arrows

A
f

- B
g

- C

we require
F (g ◦ f) = F (g) ◦ F (f)

(together with a trivial observation to give F (id) = id).
We have several commuting cells

A
f

- B
g

- C A
g ◦ f

- C

FA F (f) -

pA -

FB F (g) -

pB -

FC

pC -

FA F (g ◦ f)-

pA -

FC
pC

-

R
idR

-
qA
-

R
idR

-
qB
-

R
qC
-

R
idR

-
qA
-

R

qC-

and the uniqueness of the central arrows give the required result. �

3.3.9 We have an object assignment

C ×C - C

A1, A2
- A1 × A2

so we now require a companion arrow assignment. Consider any arrow of C × C , in other
words a pair

A1

f1 - B1

A2
f2

- B2

of arrows of C . We have a diagram

A
f1 - B1

A1 × A2

p1
-

B1 ×B2

q1

-

R
f2

-
p2
-

B2

q2
-

58 3. Functors and natural transformations

where p1, p2, q1, q2 are the structuring projections. The product property of the right hand wedge
gives a commuting diagram

A1

f1 - B1

A1 × A2 f1 × f2
-

p1
-

B1 ×B2

q1

-

A2
f2

-
p2 -

B2

q2

-

for some unique central arrow. This is often written f1 × f2, as shown, and then

(f1, f2) - f1 × f2

is the arrow assignment.
To verify that we have a functor we need to show that the arrow construction passes across

composition. As usual, it is the uniqueness that gives this.
Consider a composible pair

A1

f1 - B1

g1 - C1

A2
f2

- B2
g2

- C2

of arrows of C ×C . The commuting diagram

A1

f1 - B1

g1 - C1

A1 × A2 f1 × f2
-

p1
-

B1 ×B2 g1 × g2
-

q1
-

C1 × C2

r1

-

A2
f2

-
p2 -

B2
g2

-
q2 -

C2

r2

-

ensures that

A1

g1 ◦ f1 - C1

A1 × A2 (g1 × g2) ◦ (f1 × f2) -

p1
-

C1 × C2

r1

-

A2
g2 ◦ f2

-
p2 -

C2

r2

-

commutes, and hence

(g1 × g2) ◦ (f1 × f2) = (g1 ◦ f1)× (g2 ◦ f2)

by the uniqueness of the mediators. �

3.3.4. Comma category 59

3.3.4 Comma category

3.3.10 We produce a composition of arrows in (U ↓ L) and check it is associative. Consider
two arrows of (U ↓ L)

UAU UBU UCU

f - g -

LAL

α
?

LBL

β
?

LCL

γ
?

which ought to compose. In more detail we have

AU
fU - BU

gU - CU

UAU
U(fU)

- UBU

U(gU)
- UCU

LAL

α
?

L(fL)
- LBL

β
?

L(gL)
- LCL

γ
?

AL
fL

- BL
gL

- CL

where the two squares commute. Now consider composite arrows

AU
hU = gL ◦ fU- CU U

AL
hL = gL ◦ fL

- CL L

in the indicated categories. From above and using the functorial properties of U and L we see
that the square on the left commutes

AU
hU - CU

UAU
U(hU)

- UCU UAU UCU

h -

LAL

α
?

L(hL)
- LCL

γ
?

LAL

α
?

LCL

γ
?

AL
hL

- CL

and so we have an arrow h of (U ↓ L) as on the right. We take this as the composite g ◦ f of
the given arrows. A diagram chase verifies the category axioms. �

60 3. Functors and natural transformations

3.3.11 (a)
(
IdC ↓ IdC

)
= C ↓.

(b) Using

C
IdC - C �

K
C C

K
- C �

IdC
C

where K is the constant functor with
KA = S

for each C -object A, we have

(C ↓ S) = (IdC ↓ K) (S ↓ C) = (K ↓ IdC)

respectively. �

3.3.12 For the three cases the object

AU

α

AL

of Com is sent to the object

U C ↓ L

UAU

UAU LAL

LAL

α
?

of the indicated category. The arrow

UAU UBU

f -

LAL

α
?

LBL

β
?

of Com is sent to the arrow

U C ↓ L

UAU
U(fU)

- UBU

AU fU - BU AL fL - BL

LAL

α
?

L(fL)
- LBL

β
?

of the indicated category. The composition properties are easy. �

3.3.5. Other examples 61

3.3.5 Other examples

3.3.13 Consider an arbitrary group A. We assume it is written multiplicatively. A commutator
of A is an element

[x, y] = xyx−1y−1

for arbitrary x, y ∈ A. Thus A is abelian precisely when the unit 1 is the only commutator.
Observe that

[x, y]−1 = [y, x]

so the set of products of commutators is a subgroup δA ofA. In particular,A is abelian precisely
when δA is the trivial subgroup.

To show that the object assignment

A - δA

fills out to a functor we do a little bit more. We show there is a unique commuting square

δA
ιA- A

δB

δ(f)
?

ιB
- B

f
?

for each group morphism f . Here ιA and ιB are the two embeddings.
If there is such a morphism δ(f) then it can only be

f |δA
the restriction of f to δA. We remember that

f(x−1) = f(x)−1

for each x ∈ A, and hence
f([x, y]) = [f(x), f(y)]

for each x, y ∈ A, so that
a ∈ δA =⇒ f(a) ∈ δB

which is what we want.
The uniqueness in the construction of δ(·) ensures that it passes across composition of mor-

phisms. For each pair of morphisms

A
f

- B
g

- C

we have a commuting diagram, as on the left

δA
ιA- A δA

ιA - A

δB

δ(f)
?

ιB- B

f
?

δC

δ(g)
?

ιC
- C

g
?

δC

δ(g) ◦ δ(f)

?

ιC
- C

g ◦ f

?

62 3. Functors and natural transformations

to give a commuting square as on the right. Thus

δ(g) ◦ δ(f) = δ(g ◦ f)

by the uniqueness of δ(g ◦ f).
For the second part we show there is a unique commuting square

A
ηA- A/δA

B

f
?

ηB
- B/δB

f/δ
?

for each group morphism f . Here ηA and ηB are the two canonical quotient morphisms.
The notation

f/δ

is not to be taken too seriously.
Since ηA is surjective (epic in Grp) there can be at most one such morphism f/δ. There is

such a morphism precisely when

Ker(ηA) ⊆ Ker(ηB ◦ f)

in other words
δA ⊆ Ker(ηB ◦ f)

that is
[x, y] ∈ Ker(ηB ◦ f)

for each x, y ∈ A. But we know

f([x, y]) = [f(x), f)y)] ∈ δB

which gives the required result. The uniqueness in the diagram ensures we have a functor. �

3.3.14 (a) Given an R-set A we require

(a ? s) ? t = a ? (st)

for s, t ∈ S. But φ is a monoid morphism, so that

φ(s)φ(t) = φ(st)

and hence

(a ? s) ? t = (a · φ(s)) · φ(t) = a · (φ(s)φ(t)) = a · φ(st) = a ? st

as required.
(b) We must show that for each R-morphism

A
f

- B

3.3.5. Other examples 63

the function f is also an S-morphism, that is

f(a ? s) = f(a) ? s

for each a ∈ A and s ∈ S. But

f(a ? s) = f(a · φ(s)) = f(a) · φ(s) = f(a) ? s

for the required result. �

3.3.15 We have an object assignment and an arrow assignment

Mon MON

R - Set-R
φ - Φ

so it suffices to check that the arrow assignment passes across composition. For each Mon-
arrow φ the functor Φ is trivial on objects and arrows, so the requirement is satisfied. �

3.3.16 In Solution 1.2.7 we set up an inverse pair of translations

Pfn

L
-

�
M

Set⊥

on both objects and arrows. We check these each of these is a functor.
We deal first with L, and it is only the passage across composition that requires much

thought. Consider a composible pair of arrows

A
f

- B
g

- C

in Pfn . Thus
L(g ◦ f) = L(g) ◦ L(f)

is required. The arrow composite g ◦ f is determined by

A B C

X
∪
6

f

-

Y
∪
6

g

-

U
∪
6

f |U

-

where X and Y are the respective domains of definition of f and g, and

U = f
←

(Y) that is a ∈ U ⇐⇒ a ∈ X and f(a) ∈ Y

for a ∈ A.
We adjoin a bottom ⊥ to each of A,B,C, and then set

L(f)(a) =

{
f(a) if a ∈ X
⊥ if a /∈ X

L(g)(b) =

{
g(b) if b ∈ Y
⊥ if b /∈ Y

64 3. Functors and natural transformations

for each a ∈ A, b ∈ B. There is a similar description of L(g ◦ f), that is

L(g ◦ f)(a) =

{
g ◦ f |U(a) if a ∈ U
⊥ if a /∈ U

}
=

{
g(f(a)) if a ∈ U
⊥ if a /∈ U

for each a ∈ A. In all cases ⊥ is sent to ⊥.
Observe that

L(f)(a) ∈ Y ⇐⇒ a ∈ X and f(a) ∈ Y ⇐⇒ a ∈ U

for each a ∈ A.
With these, for each a ∈ A we have

L(g)
(
L(f)(a)

)
=

{
g
(
L(f)(a)

)
if L(f)(a) ∈ Y

⊥ if L(f)(a) /∈ Y

}

=

{
g
(
f(a)

)
if a ∈ X and f(a) ∈ Y

⊥ if not

}

=

{
g
(
f(a)

)
if a ∈ U

⊥ if a /∈ U

where the second equality follows by the observation above. This shows that L passes across
composition in the required fashion.

To show that M passes across composition consider a pair of arrows

R
ψ

- S
φ

- T

in Set⊥. We remove the bottom from each of R, S, T to obtain sets MR,MS,MT and we let

M(ψ) = ψ|W M(φ) = φ|X

where these domains of definition are given by

r ∈ W ⇐⇒ ψ(r) 6= ⊥ s ∈ X ⇐⇒ φ(s) 6= ⊥

for r ∈ R and s ∈ S. Similarly we have

M(φ ◦ ψ) = (φ ◦ ψ)|U

where U is given by
r ∈ U ⇐⇒ φ(ψ(r)) 6= ⊥ ⇐⇒ ψ(r) ∈ X

for each r ∈ R.
These constructions give us two arrows in Pfn .

MR
M(φ) ◦M(ψ)

- MT MR
M(φ ◦ ψ)

- MT

MR MS MT MR MT

W
∪
6

ψ|W

-

X
∪
6

φ|X

-

U
∪
6

(φ ◦ ψ)|U

-

V
∪
6

ψ|W |V

-

3.3.5. Other examples 65

The left hand one is a composite in Pfn , whereas the right hand one is the image of a composite
in Set⊥.

The domain of definition V is given by

r ∈ V ⇐⇒ r ∈ W and ψ|W (r) ∈ X

for r ∈ R. Since φ(⊥) = ⊥, for each r ∈ R we have

ψ(r) = ⊥ =⇒ φ(ψ(r)) = ⊥

and hence
ψ(r) ∈ X =⇒ r ∈ W

to show that V = U . Thus the two arrows are

MR MT MR MT

U
∪

6

φ|X ◦ ψ|U

-

U
∪

6

(φ ◦ ψ)|U

-

which, since U ⊆ X , show that they are equal. �

3.3.17 This exercise extends the earlier Exercise 2.6.6.
(a) To show that the comparison on S/∼ is well-defined suppose

[s1] = [s′1] [s2] = [s′2]

for elements s1, s
′
1, s2, s

′
2 ∈ S. We require

s1 ≤ s2 ⇐⇒ s′2 ≤ s′2

and clearly, by symmetry, a proof of one of the implications will do. From the two assumed
equalities we have

s1 ∼ s′1 s2 ∼ s′2

and hence
s1 ≤ s2 =⇒ s′1 ≤ s1 ≤ s2 ≤ s′2 =⇒ s′1 ≤ s′2

as required. This shows that

S
ηS - S/∼

s - [s]

is well-defined and, trivially, it is monotone.
(b) Consider a monotone map

S
f

- T

from a preset S to a poset T . We check there is a commuting triangle

S
f

- T

S/∼
f]
-

ηS
-

66 3. Functors and natural transformations

for some unique monotone map f]. Since ηS is surjective there is at most one such map f].
Thus it suffices to show that

f]([s]) = f(s)

(for s ∈ S) gives a well-defined monotone function. For s1, s2 ∈ S, since f is monotone, we
have

[s1] = [s2] =⇒ s1 ≤ s2 ≤ s1

=⇒ f(s1) ≤ f(s2) ≤ f(s1) =⇒ f(s1) = f(s2)

where the last step holds since T is a poset. This shows that f is well-defined. A similar
argument shows that f is monotone.

This universal property induces the required functor. For the general argument see Solution
3.3.18. �

3.3.18 (a) Consider an arbitrary arrow

A
f

- B

of Src. We must produce an arrow

FA
F (f)

- FB

and then check that the two assignments form a functor.
Consider the composite arrow of Src.

A
f

- B
ηB- (¿ ◦ F)B

Applying the universal property to this arrow gives a commuting square

A
f

- B

(¿ ◦ F)A

ηA ?

¿(!)
- (¿ ◦ F)B

ηB?

for some unique arrow

FA ! - FB

of Trg . We take this arrow for F (f). Thus

F (f) = (ηB ◦ f)]

in terms of the given notation.
To show that F passes across composition consider a pair of arrows

A
f

- B
g

- C

of Src. Each of these gives a commuting square.

A
f

- B
g

- C

(¿ ◦ F)A

ηA
?

¿(F (f))
- (¿ ◦ F)B

ηB
?

¿(F (g))
- (¿ ◦ F)C

ηC
?

3.3.5. Other examples 67

And the composite gives a similar commuting square

A
g ◦ f

- C A
g ◦ f

- C

(¿ ◦ F)A

ηA
?

¿(F (g ◦ f)
)- (¿ ◦ F)C

ηC
?

(¿ ◦ F)A

ηA
?

¿(F (g) ◦ F (f)
)- (¿ ◦ F)C

ηC
?

as on the left. The two commuting squares above combine to give the
commuting square on the right. The uniqueness of the fill-in arrow gives

F (g ◦ f) = F (g) ◦ F (f)

as required.
The required identity property is almost trivial.
(b) For each arrow

FA
g
- S

of Trg let

A
g[- ¿S

be the composite

A
ηA - (¿ ◦ F)A

¿(g)
- ¿S

of Src.
Trivially, the triangle

A
g[- ¿S

(¿ ◦ F)A

¿(g)

-

ηA -

commutes, to show that
g[
] = g

by the uniqueness property of the (·)] construction.
Similarly, for each arrow

A
f

- ¿S

of Src we have
f][= f

by the given commuting triangle.
This sets up an inverse pair

f - f]

Src[A, ¿S] Trg [FA, S]

g[� g

of bijections, and it is not too hard to show that each is natural for variations of A and S. �

68 3. Functors and natural transformations

3.4 Natural transformations defined

3.4.1 (a) Consider the category

0

(↓)

1
?

where the two identity arrows have been omitted from the picture. Let C be an arbitrary cate-
gory. A covariant functor

(↓) - C

must select two objects A0, A1 of C and an arrow between them.

A0

A1

α
?

(It also selects the identity arrows on these two objects, but that is not a problem.) There are no
non-trivial composition properties here. Thus such a functor is precisely an object of C ↓.

Consider two such functors
A0 B0

A1

α
?

B1

β
?

that is two objects of C ↓. There are just two source objects, namely 0 and 1, so a natural
transformation between these functors must select two arrows

A0

f0- B0

A1
f1

- B1

of C . The naturality requires that the square

A0

f0- B0

A1

α
?

f1

- B1

β
?

commutes. Thus a natural transformation is just an arrow of C ↓.
(b) Re-read Solution 1.3.10. You will find that the objects of C∇ are essentially the ‘func-

tors’ from the graph ∇ = (N,E), and the arrows of C∇ are essentially the ‘natural transfor-
mations’ between these ‘functors’. The only problem is that ∇ is not a category and there are
no composition requirements. Don’t worry about that. Composition can be dealt with later. �

3.4.2 A presheaf on S is a contravariant functor

S - Set

and an arrow between presheaves is a natural transformation between these functors. �

3.4. Natural transformations defined 69

3.4.3 We look at the contravariant case. Let A and B be a pair of (right) R-sets viewed as
functors from the 1-object category R. Since R has just one object a natural transformation will
be a single function

A
f

- B

subject to certain conditions. For each arrow r of R (r ∈ R) the square

A
f
- B

A

αr

6

f
- B

βr

6

must commute. Here αr and βr are the 1-placed operations on A and B selected by r. Thus

f ◦ αr = βr ◦ f

is the required condition. In terms of elements and actions this is

f(ar) = f(αr(a)) = (f ◦ αr)(a) = (βr ◦ f)(a) = βr(f(a)) = f(a)r

so that f is just an arrow of Set-R. �

3.4.4 We must show that for each Src-arrow

A
f

- B

the induced Trg -square

GA
σA- FA

GB

G(f)
?

σB
- Fb

F (f)
?

commutes. To do that consider the following diagram.

FA
τA- GA

σA- FA

FB

F (f)
?

τB
- GB

G(f)
?

σB
- FB

F (f)
?

The left hand square commutes, since τ• is natural. The outer cell commutes since we are given

σ• ◦ τ• = id•

and hence both trips from FA to FB are equal to F (f). But now

F (f) ◦ σA ◦ τA = σB ◦ τB ◦ F (f) = σB ◦G(f) ◦ τA

70 3. Functors and natural transformations

and hence since
τ• ◦ σ• = id•

we have

F (f) ◦ σA = F (f) ◦ σA ◦ τA ◦ σA = σB ◦G(f) ◦ τA ◦ σA = σB ◦G(f)

for the required result. �

3.5 Examples of natural transformations

3.5.1 Given an arrow

L
k

- K

we certainly have a function

[A,L]
k ◦ −

- [A,K]

for each object A. For this to be natural we require the square

A [A,L]
k ◦ −

- [A,K]

B

f
6

[B,L]

− ◦ f
?

k ◦ −
- [B,K]

− ◦ f
?

to commute for each arrow f . This is trivially satisfied. �

3.5.2 Each of F and G is a composite of contravariant functors, and hence each is a covariant
functor.

We need an explicit description of the behaviour on arrows. Consider an arrow

A
f

- B

of C . This must produce a function

Set [C [A,P], R]
F (f)

- Set [C [B,P], R]

mapping functions to functions. In other words, for each input function

C [A,P]
l
- R

an output function

C [B,P] - R

is required. Thus we set
F (f)(l)(b) = l(b ◦ f)

3.5. Examples of natural transformations 71

for each arrow

B
b
- P

of C .
There is a similar description of G.
For the natural transformation we require a function

Set [C [A,P], R]
τA - Set [C [A,Q], S]

for each object A of C . In other words, for each input function

C [A,P]
l
- R

an output function

C [A,Q] - S

is required. Thus we set
τA(l)(a) = (s ◦ l)(p ◦ a)

for each arrow

A
a

- Q

of C . Finally, we show that the square

A FA
τA - GA

B

f
6

FB

F (f)
?

τB
- GB

G(f)
?

commutes for each arrow f of C . In other words we require(
τB ◦ F (f)

)
(l) =

(
G(f) ◦ τ)A

)
(l)

for each member

C [A,P]
l
- R

of FA. Thus we require (
τB ◦ F (f)

)
(l)(b) =

(
G(f) ◦ τ)A

)
(l)(b)

for each arrow

B
b
- P

72 3. Functors and natural transformations

of C . But we have(
τB ◦ F (f)

)
(l)(b) = τB

(
F (f)(l)

)
(b)

=
(
s ◦ F (f)(l)

)
(p ◦ b)

= s
(
F (f)(l)(p ◦ b)

)
= s
(
(l(p ◦ b ◦ f)

)
= (s ◦ l)(p ◦ b ◦ f)

and (
G(f) ◦ τA

)
(l)(b) = G(f)

(
τA(l)

)
(b) = τA(l)(b ◦ f) = (s ◦ l)(p ◦ b ◦ f)

to give the required result. �

3.5.3 It remains to check the last bit of part (b), namely that

τA(l) = F (l)(k)

holds. We track idK round both sides of the given commuting square

idK - τK(idK) = k

[K,K]
τK

- FK

[K,B]

l ◦ −
? τA - FA

F (l)
?

F (l)(k)
?

l
?

- τA(l)

for the required result. �

3.5.4 The particular case where the category C is a poset is dealt with in Example 1.4.1. �

3.5.5 This is the contravariant version of the first part of Example 3.5.2. �

3.5.6 This is the contravariant version of the second part of Example 3.5.2. �

3.5.7 For each set A we set

η∃A(a) = {a} η∀A(a) = {a}′

for each a ∈ A. �

3.5.8 We require q = p ◦ f , but since each of these functions has target 2 is suffices to show
they output 1 at the same inputs. For each b ∈ B we have

q(b) = 1⇐⇒ χB(f la(X))(b) = 1

⇐⇒ b ∈ f←(X)

⇐⇒ f(b) ∈ X
⇐⇒ χA(X)(f)(b) = 1 ⇐⇒ (p ◦ f)(b) = 1

for the required result. �

3.5. Examples of natural transformations 73

3.5.9 (a) From the diagram in Example 3.5.5 we require

ηB(f(a)) = Π(f)(ηA(a))

for each a ∈ A. Each side of this equality is a member of P2B. Thus, for Y ∈ PB, we have

Y ∈ Π(f)(ηA(a))⇐⇒ f←(Y) ∈ ηA(a)

⇐⇒ a ∈ f←(Y)

⇐⇒ f(a) ∈ Y ⇐⇒ Y ∈ ηB(f(a))

to give the required equation.
(b) As in the question let I be the inverse power set endofunctor on Set , and also let J

be Set [−,2], the endo-hom-functor on Set . We know that the arrow behaviour of J is by
composition. Thus we have

A JA q ◦ f J2A π

B

f

?
JB

J(f)

6

q

6

J2B

J2(f)

?

π ◦ J(f)
?

for each arrow f of Set , each q : B - 2, and each π : [A,2] - 2. In particular, we have

J2(f)(π)(q) = π(q ◦ f)

for each such f, π, q.
For each set A consider the ‘evaluation’ function

A
φA - J2A given by φA(a)(p) = p(a)

for each p : A - 2 and a ∈ A. We show this is a natural transformation. In other words we
show that the square

A
φA - J2A

φB ◦ f = J2(f) ◦ φA
B

f
?

φB
- J2B

J2(f)
?

commutes. For each a ∈ A and q : B - 2 we have

(φB ◦ f)(a)(q) = φB(f(a))(q) = q(f(a)) = (q ◦ f)(a)

and (
J2(f) ◦ φA

)
(a)(q) = J2(f)

(
φA(a)

)
(q) = φA(a)(q ◦ f) = (q ◦ f)(a)

to give the required result.
(c) On the whole the use of characters rather than subsets does lead to neater results.
The statement in part (b) of the question that ‘I2 is naturally isomorphic to J2’ is a bit glib.

It is true, but not entirely obvious. It can be justified using horizontal and vertical composition

74 3. Functors and natural transformations

of natural transformations. This is not something we can go into here, but we can give a hint of
what it is about.

We know we have an inverse pair of natural transformations

I

χ• -

�
ξ•

J

given by
χA(X)(a) = 1⇐⇒ a ∈ X a ∈ ξA(p)⇐⇒ p(a) = 1

χA(X)(a) = 0⇐⇒ a /∈ X a /∈ ξA(p)⇐⇒ p(a) = 0

for each set A,X ∈ PA, p : A - 2, and a ∈ A. We modify these in several ways.
For each set A we may hit each of the arrows

IA
χA - JA IA �

ξA
JA

with each of the two contravariant functors I and J, and take particular instances (by replacing
the set A).

I2A �
I(χA)

(I ◦ J)A (J ◦ I)A
J(ξA)

- J2A

I2A
χIA - (J ◦ I)A I2A �

ξIA
(J ◦ I)A

(I ◦ J)A
χJA - J2A (I ◦ J)A �

ξJA
J2A

We can combine these in various ways. In particular, we may form

I2
ΓA = J(ξA) ◦ χIA -

�
∆A = I(χA) ◦ ξJA

J2

going via (J ◦ I)A for Γ and (I ◦ J)A for ∆. We show that these are natural transformations, and
are inverses.

For an arbitrary arrow

A
f

- B

consider the following two commuting squares.

I2A
χIA- (J ◦ I)A IA

ξA - JA

I2B

I2(f)
?

χIB

- (J ◦ I)B

J(I(f))
?

IB

I(f)
?

ξB
- JB

J(f)
?

The right hand square is an instance of the naturality of ξ• across the arrow f . The left hand
square is an instance of the naturality of χ• across the arrow I(f).

Hitting the right hand square with J give a commuting diagram

I2A
χIA- (J ◦ I)A

J(ξA)
- J2A

I2B

I2(f)
?

χIB

- (J ◦ I)B

(J ◦ I)(f)
?

J(ξB)
- J2B

J(f)
?

3.5. Examples of natural transformations 75

to show that Γ• is natural.
A similar argument shows that ∆• is natural.
To show that

I2
∆A ◦ ΓA - I2

is the identity consider any

X ∈ I2A = P2A X ∈ IA = PA and let Y = χA(X)

to use in the calculation. We have
X ∈

(
∆A ◦ ΓA

)
(X)⇐⇒ X ∈

(
I(χA) ◦ ξJA ◦ ΓA

)
(X)

⇐⇒ X ∈ I(χA)
((
ξJA ◦ ΓA

)
(X)

)
⇐⇒ X ∈ χ←A

((
ξJA ◦ ΓA

)
(X)

)
⇐⇒ Y = χA(X) ∈

(
ξJA ◦ ΓA

)
(X)

⇐⇒ Y ∈ ξJA

(
ΓA(X)

)
⇐⇒

(
ΓA(X)

)
(Y) = 1

⇐⇒
(
J(ξA) ◦ χJA

)
(X)(Y) = 1

⇐⇒ J(ξA)
(
χJA(X)

)
(Y) = 1

⇐⇒
(
χJA(X) ◦ ξA

)
(Y) = 1

⇐⇒ χJA(X)
(
ξA(Y)

)
= 1

⇐⇒ ξA(Y) ∈ X ⇐⇒
(
ξA ◦ χA

)
(X) ∈ X

and now we remember that(
ξA ◦ χA

)
(X) = X to give

(
∆A ◦ ΓA

)
(X) = X

as required.
A similar argument deals with ΓA ◦∆A.
In the same way we can show how η• and φ• are related.
Consider the following composite.

A
φA - J2A

∆A - I2A

For each a ∈ A and X ∈ IA we have
X ∈ (∆A ◦ φA)(a)⇐⇒ X ∈

(
I(χA) ◦ ξJA ◦ φA

)
(a)

⇐⇒ X ∈ I(χA)
(
(ξJA ◦ φA)(a)

)
⇐⇒ χA(X) ∈ (ξJA ◦ φA)(a)

⇐⇒ χA(X) ∈ ξJA
(
φA(a)

)
⇐⇒ φA(a)

(
χA(X)

)
= 1

⇐⇒ χA(X)(a) = 1⇐⇒ a ∈ X ⇐⇒ X ∈ ηA(a)

and hence
∆A ◦ φA = ηA

to show how φ• determines η•. A similar argument gives

ΓA ◦ ηA = φA

and hence φ• and η• are equivalent. �

76 3. Functors and natural transformations

3.5.10 (a) Actually, you don’t need to write them down, you can look them up in your favourite
textbook on linear algebra. However, you should count the overloading of the symbols. How
many different operations does ‘×’ stand for? How many multiplication operations are indi-
cated by juxtaposition? Don’t tell anybody, but this is done to confuse the people in suits who
think they know how to run things.

(b) We don’t need to do them all but we should at least look at the crucial axiom on the
action, namely that

r(α + β) = rα + rβ

for each scalar r and pair α, β of characters. Recall that this means that(
r(α + β)

)
(a) =

(
rα + rβ

)
(a)

for each vector a. Remembering how the operations are defined we have(
r(α + β)

)
(a) = r

((
(α + β

)
(a)
)

= r
(
α(a) + β(a)

)
= r
(
α(a)

)
+ r
(
β(a)

)
=
(
rα
)
(a) +

(
rβ
)
(a) =

(
rα + rβ

)
(a)

for the required result. You should make sure that you know why each step is valid. Also, you
young things should realize how lucky you are. When I was a lad there was only one size of
bracket, which meant that calculations like this were harder to read.

(c) Once you have a modicum of experience with categories and functors this becomes a
sybilean construction. We have to convert a linear transformation between two spaces, as on
the left,

V
f
- W - W ∗ f ∗

- V ∗

into a linear transformation between the two dual spaces, as on the right. The direction of the
linear transformation must swap round.

Consider a member γ ∈ W ∗, that is a character on W . As functions we have a composite

V
f
- W

γ
- K

which we check is a character on V . However, we view K as a vector space over itself, and
then both f and γ are linear transformations. The composite of two linear transformations is a
linear transformation, so

V
f ∗(γ) = γ ◦ f

- K

is a linear transformation, a character on V . This gives us a function

f ∗ : W ∗ - V ∗

which we show is a linear transformation between the two dual spaces.
We require

f ∗(γ + δ) = f ∗(γ) + f ∗(δ) f ∗(rγ) = rf ∗(γ)

3.5. Examples of natural transformations 77

for each characters γ, δ on W ∗ and scalar r. We verify these by evaluation at an arbitrary vector
a ∈ V . Let’s check the right hand equality.

We have (
f ∗(rγ)

)
(a) =

(
(rγ) ◦ f

)
(a)

=
(
rγ
)(
f(a)

)
= r
(
γ
(
f(a)

))
= r
((
γ ◦ f

)
(a)
)

= r
(
f ∗
(
γ
)
(a)
)

=
(
rf ∗(γ)

)
(a)

for the required result.
This shows that we certainly have a construction that converts a linear transformation into a

linear transformation with the required type (source and target). But why do we have a functor?
We need to show that various diagrams commute. However!

Notice that if we forget some of the carried structure we have the contravariant hom-functor
induced by K.

VectK
[−, K]

- Set

Each diagram we must look at is a diagrams of functions (enriched in some way), so that hom-
functor calculations give us the required results.

What we have here is an enriched hom-functor. These occur all over mathematics, so you
have just seen a very useful trick.

Notice that if you had to do this exercise from scratch there would by spondoodles of rather
trivial calculations, and you might find it hard to see the wood from the trees. Category theory
helps to organize this kind of thing. It chops the dead wood and grows the trees. �

3.5.11 We look at (1, 2, 3) in turn.
(1) We require

â(α + β) = â(α) + â(β) â(rα) = râ(α)

for each scalar r, each vector a, and each pair of characters α, β. Remembering the definition
of â these translate to

(α + β)(r) = α(r) + β(r)
(
rα
)
(a) = r

(
α(a)

)
which are true by definition.

(2) We require
(a+ b)̂= â+ b̂ (ra)̂= râ

for each scalar r and pair a, b of vectors. The two equalities are verified by evaluation at an
arbitrary vector α. The conditions become

α(a+ b) = α(a) + α(b) α(ra) = r
(
α(a)

)
which are true.

78 3. Functors and natural transformations

(3) We must show that the square commutes

V
(·)̂

- V ∗∗

W

f
?

(·)̂- W ∗∗

f ∗∗

?

where f is an arbitrary linear transformation. To do that we take an arbitrary vector a ∈ V and
track it both ways to the second dual W ∗∗.

By definition we have
f ∗∗(a) = a ◦ f ∗

for each a ∈ V ∗∗. (We are beginning to run out of different types of letters, but that won’t last
long.)

Consider any a ∈ V . Then going via W we obtain

f(a)̂ ∈ W ∗∗ so that f(a)̂(γ) = γ(f(a)) = (γ ◦ f)(a)

for each γ ∈ W ∗.
Going the other way we have

f ∗∗(â) = â ◦ f ∗
so that

f ∗∗(â)(γ) =
(
â ◦ f ∗)(γ) = â(f ∗(γ)

)
= â(γ ◦ f) =

(
γ ◦ f

)
(a)

to give the required result. �

3.5.12 By Exercises 3.3.7 we have a bijection

OS
χS - ΞS

for each space S. It suffices to show that χS is natural for variation of S. To this end consider
the square

S OS
χS - ΞS

T

φ

6

OT

φ←

?

χT
- ΞT

− ◦ φ

?

induced by a continuous map φ, as on the left. We must show that the square commutes. Thus
we required

χT (φ←(U)) = χS(U) ◦ φ

for each U ∈ OS. These two functions can return only 0 and 1 as a value. For each s ∈ S we
have

χT (φ←(U))(s) = 1⇐⇒ s ∈ π←(U)⇐⇒ φ(s) ∈ U ⇐⇒ χS(φ(U)) = 1

which gives the required equality. �

3.5. Examples of natural transformations 79

3.5.13 Let’s consider the more complicated version, that dealt with by Exercise 3.3.8.
For a category C we have two functors

C ×C

F
-

G
- C

where
F (A1, A2) = A1 × A2 G(A1, A2) = A1

are the two object assignments. (One thing you should be wary of here is the two different uses
of ‘×’. The first use gives the cartesian product of the category C with itself, and the second
gives the internal product object in C .)

For each pair (A1, A2) of objects we have an arrow

F (A1, A2)
p(A1,A2) - G(A1, A2)

namely the projection arrow. We must show this is natural for variation of (A1, A2).
Consider an arrow of C × C , that is a pair of arrows of C as indicated on the left of the

following diagram.

A1 A2 F (A1, A2)
p(A1,A2) - G(A1, A2)

B1

f1

?
B2

f2

?
F (B1, B2)

f1 × f2

?

p(B1,B2)

- G(B1, B2)

f1

?

We must show that the square on the right commutes. But this is just one of the commuting
squares that determines the projection, as in Solution 3.3.8 (in a slightly different notation). �

3.5.14 We must first set up φA for an arbitrary object A of C . To do that consider the diagram
on the left.

R
φ

- S R
φ

- S

(1)

A×R

rA

6

A× S

sA

6

A×R

rA

6

φA- A× S

sA

6

(2)

A

pA
?

idA
- A

qA
?

A

pA
?

idA
- A

qA
?

This consists of two product wedges with the associated projections rA, pA, sA, qA. The gener-
ating arrow φ has also been inserted. Using the product property of A × S we see there is a
unique arrow φA to produce a pair of commuting squares as on the right. This is just idA×φ in
product notation. We have labelled the two squares for later use.

80 3. Functors and natural transformations

We must show that φ• is natural for variation of the object. Let’s set up that problem.
Consider an arbitrary arrow f as on the left. We must show that the square on the right

commutes.

A A×R
φA- A× S

(?)

B

f

?
B ×R

f × idR

?

φB
- B × S

f × idS

?

How are we going to do this?
Consider the diagram on the left.

R
φ

- S R
φ

- S

(rs)

A×R

rA

6

B × S

sB

6

A×R

rA

6

ψ- B × S

sB

6

(pq)

A

pA

?

f
- B

qB

?
A

pA

?

f
- B

qB

?

This is not the same as the first diagram. We have now varied the object A along the arrow f .
However, in the same way the product property of B×S ensures there is a unique arrow ψ that
makes both squares commute, that is

(rs) sB ◦ ψ = φ ◦ rA
(pq) qB ◦ ψ = f ◦ pA

for some unique arrow ψ. In the square (?) we show that both trips from A×R to B × S

(f × idS) ◦ φA φB × (f × idR)

satisfy (rs) and (pq), and hence must be equal.
We need a property of the product construction, namely that projections are natural.

R
idR - R S

idS - S

(3) (5)

A×R

rA

6

f × idR - B ×R

rB

6

A×R

saA

6

f × idS - B × S

sB

6

(4) (6)

A

pA

?

f
- B

pB

?
A

qA

?

f
- B

qB

?

3.5. Examples of natural transformations 81

Thus all four of these squares commute.
We are now ready to do the several small calculations.
With

ψ = (f × idS) ◦ φA
a use of (6, 2) and then a use of (5, 1) gives

(rs) sB ◦ ψ = sB ◦ (f × idS) ◦ φA = sA ◦ φA = φ ◦ rA
(pq) qB ◦ ψ = qB ◦ (f × idS) ◦ φA = f ◦ aA ◦ φA = f ◦ pA

to show that this ψ satisfies the two required conditions.
With

ψ = φB ◦ (f × idR)

a use of (1, 3) and then a use of (2, 4), with (3) and (2) in the B version, gives

(rs) sB ◦ ψ = sB ◦ φB ◦ (f × idR) = φ ◦ rB ◦ (f × idR) = φ ◦ rA
(pq) qB ◦ ψ = qB ◦ φB ◦ (f × idR) = pB ◦ (f × idR) = f ◦ pA

to show that this ψ satisfies the two required conditions.
This completes the proof.

This and the next solution are a nice illustration of why reading and writing proofs in cate-
gory theory can be a bit tricky. Often many small diagrams have to be looked at, and there is a
tendency to combine these into one big diagram, and so make it incomprehensible. �

3.5.15 If we fix two of the three inputs then each L and eachR is a composite of various known
functors. However, let’s see if we can make sense of the 3-placed version.

Let
A0 B0 C0

A1

α
?

B1

β
?

C1

γ
?

be a triple of arrows in C . What are the resulting arrows

L(A0, B0, C0) R(A0, B0, C0)

L(A1, B1, C1)

L(α, β, γ)

?

R(A1, B1, C1)

R(α, β, γ)

?

in C ?
We look at L first. Consider the cells

A0 × C0 B0 × C0

A0

�
C0

-

B0

�
C0

-

A1

α
?

C1

γ
?

B1

β
?

C1

γ
?

A1 × C1

-
�

B1 × C1

-
�

82 3. Functors and natural transformations

where the unnamed arrows are the projections. The product property provides two unique
arrows

A0 × C0 B0 × C0

A0

�
C0

-

B0

�
C0

-

A1

α
?

C1

γ
?

B1

β
?

C1

γ
?

A1 × C1

α× γ

?

-
�

B1 × C1

β × γ

?

-
�

to makes the diagrams commute. This is just the functorial property of the binary product.
Consider the left cell where the unnamed arrows are the insertions.

L(A0, B0, C0) L(A0, B0, C0)

A0 × C0

-

B0 × C0

�

A0 × C0

-

B0 × C0

�

A1 × C1

α× γ
?

B1 × C1

β × γ
?

A1 × C1

α× γ
?

B1 × C1

β × γ
?

L(A1, B1, C1)
�

-

L(A1, B1, C1)

L(α, β, γ)

?�
-

The coproduct property provides a unique arrow to make the right diagram commutes.
Here is the full diagram.

L(A0, B0, C0)

A0 × C0

-

B0 × C0

�

A0

�

C0

-

B0

�

C0

-

A1

α
?

C1

γ
?

B1

β
?

C1

γ
?

A1 × C1

α× γ

?

-

�

B1 × C1

β × γ

?

-

�

L(A1, B1, C1)

L(α, β, γ)

?�
-

3.5. Examples of natural transformations 83

This shows how the arrow L(α, β, γ) is obtained. The functorial property is induced by the
uniqueness of α× β, β × γ, and L(α, β, γ).

The behaviour of R on arrows is obtained in a similar way. Starting from three arrows
α, β, γ, as above, we use the cell on the left to obtain

A0 +B0 A0 +B0

A0

-

B0

�

A0

-

B0

�

A1

α
?

B1

β
?

A1

α
?

B1

β
?

A1 +B1

�
-

A1 +B1

α + β

?�
-

the unique arrow α+ β and commuting diagram on the right. Here the unnamed arrows are the
insertions. We now introduce the arrow γ to obtain a unique arrow R(α, β, γ) and commuting
diagram where the new

R(A0, B0, C0)

A0 +B0

�
C0

-

A0

-

B0

�

A1

α
?

B1

β
?

A1 +B1

α + β

?�

-

C1

γ

?

R(A1, B1, C1)

R(α, β, γ)

?

-
�

unnamed arrows are projections. The various uniquenesses ensure that R passes across compo-
sition in the appropriate manner to be a functor.

For the next part let

L = L(A,B,C) R = R(A,B,C)

for some arbitrary objects A,B,C. We produce an arrow

L - R

which, in due course, we show is natural for variation of the three objects.

84 3. Functors and natural transformations

So far we have managed without naming the various projections and insertion, but now we
have to. Thus let

A× C
l
- A

u
- A+B A× C

r
- C

B × C
m
- B

v
- A+B B × C

s
- C

A× C
i
- L R

p
- A+B

B × C
j
- L R

q
- C

be these various arrows.
The

coproduct property of L product property of R

produce unique arrows a, b, c, d such that

A× C A+B

L

i
?

a - A+B

u ◦ l
-

A× C c -

u ◦ l -

R

p
6

B × C

j
6

v ◦m

-

C

q
?r -

A× C A+B

L

i
?

b - C

r

-

B × C d -

v ◦m -

R

p
6

B × C

j
6

s

-

C

q
?s -

commute. With these the

product property of R coproduct property of L

produce unique arrows µ, ν such that

A+B A× C

L µ -

a
-

R

p
6

L

i
?

ν - R

c

-

C

q
?b -

B × C

j
6

d

-

commute. We first show that µ = ν.
By the characterizing properties of µ of ν it suffices to show that either

(µa) p ◦ ν = a (νc) µ ◦ i = c
or

(µb) q ◦ ν = b (νd) µ ◦ j = d

3.5. Examples of natural transformations 85

for then
ν = µ or µ = ν

respectively. For these, using characterizing properties of a and b or c and d it suffices to show

(µai) p ◦ ν ◦ i = u ◦ l (νcp) p ◦ µ ◦ i = u ◦ l
(µaj) p ◦ ν ◦ j = v ◦m (νcq) q ◦ µ ◦ i = r

or
(µbi) q ◦ ν ◦ i = r (νdp) p ◦ µ ◦ j = v ◦m
(µbj) q ◦ ν ◦ j = s (νdq) q ◦ µ ◦ j = s

respectively. These follows by the previous six diagrams. For instance

p ◦ ν ◦ i = p ◦ c = u ◦ l

gives (µai).
Let us write µ for this arrow. It remains to show that µ is natural for variation of A,B,C.
To do that consider three arrows α, β, γ, as above. Let

λ = L(α, β, γ) ρ = R(α, β, γ)

so that we must show that the following square commutes.

L(A0, B0, C0)
µ0 - R(A0, B0, C0)

L(A1, B1, C1)

λ
?

µ1

- R(A1, B1, C1)

ρ
?

Here µ0 and µ1 are the two version of µ for the triple of objects indicated by the index. We
also use the various projections and insertions for the two triples with a indexed version of the
notation above.

To show
µ1 ◦ λ = ρ ◦ µ0

we invoke the coproduct property of L(0) to observe that the pair of equalities

µ1 ◦ λ ◦ i0 = ρ ◦ µ0 ◦ i0
µ1 ◦ λ ◦ j0 = ρ ◦ µ0 ◦ j0

will suffice. To prove these we invoke the product property of R(1) to observe that the four
equalities will suffice.

p1 ◦ µ1 ◦ λ ◦ i0 = p1 ◦ ρ ◦ µ0 ◦ i0
q1 ◦ µ1 ◦ λ ◦ i0 = q1 ◦ ρ ◦ µ0 ◦ i0
p1 ◦ µ1 ◦ λ ◦ j0 = p1 ◦ ρ ◦ µ0 ◦ j0
q1 ◦ µ1 ◦ λ ◦ j0 = q1 ◦ ρ ◦ µ0 ◦ j0

All four of these are proved in the same way. Let’s look at the first.

86 3. Functors and natural transformations

Using various commuting cells and remembering that µ1 = ν1 we have

p1 ◦ µ1 ◦ λ ◦ i0 p1 ◦ ρ ◦ µ0 ◦ i0
= p1 ◦ µ1 ◦ i1 ◦ (α× γ) = (α + β) ◦ p0 ◦ µ0 ◦ i0
= p1 ◦ c1 ◦ (α× γ) = (α + β) ◦ a0 ◦ i0
= u1 ◦ l1 ◦ (α× γ) = (α + β) ◦ u0 ◦ l0

and hence it suffices to show that the diagram

A0 × C0

α× γ
- A1 × C1

l1 - A1

A0

l0
?

u0

- A0 +B0
α + β

- A1 +B1

u1

?

commutes. To do this simply observe that the arrow α, as an upwards diagonal, makes the two
resulting cells commute. �

3.5.16 If you are a bit confused it’s probably because you have forgotten the forgetful functor.
Let Sgp and Mon be the the categories of semigroups and monoids. We are concerned with
two functors

Sgp

F
-

�
¿

Mon

where ¿ is the given forgetful functor and F is the functor we are trying to produce. (Technically,
F is a left adjoint to ¿, but that’s for later.) Let’s insert ¿ where it should appear.

(c) For each Sgp arrow

A
f
- ¿B

where B is monoid, there is a commuting triangle

A
f

- ¿B B

(¿ ◦ F)A
¿(f])

-

ιA -

FA
f]

-

for some unique Mon arrow f], as indicated. There is only one possibility for f].

f]|A = f f](ω) = unit of B

The rest is now standard category theory where semigroups and monoids need not be men-
tioned.

(d) For each Sgp arrow

A
f

- B

there is a unique Mon arrow

FA
F (f)

- FB

3.5. Examples of natural transformations 87

such that

A
f

- B

(¿ ◦ F)A

ιA
?

(¿ ◦ F)(f)
- (¿ ◦ F)B

ιB
?

commutes. This follows from part (c) by setting

F (f) = (ιB ◦ f)]

for the given arrow f . By considering a composite

A
f

- B
g

- C

in Sgp with the induced commuting squares and by remembering the uniqueness of F (·), we
see that

F (g) ◦ F (f) = F (g ◦ f)

which more or less shows that F is a functor.
(e) The commuting square above shows the naturality of ι.
(f) If A already has a unit then this is forgotten and a new unit is adjoined. The two are not

coalesced. �

3.5.17 (a) Concatenation is associative, but not commutative. The unit is the empty word.
(b) The functor

Set
F
- Mon

goes from the category of sets to the category of monoids.
We need to describe the action

A
f

- B - FA
F (f)

- FB

on arrows. Given a Set arrow f , a function between sets as above, let

F (f) : FA - GB

be the function given by
F (f)(a) = [f(a1), . . . , f(al)]

for each list
a = [a1, . . . , al]

in FA. Almost trivially this is a monoid morphism, and the required functorial properties are
just as easy. Thus we do have a functor, as above.

(c) We have a forgetful functor

Set � ¿ Mon

88 3. Functors and natural transformations

which sends each monoid to its carrying set. We show that the insertion

A
ιA - (¿ ◦ F)A

a - [a]

is natural for variation on A. In other words, for each function f , as on the left,

A A
ιA - (¿ ◦ F)A

B

f
?

B

f
?

ιB
- (¿ ◦ F)B

(¿ ◦ F)(f)
?

the Set square on the right commutes. This is a trivial calculation. Both trips round the square
send each element a ∈ A to [f(a)] ∈ (¿ ◦ F)B.

(d) We show that for each function

A
f

- B

from a set to a monoid, there is a unique monoid morphism

FA
f]

- B

such that the triangle commutes.

A
f

- ¿B B A
f

- B B

(¿ ◦ F)A

¿(f])

-

ιA -

FA

f]

-

FA

f]

-

ιA -

FA

f]

-

On the left we have the official version, and on the right we have the way it is usually written
with the forgetful functor forgotten.

Given a function f we have to show two things: there is at most one fill-in morphism f],
and there is at least one fill-in morphism f]. Almost always with this kind of problem these two
parts are dealt with separately. Here is a useful way to handle the first part.

We show that ιA is ‘as epic as it can be’. We show that for each parallel pair of monoid
morphisms

FA

g
-

h
- C

we have
g ◦ ιA = h ◦ ιA =⇒ g = h

and hence there is at most one fill-in morphism.
Consider any element a ∈ FA. With

a = [a1, . . . , al]

3.5. Examples of natural transformations 89

we have
a = ιA(a1) _ · · ·_ ιA(al)

where ·_ · is the operation on FA, that is concatenation. Consider any pair of morphism g, h,
as above. We have

g(a)=g
(
ιA(a1) _ · · ·_ ιA(al)

)
=(g ◦ ιA)(a1) ? · · · ? (g ◦ ιA)(al)

h(a)=h
(
ιA(a1) _ · · ·_ ιA(al)

)
=(h ◦ ιA)(a1) ? · · · ? (h ◦ ιA)(al)

where ? is the operation of C. Thus if

g ◦ ιA = h ◦ ιA then g(a) = h(a)

and so g = h.
It remains to show that there is at least one morphism f] that make the triangle commute.

To do that we simple set
f](a) = f(a1) ∗ · · · ∗ f(al)

for each a ∈ FA (as above) where ∗ is the operation on B.
(e) If A is already a monoid then this structure is forgotten and a much bigger monoid is

produced. Even when A is the 1-element monoid, the monoid FA is infinite. �

3.5.18 (a) Solution 3.3.13 show that we have two functors

Grp

G
-

F
- AGrp

given by
GA = δA FA = A/δA

for each group A. The diagrams in that solution show that ι and η are natural.
(b) When B is abelian the subgroup δB is trivial. Thus the construction of f] is a particular

case of the construction of f/δ given in the latter part of Solution 3.3.13. �

3.5.19 As in Solution 3.3.18, the construction of the arrow assignment ensures that

A
f

- B

(¿ ◦ F)A

ηA
?

(¿ ◦ F)A
- (¿ ◦ F)B

ηB
?

commutes for each arrow of Src.

A
f

- B

This show that η is a natural transformation from the identity endo-functor on Src to ¿ ◦ F . �

90 3. Functors and natural transformations

3.5.20 Consider three objects of C∇ and two arrows which ought to be composible.

F
σ

- G
τ

- H

Thus we have three functors and two natural transformations. We require an appropriate com-
posite

F
τ ◦ σ

- H

of the two transformations.
For each object i of∇ we have a composible pair of arrows

Fi
σi - Gi

τi - Hi

of arrows of C . We set
(τ ◦ σ)i = τi ◦ σi

to obtain a∇-indexed family of arrows of C . We show this family is natural for variation of i.
Consider any arrow e of ∇ and suppose this starts at i and finishes at j. We know that the

two squares on the left do commute.

Fi
σi - Gi

τi - Hi Fi
(τ ◦ σ)i- Hi

Fj

F (e)

?

σj
- Gj

G(e)

?

τj
- Hj

H(e)

?
Fj

F (e)

?

(τ ◦ σ)j
- Hj

H(e)

?

Hence so does the square on the right, to show the required naturality.
A similar argument shows that this composition is associative. �

Warning: Sometimes the symbol ‘◦’ is not used for the composition of natural transforma-
tions described in the previous solution, but it is used for the composition ? described in the
next solution.

3.5.21 The naturality of ρ ensures that the B-square

B0 KB0

ρ0 - LB0 FA

B1

g
?

KB1

K(g)
?

ρ1

- LB1

L(g)
?

GA

λA
?

commutes for each B-arrow g, as on the left. Each object A of A gives us an arrow λA of B ,

3.5. Examples of natural transformations 91

as on the right. Taking this for g gives the required commuting C -square. �

3.5.22 For an arbitrary A-object A consider the following diagram.

(K ◦ F)A
ρFA - (L ◦ F)A

σFA - (M ◦ F)A

(K ◦G)A

K(λA)

?

ρGA - (L ◦G)A

L(λA)

?

σGA - (M ◦G)A

M(λA)

?

(K ◦H)A

K(µA)

?

ρHA
- (L ◦H)A

L(µA)

?

σHA
- (M ◦H)A

M(µA)

?

Each of the four small squares commutes. This is four instances of the result of Exercise 3.5.21.
The diagonals of the top let and bottom right squares are

(ρ ? λ)A (σ ? µ)A

respectively, and hence (
(σ ? µ) ◦ (ρ ? λ)

)
A

is the composite diagonal.
The outside square commutes, and this is just

(K ◦ F)A
(σ ◦ ρ)FA- (M ◦ F)A

(K ◦H)A

K
(
(µ ◦ λ)A

)
?

(σ ◦ ρ)HA
- (M ◦H)A

M
(
(µ ◦ λ)A

)
?

using the construction of the vertical composition. The diagonal of this square is(
(σ ◦ ρ) ? (µ ◦ λ))A

by the definition of horizontal composition.
Comparing the two descriptions of the full diagonal gives the required result. �

4
Limits and colimits in general

4.1 Template and diagram – a first pass

4.1.1 Sticking paths end to end is associative, so composition in Pth(∇) is associative. We
must ensure that each object (node of ∇) has an identity arrow on Pth(∇). Each node has
an associated path of length zero, and sticking this path on the end of some other path doesn’t
change that second path. The identity arrows are the paths of length zero. �

4.1.2 (a) Let us label the four edges as follows.

1

0

(1, 0) -

3

(3, 1)
-

2 (3, 2)

-

(2, 0)
-

There are just 10 possible paths.

Paths of length Number of such paths

0 The four nodes 4
0, 1, 2, 3

1 The four edges 4
(1, 0), (2, 0), (3, 1), (3, 2)

2 The two formal composites 2
(3, 1) ◦ (1, 0) (3, 2) ◦ (2, 1)

This graph generates a category of four objects and 10 arrows. This category is not a poset since
there are two distinct arrows

(3, 1) ◦ (1, 0) (3, 2) ◦ (2, 1)

from 0 to 3.
(b) The graph is

1

0

(1, 0) -

2

(2, 1)
-

3 (3, 2)�(3, 0)
-

to give a category of four nodes and 11 arrows.

93

94 4. Limits and colimits in general

Paths of length Number of

0 The four nodes 4
0, 1, 2, 3

1 The four edges 4
(1, 0), (2, 1), (3, 2), (0, 3)

2 The four formal composites 4
(2, 1) ◦ (1, 0) (3, 2) ◦ (2, 1)
(0, 3) ◦ (3, 2) (1, 0) ◦ (0, 3)

3 The formal composites 4
(3, 2) ◦ (2, 1) ◦ (1, 0)
(0, 3) ◦ (3, 2) ◦ (2, 1)
(1, 0) ◦ (0, 3) ◦ (3, 2)
(2, 1) ◦ (1, 0) ◦ (0, 3)

4 The formal composites 4
(0, 3) ◦ (3, 2) ◦ (2, 1) ◦ (1, 0)
(1, 0) ◦ (0, 3) ◦ (3, 2) ◦ (2, 1)
(2, 1) ◦ (1, 0) ◦ (0, 3) ◦ (3, 2)
(3, 2) ◦ (2, 1) ◦ (1, 0) ◦ (0, 3)

5 The formal composites ∞
(1, 0 ◦ (0, 3) ◦ (3, 2) ◦ (2, 1) ◦ (1, 0)
(2, 1) ◦ (1, 0) ◦ (0, 3) ◦ (3, 2) ◦ (2, 1)
...

Table 4.1: Paths for graph (c)

Paths of length Number of such paths

0 The four nodes 0, 1, 2, 3 4

1 The four edges 4
(1, 0), (2, 1), (3, 2), (3, 0)

2 The two formal composites 2
(2, 1) ◦ (1, 0) (3, 2) ◦ (2, 1)

3 The formal composite 1
(3, 2) ◦ (2, 1) ◦ (1, 0)

(c) The labelled graph is

1

0

(1, 0) -

2

(2, 1)
-

3 (3, 2)�(0, 3)

�

and this generates a category of four objects and infinitely many arrows, as indicated in Table
4.1. We can cycle round the edges for ever. �

4.1. Template and diagram – a first pass 95

4.1.3 No! The generated category is bigger. Consider the category

a0
(2, 0)

- 2

1
(2, 1)

-

(1, 0) -

of three objects, three identity arrows (not shown), and three other arrows where

(2, 1) ◦ (1, 0) = (2, 0)

in the category. There are (at least) two paths from 0 to 2, namely

(2, 0) and (1, 0) followed by (2, 1)

and these are not the same path.
The parent category is a quotient of the generated path category. �

4.1.4 Let∇ be the graph with nodes i and edges e. A∇-diagram in the category C consists of

objects arrows

A(i) A(e)

indexed by the
nodes edges

respectively. For each edge

i
e

- j we require an arrow A(i)
A(e)

- A(j)

but there are no requirements that certain triangles must commute.
Consider a functor Pth(∇) - C from the path category. This gives a family of objects

of C
A(i)

indexed by the objects of Pth(∇), the nodes of∇. It also gives an arrow of C

A(π)

for each arrow of Pth(∇), each path of through∇. In particular, we have an arrow in C

A(e)

for each edge of ∇, each path in Pth(∇) of length 1. Thus there is a ∇-diagram embedded in
the functor.

Each path π has a unique decomposition

i(0)
e(1)

- i(1)
e(2)

- i(2) - · · · · · ·
e(l)
- i(l)

as a sequence of edges through∇. The functorial properties ensure that

A(π) = A(e(l)) ◦ · · · ◦ A(e(1))

to show the functor is uniquely determined by the embedded∇-diagram.
Observe that almost the same proof shows that each∇-diagram extends to a functor. �

96 4. Limits and colimits in general

4.2 Functor categories

4.2.1 This is just the same as Exercise 3.5.20. �

4.2.2 We must show that each arrow induces a natural transformation

X
f

- Y - ∆X
∆(f)• - ∆Y

such that

(∆X)(i)
∆(f)i - (∆Y)(i) i

(∆X)(j)

(∆X)(e)
?

∆(f)j
- (∆Y)(j)

(∆Y)(e)
?

j

e

?

commutes for each edge e of ∇, as on the right. When we insert the values of ∆X and ∆Y we
see that a commuting square

X
∆(f)i - Y

X

idX
?

∆(f)j
- Y

idY
?

is required. Thus we set
∆(f)i = f

for each node i. �

4.2.3 We do both solutions in parallel.
A typical arrow in C∇

∆X - A A - ∆X

is a natural transformation, a family of arrows of C

(∆X)(i)
ξ(i)
- A(i) A(i)

ξ(i)
- (∆X)(i)

indexed by the nodes and such that

(∆X)(i)
ξ(i)
- A(i) i A(i)

ξ(i)
- (∆X)(i)

(∆X)(j)

(∆X)(e)
?

ξ(j)
- A(j)

A(e)
?

j

e
?

A(j)

A(e)
?

ξ(j)
- (∆X)(j)

(∆X)(e)
?

commutes for each edge e. When we insert the values of ∆X we see that we require a commut-
ing triangle

A(i) i A(i)

X

ξ(i) -

X

ξ(i)
-

A(j)

A(e)

?ξ(i)
-

j

e

?
A(j)

A(e)

? ξ(i)

-

for each edge e. Such an arrow is just a left/right solution for the diagram A. �

4.3. Problem and solution 97

4.3 Problem and solution

4.3.1 Consider any ∇-diagram and the corresponding Pth(∇)-diagram. These have the same
family

A(i)

of objects indexed by the nodes i of∇. Each edge

i
e

- j of∇ gives an arrow A(i)
A(e)

- A(j)

of the ∇-diagram, and this is also an arrow of the Pth(∇)-diagram. However, there are more
arrows in the Pth(∇)-diagram. Each path

i
π

- j in Pth(∇) gives an arrow A(i)
A(π)

- A(j)

in the Pth(∇)-diagram.
In the ∇-diagram there are no requirements that certain triangles commute (for there is no

notion of composition in the graph∇).
In the Pth(∇)-diagram each composite path requires that certain triangles commute. For

example let π be the composite path

i(0)
e(1)

- i(1)
e(2)

- i(2) - · · · · · ·
e(l)
- i(l)

of l edges. Then then the two arrows

A(i(0))
A(e(1))

- A(i(1))
A(e(2))

- A(i(2)) - · · · · · ·
A(e(l))

- A(i(l))

A(i(0))
A(π)

- A(e(l))

must agree. The ∇-diagram completely determines the Pth(∇)-diagram. (You should also
think of how the conditions on identity arrows are handled in the Pth(∇)-diagram.)

At this point we have to decide whether we look at left solutions or right solutions. The two
discussions are entirely symmetrical, so let’s look at left solutions.

Consider a solution of each diagram with the same apex X . Each is a family of arrows

X
ξ(i)

- A(i)

indexed by the nodes of∇. There are certain commuting conditions. All the triangles

∇ Pth(∇)

A(i) i A(i) i

X

ξ(i) -

X

ξ(i) -

A(j)

A(e)

?
ξ(i)

-

j

e

?
A(j)

A(π)

?
ξ(i)

-

π

?

for each edge e of ∇ and each path π of Pth(∇). �

4.3.2 See Solution 4.2.3. �

98 4. Limits and colimits in general

4.4 Universal solution

4.4.1 Consider the 4-element pre-set
• •

• •
(which is not a poset). The set of the two upper elements has two distinct limits (infima), namely
each of the two lower elements. �

4.4.2 Consider any set X which is the limit or the colimit of some diagram in Set . This
means that X is suitably furnished to be the limit or colimit. Now take any set Y of the same
size together with a bijection between X and Y . This bijection is an isomorphism in Set . By
furnishing Y in the obvious way Y becomes a limit of a colimit of the diagram.

In other categories we can use the same idea. We simply take an isomorphic copy of the
limit of colimit. �

4.4.3 Let

A(i)
σ(i)

- S

be a colimit of a diagram indexed by the nodes i of a template.
If

S

θ
-

ψ
- X

is a parallel pair of arrows with
θ ◦ σ(i) = ψ ◦ σ(i)

for each node i, then θ = ψ.
If

S
ε

- S

is an endo-arrow of S such that
ε ◦ σ(i) = σ(i)

for each node i, then ε = idS .
If

A(i)
τ(i)

- T

is also a limit of the diagram then there is a unique arrow

S
τ

- T

such that
τ(i) = τ(i) ◦ σ(i)

for each node i. Furthermore, τ is an isomorphism.
These are prove simply by reversing the arrows of the limit proofs. �

4.5. A geometric limit and colimit 99

4.5 A geometric limit and colimit

4.5.1 Consider any left solution of the diagram.

A
fm - Z

This is a Z-indexed family of arrows, as indicated, such that

Z
d

- Z

A
fm+1

-
fm -

commutes for each m ∈ Z. Thus
fm+1(a) = 2fm(a)

for each a ∈ A and m ∈ Z. By a trivial induction this gives

fm+r(a) = 2rfm(a)

for each a ∈ A,m ∈ Z, r ∈ N. Each value fm(a) of fm is in Z. The above shows that the value
is divisible by 2r for arbitrarily large r ∈ N. Thus

fm(a) = 0

for each a ∈ A and m ∈ Z. Thus each left solution has a simple structure.
Consider the singleton

L = {∗}

furnished with the constant functions

L
λm - Z

∗ - 0

for each m ∈ Z. Since
λm+1(∗) = 0 = 2× 0 = 2λm(∗)

this certainly gives a left solution of the diagram.
To show that this is the limit consider any left solution, as above. We require a unique

function

A
h

- L

such that
fm = λm ◦ h

for each m ∈ Z. In fact, there is only one possible function h of the indicated type, namely that
given by

h(a) = ∗

for each a ∈ A. But now

(λm ◦ h)(a) = λm(∗) = 0 = fm(a)

to show that h is the required mediator.

100 4. Limits and colimits in general

Consider any right solution of the diagram.

Z
fm - A

This is a Z-indexed family of arrows, as indicated, such that

Z
d

- Z

A

fm+1

-fm -

commutes for each m ∈ Z. Thus
fm(z) = fm+1(2z)

for all m, z ∈ Z. By a trivial induction this gives

fm(z) = fm+r(2
rz)

for all m, z ∈ Z and r ∈ N. For later we need a refined version of this. We require

(?) 2−mx = 2−ny =⇒ fm(x) = fn(y)

for all m,n, x, y ∈ Z. To prove this suppose

2−mx = 2−ny so that 2nx = 2my

holds. By symmetry we may suppose m ≤ n, so that n = m+ r for some r ∈ N. Thus

y = 2rx and hence fm(x) = fm+r(2
rx) = fn(y)

as required.
The dyadic rationals D consists of those rationals of the form

2−mx

for m,x ∈ Z. Of course, this representation is not unique (which is why we proved (?)).
For each m ∈ Z consider the function

Z
ρm - D given by ρm(x) = 2−mx

for each x ∈ Z. This gives a right solution since

ρm+1(2x) = 2−m−1 × 2x = 2−mx = ρm(x)

for each m,x ∈ Z. We show that this is the colimit of the diagram.
Consider any right solution, as above. We require a unique function

D
h

- A

such that
fm = h ◦ ρm

4.5. A geometric limit and colimit 101

for each m ∈ N. If there is such a function h then it must satisfy

h(2−mx) = (h ◦ ρm)(x) = fm(x)

for each m,x ∈ Z. Thus there is only one possible function h.
Consider and d ∈ D. We may have

2−mx = d = 2−ny

for m,n, x, y ∈ Z. The result (?) gives

fm(x) = fn(y)

and hence we may set
h(2−mx) = fm(x)

to obtain a well-defined function of the required type. Finally, for each m,x ∈ Z, we have

(h ◦ ρm)(x) = h(2−mx) = fm(x)

so that h does the required mediating job. �

4.5.2 Consider first any possible left solution of the problem. This is a poset X together with a
monotone map

X
α(i)

- A(i)

for each node i. Of course, these various maps must combine in the appropriate fashion. Thus
for each pair i− 1, i of consecutive nodes the composite

X
α(i− 1)

- A(i− 1)
(i, i− 1)

- A(i)

must be the map α(i). Thus

α(i)(x) = (i, i− 1)
(
α(i− 1)(x)

)
= ?

for each x ∈ X . This shows that each left solution is a poset X together with the family

X
α(i)

- A(i)

x - ?
of constant functions. In particular, the limit of the diagram is the 1-element poset together with
the maps that pick out ? at each node.

Next consider any possible right solution of the problem. This is a poset X together with a
monotone map

A(i)
α(i)

- X

for each node i. These various maps must combine in the appropriate fashion. Thus for each
pair i, i+ 1 of consecutive nodes the composite

A(i)
(i+ 1, i)

- A(i+ 1)
α(i+ 1)

- X

must be the map α(i). Thus

α(i)(a) = (i+ 1, i)
(
α(i+ 1)(a)

)
= ?

for each a ∈ A(i). This shows that for each right solution X each map α(i) is constant with
value ?. In particular, the colimit is the singleton poset. �

102 4. Limits and colimits in general

4.6 How to calculate certain limits

4.6.1 Limits in Set

4.6.1 Let A be the set of threads. We furnish A with a distinguished subset R to obtain an
object (A,R) of SetD . We let

a ∈ R⇐⇒ (∀i ∈ I)[a(i) ∈ R(i)]

for each thread a. We need to check various conditions.
For an arbitrary index i consider the connecting function

A
α(i)

- A(i)

in Set . We check that this function is an arrow

(A,R)
α(i)
- (A(i), R(i))

of SetD . Remembering the definition of α(i), for each a ∈ A we have

a ∈ R =⇒ α(i)(a) = a(i) ∈ R(i)

to show that α(i) is an arrow.
Next we observe that we have a solution of the diagram in SetD . This requires that certain

triangles in SetD commute. But we know that these triangles commute in Set , so there is
nothing to prove.

We check that this solution is a universal solution in SetD .
Consider any solution in SetD

(X,W)
ξ(i)

- (A(i), R(i))

a SetD-object (X,W) and an I-indexed family of SetD-arrows ξ(i). We are given that certain
triangles in SetD commute. We must show that there is a unique mediator in SetD .

(X,W)
µ
- (A,R)

The trick is to forget the furnishings for a moment and drop down to Set . We have a ∇-
diagram in Set , a solution of the diagram based on X , and a universal solution based on A.
Thus if the SetD-situation has a mediator, then it can only be the Set-mediator, given by

µ(x)(i) = ξ(i)(x)

for each x ∈ X and i ∈ I. It suffices to show that µ is a SetD-arrow.
Remembering that each ξ(i) is a SetD-arrow, for each x ∈ X we have

x ∈ W =⇒ (∀i ∈ I)[µ(x)(i) = ξ(i)(x) ∈ R(i)] =⇒ µ(x) ∈ R

to give the required result. �

4.6.2. Limits in Pos 103

4.6.2 Limits in Pos

4.6.2 (a) An arrow

(A,∼)
f
- (B,≈)

is a function f from A to B for which

a1 ∼ a2 =⇒ f(a1) ≈ f(a2)

for all a1, a2 ∈ A. Note this is only an implication, not an equivalence.
(b) Let A be the set of threads. We furnish A with an equivalence relation ∼ to obtain an

object (A,∼) of Eqv . We let

a ∼ b⇐⇒ (∀i ∈ I)[a(i) ∼i b(i)]

for each pair of threads a, b. Trivially, this is reflexive and symmetric, and a few moment’s
thought shows that it is transitive. Thus we do have an equivalence relation.

We need to check various conditions.
For an arbitrary index i consider the connecting function

A
α(i)

- A(i)

in Set . We check that this function is an arrow

(A,∼)
α(i)
- (A(i),∼i)

of Eqv . In other words that

a ∼ b =⇒ α(i)(a) ∼i α(i)(b)

for all a, b ∈ A. But
α(i)(a) = a(i) α(i)(b) = b(i)

so this is an immediate consequence of the definition of ∼.
Next we observe that we have a solution of the diagram in Eqv . This requires that certain

triangles in Eqv commute. But we know that these triangles commute in Set , so there is
nothing to prove.

We check that this solution is a universal solution in Eqv . Consider any solution

(X,≈)
ξ(i)
- (A(i),∼i)

in Eqv . This is a Eqv -object (X,≈) and an I-indexed family of Eqv -arrows ξ(i). We are
given that certain triangles in Eqv commute. We must show that there is a unique mediator

(X,≈)
µ
- (A,∼)

in Eqv .

104 4. Limits and colimits in general

The trick is to forget the furnishings for a moment and drop down to Set . We have a ∇-
diagram in Set , a solution of the diagram based on X , and a universal solution based on A.
Thus if the Eqv -situation has a mediator, then it can only be the Set-mediator, given by

µ(x)(i) = ξ(i)(x)

for each x ∈ X and i ∈ I. In other words, it suffices to show that this function µ is a Eqv -arrow,
that is

x ≈ y =⇒ µ(x) ∼ µ(y)

for each x, y ∈ X . For each x, y ∈ X we have

x ≈ y =⇒ (∀i ∈ I)[ξ(i)(x) ∼i ξ(i)(y)]

=⇒ (∀i ∈ I)[µ(x)(i) ∼i µ(y)(i)] =⇒ µ(x) ∼ µ(y)

to give the required result. �

4.6.3 Let A be the set of threads. We must first furnish A with an R-action.
Consider any a ∈ A and r ∈ R. For each node i set

(ar)(i) = a(i)r

to produce a function ar : I -
⋃

A. Almost trivially this is a choice function. We must
show that it is a thread. To this end consider the R-morphism

A(i)
a(e)

- A(j)

given by an edge e. Then, since a is a thread, we have

A(e)
(
(ar)(i)

)
= A(e)

(
a(i)r

)
= A(e)

(
a(i)

)
r = a(j)r = (ar)(j)

to show that ar is a thread.
We now require

(ar)s = a(rs) a1 = a

for arbitrary r, s ∈ R. For each node i, working in the R-set A(i), we have(
(ar)s

)
(i) =

(
(ar)(i)

)
s =

(
a(i)r

)
s = a(i)(rs) =

(
a(rs)

)
(i)

to give the left hand requirement. The right hand requirement is easier.
Next we must show that each evaluation function

A
α(i)

- A(i)

is an R-morphism. But for each a ∈ A and r ∈ R we have

α(i)
(
ar
)

=
(
ar
)
(i) = a(i)r = α(i)(a)r

to give the required result.
This shows that we do have a solution of the ∇-diagram in Set-R. It remains to show that

it is universal.

4.6.3. Limits in Mon 105

Consider any solution X in Set-R. Thus X is an R-set and each function

X
ξ(i)

- A(i)

is an R-morphism. By passing down to Set we know there is a unique function

X
µ

- A

for which the required triangles commute. It suffices to show that this function is an R-
morphism, that is

µ(xr) = µ(x)r

for each x ∈ X and r ∈ R. To do that we show that these two functions agree at an arbitrary
node i.

We know that
µ(x)(i) = ξ(i)(x)

for each x ∈ X and node i. Thus, for arbitrary r ∈ R, we have

µ(xr)(i) = ξ(i)(xr) =
(
ξ(i)(x)

)
r =

(
µ(x)(i)

)
r =

(
µ(x)r)i

for the required result. �

4.6.3 Limits in Mon

4.6.4 (a) Each commutative monoid is a monoid with an extra property. The crucial observa-
tion is that any Mon-arrow between commutative monoids is automatically a CMon-arrow.
(Technically this says that CMon is a full subcategory of Mon .)

For a template∇ consider a∇-diagram

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
in CMon . Thus each A(i) is a commutative monoid, and each A(e) is a monoid morphism.
By forgetting the commutative property we have a diagram in Mon . We know this has a limit

A
α(i)

- A(i)

carried by the set of threads. We show that A is commutative, and then it is automatically a
limit in CMon .

The operation ? on A is given by

(a ? b)(i) = a(i)b(i)

for each a, b ∈ A and i ∈ I. Since A(i) is commutative we have

(a ? b)(i) = a(i)b(i) = b(i)a(i) = (b ? a)(i)

which, since i is arbitrary, gives
a ? b = b ? a

to show that ? is commutative.

106 4. Limits and colimits in general

(b) Each group is a monoid with some extra structure. The crucial observation, which takes
a few moment’s thought to justify, is that any Mon-arrow between groups is automatically a
Grp-arrow. (Technically this says that Grp is a full subcategory of Mon .)

For a template∇ consider a∇-diagram

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
in Grp . Thus each A(i) is a group, and each A(e) is a group. By forgetting the existence of
inverses we have a diagram in Mon . We know this has a limit

A
α(i)

- A(i)

carried by the set of threads. We show that A is a group, and then it is automatically a limit in
Grp .

Consider any element a ∈ A. We produce an inverse of a in A, a thread b ∈ A such that

a ? b = b ? a that is (a ? b)(i) = (b ? a)(i)

for each index i. For each such index i we have

a(i)b(i) = 1(i) = b(i)a(i)

for a unique element b(i) ∈ A(i). In other words, b(i) is the unique inverse of a(i) in A(i). This
certainly gives us a choice function

b(·) : I -
⋃

A

but we need to show that b is a thread, that is with

A(e)
(
b(i)
)

= b(j) for each edge i
e
- j

of∇. We remember that a is a thread and A(e) is a group morphism. Thus

a(j)
(
A(e)(b(i))

)
=
(
A(e)(a(i))

)(
A(e)(b(i))

)
= A(e)

(
a(i)b(i)

)
= A(e)(1(i)) = 1(j)

with (
A(e)(b(i))

)
a(j) = 1(j)

by a similar argument. But a(j) has a unique inverse in A(j), namely b(j), and hence(
A(e)(b(i))

)
= b(j)

as required.
This shows that b ∈ A, and for each index i we have

(a ? b)(i) = a(i)b(i) = 1(i) = b(i)a(i) = (b ? a)(i)

and hence b is the inverse of a in A.
This shows that A is a group. The required arrow-theoretic properties to show that A is the

limit of the diagram are immediate, since they hold in Mon .

4.6.3. Limits in Mon 107

(c) Each ring is a set which carries both a monoid structure, the multiplication, and a group
structure, the addition. Furthermore these two structures interact to satisfy the associative laws.

For a template∇ consider a∇-diagram

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
in Rng . Each A(i) is a unital ring, and each A(e) is a ring morphism. By forgetting all
the structure, or the additive structure, or the multiplicative structure we obtain diagrams in
Set ,Mon ,Grp , respectively. Each of these diagrams has a limit in its parent category. More
importantly, each of the limit structures is carried by the set of threads through the diagram.
This set of threads does not depend on the parent category.

Let

A
α(i)

- A(i)

be the limit of the Set diagram. Thus A is the set of threads and the α are the evaluation
functions. We show that this can be furnished to give a limit in Rng .

As in parts (a,b) the furnishings on A are pointwise. Thus we furnish A with an addition
and a zero and with a multiplication and a one. As in part (b) the addition furnishes A as a
commutative group, and is in part (a) the multiplication furnishes A as a monoid. We must
check that the associative laws hold. We require

a(b+ c) = ab+ ac (a+ b)c = ac+ bc

for threads a, b, c. To check these we evaluate at an arbitrary index i and so pass down to A(i),
where the corresponding equality does hold.

This furnishes A as a ring, and two calculations, as in parts (a,b) show that each evaluation
function α is a ring morphism. Furthermore, all the required triangles commute, so we have
produces a solution of the diagram in Rng .

We show that this solution is universal, and so is a limit in Rng . To do that consider any
other solution

X
ξ(i)

- A(i)

in Rng indexed by the nodes i of∇. By forgetting the carried structure this gives a solution of
the diagram in Set , and hence there is a unique function

X
µ

- A

such that
ξ(i) = α(i) ◦ µ

for each index i. It suffices to show that this function µ is a ring morphism. This is done as in
the Mon case. �

108 4. Limits and colimits in general

4.6.5 Given a ∇-diagram in Pom in the usual notation, let A be the set of threads. This set A
can be furnished as a poset and a monoid by

x ≤ a⇐⇒ (∀i)[x(i) ≤ a(i)] (ab)(i) = a(i)b(i)

for all a, b, x ∈ A and index i. (We can now drop the use of ? for the operation on A.) We show
this is a pom.

Consider a, b, x, y ∈ A with x ≤ a and y ≤ b. Then

(∀i)[(xy)(i) = x(i)y(i) ≤ a(i)b(i) = (ab)(i)]

to verify the required comparison property. By now you should find the required arrow-theoretic
properties routine. �

4.6.4 Limits in Top

4.6.6 In this case a thread is just a choice function for the I-indedex family A. The topology as
described in the subsection is just the standard product topology on

∏
A. �

4.7 Confluent colimits in Set

4.7.1 By dropping down to Set we know that the corresponding I-diagram has a colimit L. We
show that this set L can be furnished to form a colimit in Set-R.

We are given that each function

A(i)
A(j, i)

- A(j)

x - x|j

is an R-morphism, that is
(xr)|j = (x|j)r

for each x ∈ A(i) and r ∈ R.
We know that L is the set of blocks [x, i] of a certain equivalence relation ∼ on qA. We

must produce an R-action on L. Given a block [x, i] in L we wish to set

[x, i]r = [xr, i]

for each r ∈ R. We must show that this is well defined.
Consider two representatives

[x, i] [y, j]

of the same block. Thus
x|k = y|k

for some node i, j ≤ k. Since each A(k, ·) is an R-morphism we have

(xr)|k = (x|k)r = (y|k)r = (yr)|k

to show that
[xr, i] = [yr, j]

and hence the action is well-defined.

4.7. Confluent colimits in Set 109

We need to verify the action axioms, but that is straight forward.
This furnishes L as an R-set. Also, for each node i and x ∈ A(i), by definition, we have

[xr, i] = [x, i]r

so that the connection function

A(i) - L

x - [x, i]

is an R-morphism.
This shows that we have a right solution to the diagram in Set-R. We must show it is the

universal right solution. To this end consider any right solution

A(i)
αi - M

of the diagram. Here M is an R-set and each αi is an R-morphism. Dropping down to Set we
know there is a unique function such that

A(i)
αi - M

L
µ
-

-

commutes. It suffices to show that µ is an R-morphism, that is

µ
(
[x, i]r

)
= µ

(
[x, i]

)
r

for each node i, element x ∈ A(i), and r ∈ R. But, since

µ
(
[x, i]

)
= αi(x)

we have
µ
(
[x, i]r

)
= µ

(
[xr, i]

)
= αi(xr) = αi(x)r = µ

(
[x, i]

)
r

as required. �

4.7.2 Dropping down to Set the corresponding I-diagram has a colimit L. We show that this
set L can be furnished to form a colimit in Mon .

We are given that each function

A(i)
A(j, i)

- A(j)

x - x|j

is a monoid morphism, that is
(xy)|j = (x|j)(y|j)

for each x, y ∈ A(i).
We know L is the set of blocks [x, i] of a equivalence relation ∼ on qA. We must produce

a binary operation on L. Given a pair of blocks

[x, i] [y, j]

in L we wish to set
[x, i] · [y, j] = [(x|k)(y|k), k]

where k is any node with i, j ≤ k. We must show that this is well defined.

110 4. Limits and colimits in general

Consider

[x1, i1] = [x2, i2] [y1, j1] = [y2, i2] that is x1|i = x2|i y1|j = y2|j

for some nodes
i1, i2 ≤ i j1, j2 ≤ j

from I. We must show that

[(x1|k1)(y1|k1), k1] = [(x2|k2)(y2|k2), k2]

where k1, k2 are any nodes with

i1, j1 ≤ k1 i2, j2 ≤ k2

respectively. Given such a pair k1, k2 of nodes we must show that(
(x1|k1)(y1|k1)

)
|l =

(
(x2|k2)(y2|k2)

)
|l

for at least one node l with k1, k2 ≤ l. Consider any node l with i, j, k1, k2 ≤ l. We have(
(x1|k1)(y1|k1)

)
|l =

(
(x1|k1)|l

)(
(y1|k1)|l

)
= (x1|l)(y1|l) =

(
(x1|i)|l

)(
(y1|j)|l

)
with (

(x2|k2)(y2|k2)
)
|l =

(
(x2|i)|l

)(
(y2|j)|l

)
by a similar calculation. The relationship between the 1- and the 2-components now gives the
required result.

This furnishes L with a binary operation. A further calculation of this kind shows that this
operation in associative. And then another small calculation shows that L is a monoid.

Next we must show that for each node i the connecting function

A(i) - L

x - [x, i]

is a monoid morphism, that is
[x, i] · [y, i] = [xy, i]

for each x, y ∈ A(i). Since both x, y are in A(i) this is immediate from the definition of the
operation on L.

This shows that we have a right solution to the diagram in Mon . We must show it is the
universal right solution. To this end consider any right solution

A(i)
αi - M

of the diagram. Here M is a monoid and each αi is a monoid morphism. Dropping down to
Set we know there is a unique function such that

A(i)
αi - M

L
µ
-

-

commutes. It suffices to show that this function µ is a monoid morphism.

4.7. Confluent colimits in Set 111

We know that
µ
(
[x, i]

)
= αi(x)

for each node i and x ∈ A(i). We require

µ
(
[x, i] · [y, j]

)
= µ

(
[x, i]

)
µ
(
[y, j]

)
for each pair i, j of nodes and elements x ∈ A(i), y ∈ A(j). Consider any node k with i, j ≤ k.
We have

µ
(
[x, i] · [y, j]

)
= µ

(
(x|k, k)(y|k, k)

)
= µ

(
(x|k)(y|k), k)

)
= αk

(
(x|k)(y|k)

)
= αk(x|k)α(y|k)

and
µ
(
[x, i]

)
µ
(
[y, j]

)
= αi(x)αj(y)

so the required result follows by the given commuting diagrams that the α• satisfy. �

4.7.3 We are given monoids A,B and wish to produce the coproduct A q B in Mon? We do
this in three steps.

For the first step we forget the structure, we drop down to Set and produce the coproduct
of the two carrying sets in Set . This, of course, is just the disjoint union of the two sets. Let

A

A ∪̇B

i
?

B

j
6

be the coproduct in Set . Here A ∪̇ B is merely a set and i, j are merely functions, but with a
certain property.

For the second step we remember that each set X freely generates a monoid FX . This is
saying the forgetful functor from Mon to Set has a left adjoint. We don’t need an explicit
description of FX . Let F be the free monoid generated by A ∪̇ B via a function η. Thus we
now have a commuting diagram in Set

A

A ∪̇B

i
?

η - F

λ

-

B

j
6

ρ

-

where A,B, F are monoids but the arrows are merely functions.
For the third step we take a certain monoid quotient

F k - AqB

112 4. Limits and colimits in general

and so obtain a commuting diagram in Set .

A

A ∪̇B

i
?

η - F k -

λ
-

AqB

l

-

B

j
6

r

-

ρ
-

The idea is that we take a quotient k so that the induced composite functions l, r are monoid
morphism. Furthermore, we take the smallest quotient (that is, the quotient that causes the least
amount of collapse) for which the produced functions l, r are monoid morphisms.

Let’s see what this works. Consider a wedge in Mon , as on the left.

A A A

C

f
-

A ∪̇B
i
?

h - C

f
-

A ∪̇B
i
?

η - F h] -

λ
-

C

f

-

B
g

-

B

j
6

g

-

B

j
6

g

-

ρ
-

Here C is a monoid and f, g are monoid morphisms. We must show there is a unique morphism
m to obtain a commuting diagram in Mon .

A

AqB
l
?

m - C

f
-

B

r
6

g

-

By dropping down to Set we see there is a unique function h such that the central diagram
commutes in Set . This is because A ∪̇B is the coproduct in Set .

We now have a function h from the setX = A∪̇B to a monoidC. This must factor uniquely
through the monoid F freely generated by X . Thus we obtain a commuting diagram as on the
right where h] is a monoid morphism.

Notice that
h] ◦ λ = f h] ◦ ρ = g

so that these two composites functions are monoid morphisms. But k is the smallest quotient
for which k ◦ λ and k ◦ ρ are monoid morphism. Thus h] factors uniquely through k to produce
a commuting diagram

A

A ∪̇B

i
?

η - F k -

λ
-

AqB m -

l

-
C

f

-

B

j
6

g

-

r

-

ρ

-

4.7. Confluent colimits in Set 113

where m is a monoid morphism.
This doesn’t quite finish the proof for we must show that m is the only morphism that does

this job. To this end suppose

n ◦ l = f n ◦ r = g m ◦ l = f m ◦ r = g

for some morphism n. We require n = m. By tracking through the various commuting diagrams
we have

n ◦ k ◦ η ◦ i = f n ◦ k ◦ η ◦ j = g

and the same equalities hold with n replaced by m. Now i, j determine the coproduct A ∪̇B of
A,B in Set . Thus

n ◦ k ◦ η = m ◦ k ◦ η

by the uniqueness of the mediator. Next we remember that η freely generates F from A ∪̇ B.
Thus

n ◦ k = m ◦ k

by the uniqueness of the mediator for that construction. Finally, since k is surjective we have
n = m, as required. �

4.7.4 We describe the construction of a multi-coequalizer.
Let F be a family of monotone maps f between two posets.

T
-

F
-
S

The coequalizer case is when F has just two members. We require a certain monotone map

S
η

- C

which makes equal the family F , that is for each f ∈ F the composite g ◦ f is independent of
f . We require a universal example of such a map.

Consider the pre-orders v on S with the following two properties.

(i) For each a, b ∈ S we have a ≤ b =⇒ a v b.

(ii) For each c ∈ T and each f1, f2 ∈ F both the comparisons f1(c) v f2(c) and f2(c) v
f1(c) hold.

There is at least one such special pre-order. For instance the indiscrete pre-order for which
a v b for all a, b ∈ S. This is the largest special pre-order. We want the smallest special
pre-order.

Let
{vi | i ∈ I}

be the family of all special pre-orders. Let � be the intersection of this family, that is

a � b⇐⇒ (∀i ∈ I)[a vi b]

for a, b ∈ S. It is easy to check that � is a special pre-order. For instance, consider c ∈ T and
f1, f2 ∈ F . Then f1(c) vi f2(c) for each i ∈ I , and hence f1(c) � f2(c). This show that �
satisfies (ii).

114 4. Limits and colimits in general

Let ' be the equivalence relation on S given by �, that is

a ' b⇐⇒ a � b and b � a

for a, b ∈ S. Let S/' be the set of blocks [a] of ', and let

S
η
- S/'

be the quotient function, that is
η(a) = [a]

for each a ∈ S. We convert S/' into a poset with η monotone.
Let

[a] ≤ [b]⇐⇒ a � b

for a, b ∈ S. Of course, we must check that this is well-defined.
Suppose

[a1] = [a2] [b1] = [b2]

with a1 � b1. Then
a2 ' a1 � b1 ' b2

so that
a2 � a1 � b1 � b2

to give a2 � b2 to verify the well-defined property.
By (i) we have

a ≤ b =⇒ a � b =⇒ [a] ≤ [b]

to show that η is monotone. By (ii) we have

f1(c) = f2(c)

for each c ∈ T and f1, f2 ∈ F . Thus for each f ∈ F the value

(η ◦ f)(c)

is independent of f . Thus η makes equal the family F . It remains to show that η is a universal
example of such a monotone map.

Consider any monotone map g which makes equal the family F .

T
-

F
-
S

g
- R

S/�

η
?

We show there is a unique monotone map

S/�
g]
- R

with g] ◦η = g. Since η is surjective there is at most one such map g]. Thus it suffices to exhibit
such a map.

4.7. Confluent colimits in Set 115

Consider the relation v on S given by

a v b⇐⇒ g(a) ≤ g(b)

for a, b ∈ S. Almost trivially this is a pre-order. We check that it is special, that is it satisfies (i,
ii). For a, b ∈ S we have

a ≤ b =⇒ g(a) ≤ g(b) =⇒ a � b

to verify (i). For f1, f2 ∈ F we have

g ◦ f1 = g ◦ f2

which leads to (ii).
Since this relation v is special and � is the smallest special pre-order, we have

a � b =⇒ a v b =⇒ g(a) ≤ g(b)

for each a, b ∈ S. From this we have

[a] = [b] =⇒ a � b and b � a =⇒ g(a) = g(b)

for a, b ∈ S. Thus we may set
g]([a]) = g(a)

to obtain a well-defined function of the required type. By definition we have g] ◦ η = g. Also,
for a, b ∈ S we have

[a] ≤ [b] =⇒ a � b =⇒ g(a) ≤ g(b) =⇒ g]([a]) ≤ g]([b])

to show that g] is monotone, This completes the proof. �

5
Adjunctions

5.1 Adjunctions defined

5.1.1 Let S, T be a pair of posets viewed as categories.
A functor S - T is a function (the object function)

f : S - T

such that for each comparable pair a1 ≤ a2 of elements of S (arrow of S) the corresponding
pair of T are comparable f(a1) ≤ f(a2) (an arrow of T). Thus

a1 ≤ a2 =⇒ f(a1) ≤ f(a2)

for a1, a2 ∈ S. This is just a monotone map.
Consider a pair of monotone maps

S

f
-

�
g

T

going in the opposite direction. These form a categorical adjunction if for each a ∈ S and b ∈ T
there is an appropriate correspondence between the two arrow sets

S[a, g(b)] T [f(a), b]

given by the two elements. Each of these is no more than a singleton. Thus the correspondence
says that one is non-empty precisely when the other is non-empty. This rephrases as

f(a) ≤ b⇐⇒ a ≤ g(a)

for a ∈ S, b ∈ T , which is the defining property of a poset adjunction. �

117

118 5. Adjunctions

5.1.2 Consider the forgetful functor.

Set � U Pre

We produce a left adjoint and a right adjoint to this functor.

D a U Set

D
-

� U

I
-

Pre U a I

Each set X can be converted into a preset in two extreme ways.

DX = (X,=) IX = (X, ‖)

On the left we use equality as the comparison. This gives a poset. On the right any two elements
are comparable. This is not a poset if X has least two elements. We call these the

discrete indiscrete

presets, respectively. This gives the object assignments of two functors.
Consider any function.

X
f

- Y

We observe that f is monotone relative to both the discrete and the indiscrete comparisons, that
is

x = y =⇒ f(x) = f(y) f(x) ‖ f(y)

for all x, y ∈ X . This gives us the arrow assignments of two functors. We use the same function
but view it as a monotone map in two ways.

We now check the two adjunctions separately.
For the adjunction D a U we require an inverse pair of assignments

f - f]

Set [X,US] Pre [DX,S]

φ[� φ

for each set X and each preset S. In fact both (·)] and (·)[return the same function, so do form
an inverse pair. The only thing we have to check is that

DX
f]

- S

is monotone for each function f , as above. This is trivial. Finally, for D a U , we must check
that the two assignments are natural. However, nothing much is happening as we pass across a
functor or an assignment, so the naturality is immediate.

For the adjunction U a I we require an inverse pair of assignments

φ - φ]

Pre [S, IX] Set [US,X]

f[� f

5.1. Adjunctions defined 119

for each preset S and each set X . In fact both (·)] and (·)[return the same function, so do form
an inverse pair. The only thing we have to check is that

S
f[- IX

is monotone. But since IX is indiscrete, this is trivial. Finally, for U a I , we must check
that the two assignments are natural. However, nothing much is happening as we pass across a
functor or an assignment, so the naturality is immediate. �

5.1.3 This is more or less the same as Solution 5.1.2 except we now use topologies rather than
pre-orders.

Let

Set � U Top

be the forgetfully functor. We produce a left adjoint and a right adjoint to this functor.

Set

D
-

� U

I
-

Top

Each set X can be converted into a topological space in two extreme ways.

DX = (X,PX) IX = (X, {∅, X})

On the left we use discrete topology in which each subset is open. On the right we use the
indiscrete topology in which only the two extreme subsets are open. Naturally, we call these
the

discrete indiscrete

space, respectively. This gives the object assignments of two functors.
Consider any function.

X
f

- Y

We observe that f is continuous relative to both the discrete and the indiscrete topologies.
This gives the arrow assignments of two functors. We use the same function but view it as a
continuous map in two ways.

We now check the two adjunctions separately.

D a U U a I

For the adjunction D a U we require an inverse pair of assignments

f - f]

Set [X,US] Top[DX,S]

φ[� φ

for each set X and each space S. In fact both (·)] and (·)[return the same function, so do form
an inverse pair. The only thing we have to check is that

DX
f]

- S

120 5. Adjunctions

is continuous for each function f , as above. This is trivial. Finally, for D a U , we must check
that the two assignments are natural. However, nothing much is happening as we pass across a
functor or an assignment, so the naturality is immediate.

For the adjunction U a I we require an inverse pair of assignments

φ - φ]

Top[S, IX] Set [US,X]

f[� f

for each space S and each set X . In fact both (·)] and (·)[return the same function, so do form
an inverse pair. The only thing we have to check is that

S
f[- IX

is continuous. But since IX is indiscrete, this is trivial. Finally, for U a I , we must check
that the two assignments are natural. However, nothing much is happening as we pass across a
functor or an assignment, so the naturality is immediate. �

5.1.4 This is dealt with in great detail in the first part of Chapter 6. Not all the details are
necessary. You may want to decide which of the quicker solutions you prefer. �

5.1.5 As in Chapter 4 we let i, j, . . . range over the objects of the template category∇ and refer
to these as nodes. We use

i
e

- j

as a typical arrow of∇ and refer to this as an edge.
An object of C∇, a∇-diagram in C , is a functor

∇
F

- C

and so consists of a family of objects of C

F (i)

indexed by the nodes and a collection of arrows of C

F (i)
F (e)

- F (j)

indexed by the edges. Various triangles in C are required to commute.
An arrow of C∇

F
η• - G

is just a natural transformation between the two functors. These are composed in the obvious
way.

For each object A of C we set

(∆A)(i) = A (∆A)(e) = idA

5.1. Adjunctions defined 121

for each node i and each edge e. This gives a constant diagram. Each arrow of C

A
η

- B

gives a ‘constant’ natural transformation

∆A
η• - ∆B

in the obvious way. This sets up a functor

C
∆
- C∇

and we are interested in the existence or not of a right adjoint to ∆.
Consider first an object A of C and an object F of C∇. What does a member of

C∇[∆A,F]

look like? It is a family of arrows

A
α(i)

- F (i)

indexed by the nodes of∇ such that

A
α(i)

- F (i) i

A

id
?

α(j)
- F (j)

F (e)
?

j

e

?

commutes for each edge e, as indicated on the right. In other words, this is nothing more than a
left solution to the diagram F .

Suppose now that we fix a particular solution

S
σ(i)

- F (i)

and try to compare S with an arbitrary object A of C . How are the two hom-sets

C [A, S] C∇[∆A,F]

related? There is an obvious assignment

µ - µ]

C [A, S] C∇[∆A,F]

in one direction. Given a C -arrow

A
µ

- S

for each node i we let µ](i) be the composite

A
µ

- S
σ(i)

- F (i)

122 5. Adjunctions

to produce a left solution of F . This gives us a family of assignments

C [−, S]
(·)]
- C∇[∆−, F]

as we let the object A vary through C . Notice that we have a pair of contravariant functors

C - Set

and it is easy to show (·)] is a natural transformation between the two.
When is this natural transformation a natural equivalence? Precisely when each solution

∆A
α(•)

- F

arises from a unique arrow

A
µ

- S

as µ]. This is simply saying that (S, σ) is a universal left solution, a limit of F . Every∇-diagram
F in C has a limit precisely when there is an object assignment

S � F

picking out the object which carries the limit. The required functorial and adjunction properties
follow by similar arguments. �

5.1.6 We use various aspects of the gadgetry of the adjunction.

Src[−, G−]

(·)]
-

�
(·)[

Trg [F−,−]

Here F is the left adjoint of the given functor G.
Consider some diagram

TD T (i) T (e)

in Trg . Here i ranges over the nodes of the template and e ranges over the edges. In this
diagram certain triangles are required to commute.

We use the functor G to transport these objects and arrows to Src.

SD GT (i) GT (e)

Since G is a functor this is a diagram of the same template in Src.
Suppose

T
τ(i)

- T (i)

is a limit of the diagram TD in Trg . Thus T is a fixed object and there is an arrow τ(i) for
each node i of the template. Various triangles are required to commute, those indexed by the
edges e of the template. We use G to transport this to Src

GT
G(τ(i))

- GT (i)

5.1. Adjunctions defined 123

and since G is a functor we certainly obtain a left solution of the diagram SD in Src.
Consider any left solution

X
ξ(i)

- GT (i)

of the diagram SD in Src. We must somehow produce a unique mediator

X
µ
- GT

for which
GT

X

µ -

(C)

GT (i)

G(τ(i))

?
ξ(i)

-

commutes for each node i.
We use the transpositions

Src[X,GT (i)]
(·)]

- Trg [FX, T (i)]

to obtain a family of arrows

FX
ξ(i)]

- T (i)

in Trg . Since (·)] is natural, this is a left solution of the diagram TD in Trg . Thus, since we
have a limit of this diagram, here is a unique arrow ν such that each triangle

T

FX

ν -

T (i)

τ(i)

?
ξ(i)]

-

commutes.
Since the transposition

Src[X,GT]
(·)]

- Trg [FX, T]

is a bijection we have

ν = µ] for some unique arrow X
µ
- GT

of Src. It suffices to show that each triangle (C) of Src commutes. But this follows by the
naturality of (·)], strictly speaking, by the naturality of the inverse (·)[of (·)]. �

5.1.7 Both F and G are modified versions of the 2-placed hom-functor Trg [−.−]. In particular,
each is contravariant in the left hand argument. Thus we really have a pair of functors

Src
op ×Trg - Set

using the opposite of Src. The details of the two arrow assignments are given in Table 5.2 in
Section 5.3. �

124 5. Adjunction

5.2 Adjunctions illustrated

5.2.1 An algebraic example

5.2.1 We deal with Σ first. We are given

ΣX = X +X = {(x, i) |x ∈ X, i = 0, 1}

for each set X . The carried involution flips the tag, that is

(x, i)• = (x, 1− i)

for each x ∈ X and tag i ∈ {0, 1}. Since

(x, i)•• = (x, 1− i)• = (x, i)

this does produce an involution algebra. For each function

Y
k

- X

the only sensible assignment

ΣY
Σ(k)

- ΣX

(y, i) - (k(y), i)

is to leave the tag alone. We have

Σ(k)
(
(y, i)•

)
= Σ(k)

(
(y, 1− i)

)
= (k(y), 1− i) = (k(y), i)• =

(
Σ(k)(y, i)

)•
so that Σ(k) is a morphism. The functorial requirements are immediate.

Next we deal with Π. We are given

ΠX = X ×X = {(x, y) |x, y ∈ X}

for each set X . The carried involution swaps the components, that is

(x, y)• = (x, y)

for each x, y ∈ X . Trivially, this does produce an involution algebra. For each function

Y
k

- X

the only sensible assignment

ΠY
Π(k)

- ΠX

(y, z) - (k(y), k(z))

is to apply the function to both components. We have

Π(k)
(
(y, z)•

)
= Π(k)

(
(z, y)

)
= (k(z), k(y))

= (k(y), k(z))• =
(
Π(k)(y, i)

)•
so Π(k) is a morphism. The functorial requirements are immediate. �

5.2.1. An algebraic example 125

5.2.2 We deal with Σ first. We require an inverse pair of assignments

f - f]

Set [X,UA] Inv [ΣX,A]

ψ[� ψ

for each set X and each algebra A. We set

f]
(
(x, i)

)
= f(x)(i) ψ[(x) = ψ(x, 0)

for each x ∈ X and tag i. There are some requirements we must check.
We need to show that f] is a morphism, that is

f]
(
(x, i)•

)
=
(
f](x, i)

)•
for each x ∈ X and tag i. To do that we remember that

a(i)• = a(1−i) = a•(i)

for each a ∈ A. With this we have

f]
(
(x, i)•

)
= f](x, 1− i) = f(x)(1−i) = f(x)(i)• =

(
f](x, i)

)•
as required.

For each x ∈ X and tag i we have

f][(x) = f](x, 0) = f(x)(0) = f(x)

ψ[
](x, i) = ψ[(x)(i) = ψ(x, 0)(i) = ψ(x, i)

to show that the two assignments form an inverse pair. The last step in the lower calculations
follows since ψ is a morphism.

Next we deal with Π. We require an inverse pair of assignments

φ - φ]

Inv [A,ΠX] Set [UA,X]

g[� g

for each set X and each algebra A. We set

φ](a) = φ(a)0 g[(a) = (g(a), g(a•))

for each a ∈ A. In φ] the (·)0 indicates the left hand component is selected. We need to show
that g[is a morphism, that is

g[(a
•) = g[(a)•

for each a ∈ A. But, remembering how ΠX is structured, we have

g[(a
•) =

(
g(a•), g(a••)

)
=
(
g(a•), g(a)

)
=
(
g(a), g(a•)

)• = g[(a)•

as required

126 5. Adjunction

To show that these two assignments form an inverse pair consider any a ∈ A. Let

φ(a) = (x, y)

where x, y ∈ X . Then, since φ is a morphism, we have

φ(a•) = φ(a)• = (y, x)

so that
φ](a) = x φ](b) = y

to give
φ][(a) =

(
φ](a), φ](a•)

)
= (x, y) = φ(a)

for one of the required conditions. For the other, since

g[(a) = (g(a),−)

we have
g[
](a) = g(a)

as required. �

5.2.2 A set-theoretic example

5.2.3 For this and the next solution let us write L and R for the two endofunctors on Set . Thus

LX = X × I RY = (I ⇒ Y)

for all sets X and Y . The arrow assignments are given in the subsection.
We require an inverse pair of bijections

f - f]

Set [X,RY] Set [LX, Y]

g[� g

for arbitrary X, Y .
Each member f of Set [X,RY] is a 2-step function which first consumes an element x ∈ X

and then an index i ∈ I to return an eventual value f(x)(i) in Y . Each member g of Set [LX, Y]
is a function which consumes a pair (x, i) where x ∈ X and i ∈ I to return a value g(x, i) in Y .
The two transpositions merely shuffle brackets around. We have

f](x, i) = f(x)(i) g[(x)(i) = g(x, i)

for x ∈ X and i ∈ I . Normally in Mathematics we would hardly distinguish between f and f],
nor between g and g[. �

5.2.4 We continue with the notation of Solution 5.2.3.
We require a pair of assignments

X
ηX- (R ◦ L)X (L ◦R)Y

εY - Y

5.2.2. A set-theoretic example 127

where
(R ◦ L)X = (I ⇒ (X × I)) (L ◦R)Y = (I ⇒ Y)× I

for sets X and Y .
For each x ∈ X the value ηX(x) must be a function which consumes some i ∈ I and returns

a pair in X × I . Thus
ηX(x)(i) = (x, i)

is the only sensible suggestion. The function εY must consume a pair (p, i) where p : I → Y
and i ∈ I to return a member of Y . Thus

εY (p, i) = p(i)

is the only sensible suggestion. We show that each of these is natural.
Recall that the arrow assignments of L and R are given by

X2 X2 × I (x, i) Y1 I ⇒ Y1 p

- -

X1

k

?
X1 × I

L(k)

?
(k(x), i)

?

Y2

l

?
I ⇒ Y2

R(l)

?
l ◦ p
?

respectively.
To deal with η• we must show that

X2

ηX2- (R ◦ L)X2

X1

k

?

ηX1

- (R ◦ L)X1

(R ◦ L)(k)

?

commutes for an arbitrary function k, as on the left. Thus we require

ηX1 ◦ k = (R ◦ L)(k) ◦ ηX2

equivalently
ηX1

(
k(x)

)
= R

(
L(k)

)(
ηX2(x)

)
for each x ∈ X2. Each side of this equality is a function

I −→ (X × I)

so we evaluate both at an arbitrary i ∈ I . We have

ηX1

(
k(x)

)
(i) = (k(x), i)

be the definition of η•. The behaviour of R gives

R
(
L(k)

)(
ηX2(x)

)
= L(k) ◦ ηX2(x)

128 5. Adjunction

so that
R
(
L(k)

)(
ηX2(x)

)
(i) = L(k)

(
ηX2(x)(i)

)
= L(k)(x, i) = (k(x), i)

by the behaviour of L, to give the required result.

To deal with ε• we must show that

(L ◦R)Y1

εY1- Y1

(L ◦R)Y2

(L ◦R)(l)

?

εY2

- Y2

l

?

commutes for an arbitrary function l, as on the right. Thus

εY2 ◦
(
(L ◦R)(l)

)
= l ◦ εY1

is the required equality. A typical member of (L ◦ R)Y1 is a pair (p, i) where p : I → Y1 and
i ∈ I . We have (

l ◦ εY1

)
(p, i) = l

(
εY1(p, i)

)
= l
(
p(i)

)
= (l ◦ p)(i)

for each such pair. We also have(
L ◦R

)
(l)(p, i) = L

(
R(l)

)
(p, i) =

(
R(l)(p), i

)
= (l ◦ p, i)

for each such pair. This gives(
εY2 ◦

(
(L ◦R)(l)

))
(p, i) = εY1

((
L ◦R

)
(l)(p, i)

)
= εY1(l ◦ p, i) = (l ◦ p)(i)

as required. �

5.2.3 A topological example

5.2.5 As in the block, it suffices to show that for a continuous map

Y1

ψ
- Y2

between two spaces, the induced assignment

(I ⇒ Y1)
Ψ
- (I ⇒ Y2)

θ - ψ ◦ θ

is continuous where each of the two functions spaces carries the compact open topology. To
do that we consider an arbitrary subbasic open set 〈K,V 〉 of (I ⇒ Y2) where K ∈ KI and
V ∈ OY2, and show

Ψ←
(
〈K,V 〉

)
= 〈K,ψ←(V)〉

5.2.3. A topological example 129

which is a subbasic open set of (I ⇒ Y1). For each function θ : I → Y1 we have

θ ∈ Ψ←
(
〈K,V 〉

)
⇐⇒ ψ ◦ θ ∈ 〈K,V 〉
⇐⇒ (∀i ∈ I)[i ∈ K ⇒ ψ(θ(i)) ∈ V]

⇐⇒ (∀i ∈ I)[i ∈ K ⇒ θ(i) ∈ ψ←(V)]

⇐⇒ θ ∈ 〈K,ψ←(V)〉

for the required result. �

5.2.6 As suggested in the partial proof of Lemma 5.2.5, we consider a typical subbasic open
set

〈K,V 〉
of (I ⇒ Y), and show that

ψ←[
(
〈K,V 〉

)
is open in X . Here

K ∈ KI V ∈ OY
are the two components of the subbasic. We consider an arbitrary

s ∈ ψ←[
(
〈K,V 〉

)
and show that

s ∈ U ⊆ ψ←[
(
〈K,V 〉

)
for some open U ∈ OX .

For the considered point s we have

ψ[(s) ∈ 〈K,V 〉

that is
ψ(s, i) = ψ[(s)(i) ∈ V

for each i ∈ K. For each i ∈ K we have

(s, i) ∈ ψ←(V)

so that, since ψ is continuous, we have

(s, i) ∈ Ui ×Wi ⊆ ψ←(V)

for some Ui ∈ OX and Wi ∈ OI . As i ranges through K the sets Wi produce an open covering
of K. Since K is compact this refines to a finite covering

W = W1 ∪ · · · ∪Wm

of K indexed by some i(1), . . . , i(m) ∈ K. Let

U = U1 ∩ · · · ∩ Um

using the same indexes. We have

s ∈ U K ⊆ W

130 5. Adjunction

with
U ×W ⊆ ψ←(V)

by construction. Also, for each x ∈ X we have

x ∈ U =⇒ (∀i ∈ K)[ψ(x, i) ∈ V]

=⇒ ψ[(x)[K] ⊆ V

=⇒ ψ[(x) ∈ 〈K,V 〉 =⇒ ψ←[
(
〈K,V 〉

)
to give

U ⊆ ψ←[
(
〈K,V 〉

)
for the required result. �

5.2.7 We continue with the partial proof of Lemma 5.2.6.
We start from any

(s, r) ∈ φ]←(V)

where V ∈ OY , and produce
U ×W ⊆ φ]←(V)

such that both
s ∈ U ∈ OX r ∈ W ∈ OI

hold. We already have
r ∈ W ⊆ K ⊆ φ(s)←(V)

for some K ∈ KI and W ∈ OI . Observe that for i ∈ I we have

i ∈ K =⇒ i ∈ φ(s)←(V) =⇒ φ(s)(i) ∈ V

for each i ∈ I . This gives
φ(s)[K] ⊆ V

so that
φ(s) ∈ 〈K,V 〉

and hence
s ∈ U where U = φ←

(
〈K,V 〉

)
with U open in X . From the construction of U and W , for each x ∈ Xand i ∈ I we have

(x, i) ∈ U ×W =⇒ (x, i) ∈ U ×K =⇒ φ](x, i) = φ(x)(i) ∈ V

and hence
U ×W ⊆ φ]←(V)

for the final requirement. �

5.2.8 For spaces X, Y we require continuous maps

X
ηX-

(
I ⇒ (X × I)

) (
(I ⇒ Y)× I

) εY - Y

5.3. Adjunctions uncoupled 131

to do a certain job. We use the idea of the set-theoretic example of Block 5.2.2. Thus we set

ηX(x)(i) = (x, i) εY (p, i) = p(i)

for each x ∈ X, i ∈ I , and p : I → Y .
It now looks as though we have quite a bit of work to do, but this is an illusion.
Why are

ηX εY

continuous? Observe that

ηX = ψ[where ψ = idX×I εY = φ] where φ = id I⇒Y

and hence Lemmas 5.2.5 and 5.2.6 give the required continuity.
Why are

η• ε•

natural? We require that certain squares commute. But these are squares in Set , and we know
they commute by the set-theoretic example. �

5.3 Adjunctions uncoupled

5.3.1 We use the notation of this section as in Table 5.1.
Letting only A vary is equivalent to taking S = T with l = idS . For this case (]) and ([)

become (] ↑) and ([↓), and these are equivalent as in Lemma 5.3.2.
Letting only S vary is equivalent to taking A = B with k = idA. For this case (]) and ([)

become (] ↓) and ([↑), and these are equivalent as in Lemma 5.3.2. �

5.3.2 We use the notation and results of Solutions 5.2.1 and 5.2.2.
We deal with the Σ-construction first.

f - f]

Set [X,UA] Inv [ΣX,A]

ψ[� ψ

For each pair k (a function) and λ (a morphism), as indicated, we must show that the two
squares commute.

X Set [X,UA]

(·)]
-

�
(·)[

Inv [ΣX,A] A

Y

k

6

Set [Y, UB]

U(λ) ◦ − ◦ k

? (·)]
-

�
(·)[

Inv [ΣY,B]

λ ◦ − ◦ Σ(k)

?

B

λ

?

132 5. Adjunctions

By tracking round the various squares we require(
U(λ) ◦ f ◦ k)

)]
= λ ◦ f] ◦ Σ(k) λ ◦ ψ[◦ k =

(
λ ◦ ψ ◦ Σ(k)

)
[

for each arrow

X
f
- UA Σ

ψ
- A

from the appropriate top corner. To verify these equalities we evaluate at an arbitrary element

(y, i) ∈ ΣY y ∈ Y
respectively.

We have(
U(λ) ◦ f ◦ k)

)]
(y, i) =

((
U(λ) ◦ f ◦ k)

)
(y)
)(i)

=
((
λ ◦ f ◦ k

)
(y)
)(i)

where at the last step we remember we are dealing with three functions. Finally we have(
λ ◦ f] ◦ Σ(k)

)
(y, i) = λ

(
f]
(
Σ(k)(y, i)

))
= λ

(
f]
(
k(y), i

))
= λ

((
f ◦ k

)
(y)(i)

)
=
(
λ
((
f ◦ k

)
(y))

)(i)

=
((
λ ◦ f ◦ k

)
(y)
)(i)

to give the required left hand result. We also have(
λ ◦ ψ[◦ k)(y)

(
λ ◦ ψ ◦ Σ(k)

)
[
(y)

=
(
λ ◦ ψ[

)
(k(y)) =

(
λ ◦ ψ ◦ Σ(k)

)
(y, 0)

= λ
(
ψ(k(y), 0

)
=
(
λ ◦ ψ

)(
Σ(k)(y, 0)

)
=
(
λ ◦ ψ

)
(k(y), 0) =

(
λ ◦ ψ

)
(k(y), 0)

to give the required right hand result.
Next we deal with the Π-construction.

φ - φ]

Inv [A,ΠX] Set [UA,X]

g[� g

For each pair κ (a morphism) and l (a function), as indicated, we must show that the two
squares commute.

A Inv [A,ΠX]

(·)]
-

�
(·)[

Set [UA,X] X

B

κ

6

Inv [B,ΠY]

Π(l) ◦ − ◦ κ

? (·)]
-

�
(·)[

Set [UB, Y]

l ◦ − ◦ U(κ)

?

Y

l

?

5.3. Adjunctions uncoupled 133

By tracking round the various squares we require(
Π(l) ◦ φ ◦ κ

)]
= l ◦ φ] ◦ U(κ) Π(l) ◦ g[◦ κ =

(
l ◦ g ◦ U(κ)

)
[

for each arrow

A
φ
- ΠX UA

g
- X

from the appropriate top corner. To verify these we evaluate at an arbitrary element

b ∈ UB b ∈ B

respectively. We have (
Π(l) ◦ φ ◦ κ

)]
(b)

(
l ◦ φ] ◦ U(κ)

)
(b)

=
((

Π(l) ◦ φ ◦ κ
)
(b)
)

0
= l
(
φ]
(
κ(b)

))
=
(

Π(l)
(
(φ ◦ κ)(b)

))
0

= l
(
φ
(
κ(b)

)
0

)
= l
((

(φ ◦ κ)(b)
)

0

)
= l
((

(φ ◦ κ)(b)
)

0

)
to give the required left hand result. We also have(

Π(l) ◦ g[◦ κ
)
(b) = Π(l)

(
g[
(
κ(b)

))
= Π(l)

(
g
(
κ(b)

)
, g
(
κ(b)

)•)
=
(
l
(
g
(
κ(b)

))
, l
(
g
(
κ(b)

)•))
=
(

(l ◦ g)
(
κ(b)

)
, (l ◦ g)

(
κ(b)•

))
and (

l ◦ g ◦ U(κ)
)
[
(b)

=
((
l ◦ g ◦ U(κ)

)
(b),

(
l ◦ g ◦ U(κ)

)
(b•)
)

=
((
l ◦ g

)(
κ(b)

)
,
(
l ◦ g

)(
κ(b•)

))
and

κ(b)• = κ(b•)

since κ is a morphism, to give the required right hand result. �

5.3.3 Let us use the notation

L = (−× I) R = (I ⇒ −)

of Solutions 5.2.3 and 5.2.4.

134 5. Adjunctions

To show that (·)] we must check that the square

X1 [X1, RY1]
(·)]

- [LX1, Y1] Y1

X2

k

6

[X2, RY2]

R(l) ◦ − ◦ k
?

(·)]
- [LX2, Y2]

l ◦ − ◦ L(k)

?

Y2

l

?

commutes for each pair of functions k and l. Here we need not indicate Set since it is the only
category involved. In terms of equations we must show that(

R(l) ◦ f ◦ k
)]

=
(
l ◦ f] ◦ L(k)

)
for each function

f : X1 −→ (I −→ Y1)

in the top left hand corner of the diagram. To do that the abbreviation

g = f ◦ k

will be useful.
Each side of this equation is a function that consumes a pair

(x, i) ∈ X2 × I = LX2

to return a value in Y2. We have(
R(l) ◦ f ◦ k

)]
(x, i) =

(
R(l) ◦ g

)
(x)(i)

= R(l)
(
g(x)

)
(i)

=
(
l ◦ g(x)

)
(i) = l

(
g(x)(i)

)
which evaluates the left hand side. We also have(

l ◦ f] ◦ L(k)
)
(x, i) =

(
l ◦ f]

)(
L(k)(x, i)

)
=
(
l ◦ f]

)(
k(x), i

)
= l
(
f]
(
k(x), i

))
= l
(
f(k(x))(i)

)
= l
(
g(x)(i)

)
which evaluates the right hand side, and verifies the equality.

The diagram for the naturality of (·)[is similar but with two arrows

�
(·)[

pointing the other way. We have to show that(
R(l) ◦ g[◦ k

)
=
(
l ◦ g ◦ L(k))[

5.4. The unit and co-unit 135

for each function
g : X1 × I −→ Y1

in the top right hand corner. To prove the equality the abbreviation

f = l ◦ g

will be useful.
Each side of this equation is a 2-step function which first consumes x ∈ X2 and then i ∈ I

to return a value in Y2. We have(
R(l) ◦ g[◦ k

)
(x)(i) = R(l)

(
g[(k(x))

)
(i)

=
(
l ◦ g[(k(x)

)
(i)

= l
(
g[(k(x)(i)

)
= l
(
g(k(x), i)

)
= f

(
k(x), i

)
which evaluates the left hand side. We also have(

l ◦ g ◦ L(k))[(x)(i) =
(
f ◦ L(k))[(x)(i)

=
(
f ◦ L(k))(x, i)

= f
(
L(k)(x, i)

)
= f

(
k(x), i)

)
which evaluates the right hand side, and verifies the equality. �

5.3.4 At the function level the two assignment (·)] and (·)[are just the same as those used in the
Set-theoretic example of Block 5.2.2. The naturality of these topological versions requires that
certain squares in Set must commute. These are just the same as the Set-theoretic squares,
and are dealt with in Solution 5.3.3. �

5.4 The unit and the co-unit

5.4.1 We must show that the square commutes

εS =
(
idGS

)]
(F ◦G)S

εS - S

εT =
(
idGT

)]
(F ◦G)T

(F ◦G)(l)

?

εT
- T

l

?

for an arbitrary arrow l as on the right. In equational terms we must show that

εT ◦ (F ◦G)(l) = l ◦ εS
holds. To do that we use (]) twice. We have

εT ◦ (F ◦G)(l) =
(
idGT

)] ◦ F (G(l))

= idT ◦
(
idGT

)] ◦ F (G(l))

=
(
G(idT) ◦ idGT ◦G(l)

)]
= G(l)]

136 5. Adjunctions

where the penultimate step is the first use of (]). We also have

l ◦ εS = l ◦
(
idGS

)]
= l ◦

(
idGS

)] ◦ F (idGS) =
(
G(l) ◦ idGS ◦ idGS

)]
= G(l)]

where the penultimate step is the second use of (]). �

5.4.2 For each arrow

FA
g
- S

we show that
g[= G(g)ηA

and to do that we use ([↓). Thus

G(g) ◦ η)A = G(g) ◦
(
idFA

)
[

=
(
g ◦ idFA

)
[

= g[

where the penultimate step uses ([↓). �

5.4.3 We must first show that for an arbitrary arrow

FA
g
- S

the second transpose g[] is just g. To do that we use an instance of the naturality of ε• as given
in Solution 5.4.1. We use the case l = g. Thus

g[
] =

(
G(g) ◦ ηA

)]
= εS ◦ F

(
G(g) ◦ ηA

)
= εS ◦

(
F ◦G

)
(g) ◦ F

(
ηA
)

= g ◦ εFA ◦ F
(
ηA
)

= g

where the penultimate step uses the naturality of ε and the ultimate step uses one of the given
conditions on η and ε.

It remains to verify ([). Using the notation of Table 5.1, a use of the definition of (·)[gives(
l ◦ g ◦ F (k)

)
[

= G
(
l ◦ g ◦ F (k)

)
◦ ηB

= G
(
l ◦ g

)
◦
(
G ◦ F

)
(k)
)
◦ ηB = G

(
l ◦ g

)
◦ ηA ◦ k

where this last step use the naturality of η. Continuing we have(
l ◦ g ◦ F (k)

)
[

= G
(
l ◦ g

)
◦ ηA ◦ k = G(l) ◦G(g) ◦ ηA ◦ k = G(l) ◦ g[◦ k

using the definition of g[. �

5.4.4 We continue with the notation of Solutions 5.2.1, 5.2.2, and 5.3.2.
We deal with the Σ-case first. For each element of a set x ∈ X , each element of an algebra

a ∈ A, and each tag i we let

ηX(x) = (x, 0) δA(a, i) = a(i)

to obtain two functions of the required type. We need to check that δA is a morphism, that is

δA
(
(a, i)•

)
= δA(a, i)•

5.4. The unit and co-unit 137

for each a ∈ A and tag i. But

δA
(
(a, i)•

)
= δA(a, 1− i) = a(1−i) = a(i)• = δA(a, i)•

to give the required equality.
To show that η, δ are natural we must check that a pair of squares commute. These are

induced by a function f in Set and a morphism φ in Inv , as indicated.

x - (x, 0)

X ηX - (U ◦ Σ)X

η

Y

f

?
ηY - (U ◦ Σ)Y

(U ◦ Σ)(f)

?

f(x)
?

- (f(x), 0)
?

a, i) - a(i)

(Σ ◦ U)A δA - A

δ

(Σ ◦ U)B

(Σ ◦ U)(φ)

?

δB - B

φ

?
φ(a(i))
?

(φ(a), i)
?

- φ(a)(i)

In both cases we take an arbitrary element of the top left hand corner and track it both ways to
the bottom right hand corner. The two resulting elements must be the same. That condition for
the η-square is trivial. For the δ-square we need to recall that φ is a morphism.

Next we deal with the Π-case. For each elements of a set x, y ∈ X and each element of an
algebra a ∈ A we let

εX(x, y) = x ζA(a) = (a, a•)

to obtain two functions of the required type. We need to check that ζA is a morphism. But

ζA(a•) = (a•, a••) = (a•, a) = (a, a•)• = ζA(a)•

as required.
To show that ε, ζ are natural we must check that a pair of squares commute. These are

induced by a function f in Set and a morphism φ in Inv , as indicated.

138 5. Adjunctions

(x, y) - x

(U ◦ Π)X εX - X

ε

(U ◦ Σ)Y

(U ◦ Π)(f)

?

εY - Y

f

?

(f(x), f(y))
?

- f(x)
?

a - (a, a•)

A ζA - (Π ◦ U)A

ζ

B

φ

?
ζB - (Π ◦ U)B

(Π ◦ U)(φ)

?

(φ(a), φ(a•))
?

φ(a)
?

- (φ(a), φ(a)•)

In both cases we take an arbitrary element of the top left hand corner and track it both ways to
the bottom right hand corner. The two resulting elements must be the same. That condition for
the ε-square is trivial. For the ζ-square we need to recall that φ is a morphism. �

5.4.5 We deal first with the identities of Lemma 5.4.3.

We start with a set X , an algebra A, two functions f, g and two morphisms ψ, ψ, as indi-
cated,

X
f
- UA ΣX

ψ
- A

A
φ
- ΠA UA

g
- X

and must show that

f] = δA ◦ Σ(f) ψ[= U(ψ) ◦ ηX
φ] = εX ◦ U(φ) g[= Π(g) ◦ ζA

5.4. The unit and co-unit 139

hold. In other words, we must show that the following triangles commute.

ΣX
Σ(f)

- (Σ ◦ U)A X
ηX - (U ◦ Σ)X

A

δA
?

f]
-

UA

U(ψ)
?

ψ[-

UA
U(φ)

- (U ◦ π)X A
ζA - (π ◦ U)A

X

εX
?

φ] -

ΠX

Π(g)
?

g[-

To do that we take an arbitrary element

(x, i) ∈ ΣX x ∈ X
a ∈ UA a ∈ A

for the top left hand corner, track it both ways to produce

f(x)(i) ∈ A ψ(x, i) ∈ UA
φ(a)0 ∈ X (g(a), g(a•)) ∈ ΠX

to give the required result.
Next we deal with the identities of Corollary 5.4.4. For each set X and algebra A we must

show that each of the composites

δσX ◦ Σ(ηX) U(δA) ◦ ηUA
εUA ◦ U(ζA) Π(εX) ◦ ζΠX

is the identity arrow on the relevant carrier. To do that we calculate.

ΣX
Σ(ηX)

- (Σ ◦ U ◦ Σ)X
δΣX - ΣX

(x, i) - (ηX(x), i) - ηX(x)(i)

UA
ηUA- (U ◦ Σ ◦ U)A

U(δ)
- UA

a - (a, 0) - a(0)

UA
U(ζA)

- (U ◦ Π ◦ U)
εUA - UA

a - (a, a•) - a

ΠX
ζΠX- (Π ◦ U ◦ Π)X

Π(εX)
- ΠX

(x, y) -
(
(x, y), (y, x)

)
- (?, ?)

At the top we have ηX(x) = (x, 0) so that

ηX(x)(i) = (x, 0)(i) = (x, i)

140 5. Adjunctions

by considering the two cases for the tag. Next we have a(0) = a by definition. The third
composite is trivial. Finally we have

(?, ?) =
(
εX(x, y), εX(y, x)

)
= (x, y)

to complete the calculations. �

5.4.6 We use the notation of Solution 5.2.3. Thus we have

LX = X × I RY = (I ⇒ Y)

for sets or spaces X, Y .
For the first part we must show that for functions

X
f
- RY LX

g
- Y

both
f] = εY ◦ L(f) g[= R(g) ◦ ηX

hold. Thus we must evaluate the composites

LX
L(f)

- (L ◦R)Y
εY - Y X

ηX- (R ◦ L)X
R(g)

- RY

and remember that (·)] and (·)[merely shuffle brackets about. For (x, i) ∈ LX we have(
εY ◦ L(f)

)
(x, i) = εY

(
L(f)(x, i)

)
= εY

(
f(x), i

)
= f(x)(i)

as required. For x ∈ X we have(
R(g) ◦ ηX

)
(x) = R(g)

(
ηX(x)

)
= g ◦ ηX(x)

and then for i ∈ I we have(
R(g) ◦ ηX

)
(x)(i) =

(
g ◦ ηX(x)

)
(i) = g

(
ηX(x)(i)

)
= g(x, i)

as required.
For the second part we must show that

εLX ◦ L(ηX) = idX×I R(εY) ◦ ηRY = id I⇒Y

for arbitrary sets X and Y . For (x, i) ∈ LX we have(
εLX ◦ L(ηX)

)
(x, i) = εLX

(
L(ηX)(x, i)

)
= εLX

(
ηX(x), i

)
= ηX(x)(i) = (x, i)

as required. For each function p : I → Y we have(
R(εY) ◦ ηRY

)
(p) = R(εY)

(
ηRY (p)

)
= εY ◦

(
ηRY (p)

)
and this composite is a function I → Y . For each i ∈ Y we have(

R(εY) ◦ ηRY
)
(p)(i) = εY

(
ηRY (p)(i)

)
= εY (p, i) = p(i)

to give the required result. �

5.5. Free and cofree constructions 141

5.5 Free and cofree constructions

5.5.1 Consider any arrow

FA
g
- S

of Trg . We first check that

FA
g

- S

(F ◦G)S

εS

-

F (g[)
-

does commute (and then consider the required uniqueness). We use the selection of arrows

A
g[- GS S

idS - S

GS
idGS

- GS

and then apply (]) of (Nat). Thus

εS ◦ F (g[) = idS ◦ (idGS)] ◦ F (g[) = (G(idS) ◦ idGS ◦ g[)] = (g[)
] = g

as required.
For the uniqueness we consider any arrow

A
f
- GS for which g = εS ◦ F (f)

and show that, in fact, f = g[. We use the selection of arrows

A
f
- GS S

idS - S

GS
idGS

- GS

and then apply (]) of (Nat). Thus

g = εS ◦ F (f)

= (idGS)] ◦ F (f)

= idS ◦ (idGS)] ◦ F (f)

= (G(idS) ◦ idGS] ◦ f)] = f]

and hence
f = (f])[= g[

by a use of (Bij). �

142 5. Adjunctions

5.5.2 Let us first state the result we must obtain,

Let

Src
F
- Trg

be a functor, and suppose
G ε (·)[

is the data that provides a F-cofree solution. Then the object assignment G fills out to
a functor for which

F a G

with (·)[as the transposition assignment and ε as the counit.

On several occasions we invoke the unique factorization provided by the G-cofree property.
Our first job is to produce an arrow assignment to create the functor G. Consider any arrow

S
l
- T

of Trg . Let g be the composite

(F ◦G)S
εS - S

l
- T

and consider the commuting square

(F ◦G)S
F (g[)- (F ◦G)T

S

εS
?

l
- T

εT
?

provided by the F -cofree solution. We set

G(l) = g[= (l ◦ εS)[

for each Trg -arrow l, as above. In other words, for each such arrow l we take G(l) to be the
unique Src-arrow such that

(F ◦G)S
(F ◦G)(l)

- (F ◦G)T

S

εS
?

l
- T

εT
?

commutes. This uniqueness ensures that we have produced a functor G.
Consider arrows

R
k

- S
l
- T

5.5. Free and cofree constructions 143

of Trg . We have arranged that the following diagrams commute.

(F ◦G)R
(F ◦G)(k)

- (F ◦G)S
(F ◦G)(l)

- (F ◦G)T

R

εR
?

k
- S

εS
?

l
- T

εT
?

(F ◦G)R
(F ◦G)(l ◦ k)

- (F ◦G)T

R

εR
?

l ◦ k
- T

εT
?

We are given that F is a functor, so that top composite is

F (G(l) ◦G(k))

and hence
G(l) ◦G(k) = G(l ◦ k)

by the given uniqueness. A similar argument shows that G preserves identity arrows, and hence
we do have a functor. Furthermore, the commuting square we have produced ensures that ε is
natural.

We now begin to show that F a G using the given assignment (·)[.
For the time being fix A ∈ Src and S ∈ Trg , and consider the given assignment

Src[A,GS] - Trg [FA, S]

g[� g

between the two arrow sets.We show that this is a bijection.
By definition of F -cofree, for each arrow

FA
g
- S the associated arrow A

g[- GS

is the unique arrow such that

FA
g

- S

(5)

(F ◦G)S

εS

-

F (g[) -

commutes. Suppose
g1
[= g2

[

for two arrows g1, g2 from Trg [FA, S]. Then

g1 = εS ◦ F (g1
[) = εS ◦ F (g2

[) = g2

144 5. Adjunctions

to show that (·)[is injective. Consider any arrow f from Src[A,GS]. With

g = εS ◦ F (f)

we see that

FA
g

- S

(F ◦G)S

εS

-

F (f) -

commutes, and hence g[= f by the uniqueness in (5). This shows that (·)[is surjective, and
hence we do have a bijection.

To show that (·)[is natural consider any square

A Src[A,GS] �
(·)[

Trg [FA, S] S

B

k

6

Src[B,GT]

G(l) ◦ − ◦ k

?
�

(·)[
Trg [FB, T]

l ◦ − ◦ F (k)

?

T

l

?

induced by a pair of arrows k and l, as indicated. We must show that this square commutes, that
is

G(l) ◦ g[◦ k =
(
l ◦ g ◦ F (k)

)
[

where g is an arbitrary arrow from the top right hand corner. Let

f = G(l) ◦ g[◦ k h = l ◦ g ◦ F (k)

so that
f = h[

is required. To verify this we show that f satisfies the unique property of h[, namely that

FB
h

- T

(F ◦G)T

εT

-

F (f) -

commutes. To verify this we use the commuting properties of two earlier diagrams. Thus

εT ◦ F (f) = εT ◦ (F ◦G)(l) ◦ F (g[) ◦ F (k)

= l ◦ εT ◦ F (g[) ◦ F (k) = l ◦ g ◦ F (k) = h

as required.
This shows that we do have an adjunction F a G with (·)[as one of the transpositions. It

remains to show that the given ε is the counit of this adjunction. We require

εS =
(
idGS

)]

5.5. Free and cofree constructions 145

or, equivalently,
(εS)[= idGS

since, by definition, (·)] is the inverse of (·)[. Since

(F ◦G)S
εS - S

(F ◦G)S

εS

-

F (idGS) -

commutes, the required equality follows by the given property of (·)[. �

5.5.3 Recall that we have

ΣX = {(x, i) | x ∈ X, i = 0, 1} ηX(x) = (x, 0)

for each set X and x ∈ X . Consider any function

X
f

- A

from X to an algebra A. We require a morphism

ΣX
f]

- A such that f] ◦ ηX = f

and we must show there is only one such morphism.
Consider any x ∈ X with the two corresponding members

(x, 0) = ηX(x) (x, 1) = ηX(x)•

of ΣX . If there is such a morphism f] then

f](x, 0) = (f] ◦ ηX)(x) = f(x)

and
f](x, 1) = f]

(
(x, 0)•

)
=
(
f](x, 0)

)•
= f(x)•

where the third step uses the morphism property. This shows that there is at most one such
morphism f]. Exercise 5.2.2 shows that this f] is a morphism, and we have checked that the
triangle does commute. �

5.5.4 Recall that we have

ΠX = {(x, y) | x, y ∈ X} εX(x, y) = x

for each set X and x, y ∈ X . Consider any function

A
g

- X

from an algebra A to X . We require a morphism

A
g[- ΠX such that εX ◦ g[= g

146 5. Adjunctions

and we must show there is only one such morphism.
Consider any a ∈ A. We have

g[(a) = (x, y)

for some x, y ∈ X , and then

x = εX(x, y) = (ε ◦ g[)(a) = g(a)

to determine x. But now

(y, x) = (x, y)• = g[(a)• = g[(a
•) =

(
g(a•), z

)
for some z ∈ X . The third step uses the morphism property of g[, and the last step uses the
previous observation. This gives

x = g(a) y = g(a•)

that is
g[(a) =

(
g(a), g(a•)

)
for each a ∈ A. This shows there is at most one such morphism g[. Exercise 5.2.2 shows that
this g[is a morphism, and we have checked that the triangle does commute. �

5.5.5 We first deal with the Set example of Block 5.2.2. To do that we gather together all the
bits of gadgetry that we need.

We have a pair of functors

Set

F = (−× I)
-

�
G = (I ⇒ −)

Set

although for the free case we need only the object assignment of F , and for the cofree case we
need only the object assignment of G.

For the free case the arrow assignment of G is given by composition

Z
l
- Y - GZ - GY

p - l ◦ p

for functions as indicated. We also have functions

X
ηX- (G ◦ F)X = (I ⇒ (X × I))

where
ηX(x)(i) = (x, i)

for each x ∈ X, i ∈ I . We do not need the naturality of this. For an arbitrary function

X
f
- (I ⇒ Y)

we must show there is a unique function

X × I
f]
- Y

5.5. Free and cofree constructions 147

such that
G(f]) ◦ ηX = f

holds. If there is such a function f] then for each x ∈ X, i ∈ I we have

f](x, i) = f]
(
ηX(x)(i)

)
=
(
f] ◦ ηX(x)

)
(i)

=
(
G(f])

(
ηX(x)

))
(i)

=
((
G(f]) ◦ ηX

)
(x)
)

(i) = f(x)(i)

to show there is at most one such function f]. Almost the same calculation shows that this
function does make the triangle commute.

For the cofree case the arrow assignment of F is given by

Z
k

- Y - FZ - FY

(z, i) - (k(z), i)

for functions k, as indicated, and z ∈ Z, i ∈ I . We also have functions

(F ◦G)Y = (I ⇒ Y)× I
εY - Y

given by evaluation, that is
εY (p, i) = p(i)

for p ∈ (I ⇒ Y), i ∈ I . We do not need the naturality of this. For an arbitrary function

X × I
g
- Y

we must show there is a unique function

X
g[- (I ⇒ Y)

εY ◦ F (g[) = g

holds. If there is such a function g[then for each x ∈ X, i ∈ I we have

g[(x)(i) = εY
(
g[(x), i

)
= εY

(
F
(
g[
)
(x, i)

)
=
(
εY ◦ F (g[)

)
(x, i) = g(x, i)

to show there is at most one such function gf lat. Almost the same calculation shows that this
function does make the triangle commute.

For the Top case of Block 5.2.3 we use the same functions, but must show that certain of
them are continuous. This is straight forward. �

148 5. Adjunctions

5.6 Contravariant adjunctions

5.6.1 (a) This functor occurred in Block 3.3.2 and the exercises there.
(b) For finite subsets a, b of A we have

〈a〉 ∩ 〈b〉 = 〈a ∪ b〉

and hence these subsets do form a base for a topology.
(c) For an arbitrary monotone function

A
f

- B

between poset, the inverse image map

ΥB
φ = f←

- ΥA

does send upper sections to upper section, and hence is a function of the indicated type. To
show that φ is continuous we show that the inverse image function φ← sends basic open sets of
ΥA to basic open sets of ΥB. Consider any finite subset

a = {a1, . . . , am}

of A. Then, for each q ∈ ΥB we have

q ∈ φ←(〈a〉)⇐⇒ φ(q) ∈ 〈a〉
⇐⇒ a1, . . . , am ∈ f←(q)

⇐⇒ f(a1), . . . , f(am) ∈ q
⇐⇒ f [a] ⊆ q ⇐⇒ q ∈ 〈f [a]〉

and hence
φ←(〈a〉) = 〈f [a]〉

which is enough to show that φ is continuous.
(d) For an arbitrary poset A and space S we set up an inverse pair of bijections

Pos [A,OS] Top[S,ΥA]

f - fσ

φα � φ

between the indicated arrow sets.
Consider any monotone function f , as indicated. Let

a ∈ fσ(s)⇐⇒ s ∈ f(a)

for each s ∈ S and a ∈ A. We first check that fσ always returns an upper section ofA. Consider
elements a ≤ b of A, and a point s of S. Then, since f is monotone, we have

a ∈ fσ(s) =⇒ s ∈ f(a) ⊆ f(b) =⇒ b ∈ fσ(s)

5.6. Contravariant adjunctions 149

to show that fσ(s) ∈ ΥA. Now consider a finite subset

a = {a1, . . . , am}

of A. For each s ∈ S we have

s ∈ fσ←(〈a〉)⇐⇒ fσ(s) ∈ 〈a〉
⇐⇒ a ⊆ fσ(s)
⇐⇒ a1, . . . am ∈ fσ(s) ⇐⇒ s ∈ f(a1) ∩ · · · f(am)

and hence
fσ←(〈a〉) = f(a1) ∩ · · · f(am)

is open (since each f(ai) is open). Thus fσ is continuous.
This gives us an assignment in one direction. To obtain an assignment in the other direction

consider any continuous map φ, as indicated. Let

s ∈ φα(a)⇐⇒ a ∈ φ(s)

for each a ∈ A and s ∈ S. We first check that φα always returns an open set of S. Consider
element a ∈ A. Then for each s ∈ S we have

s ∈ φα(a)⇐⇒ a ∈ φ(s)

⇐⇒ {a} ⊆ φ(s)

⇐⇒ φ(s) ∈ 〈{a}〉 ⇐⇒ s ∈ φ←(〈{a}〉)

to show that φα(a) is open (since φ is continuous). Now consider elements a ≤ b of A. For
each s ∈ S we have

s ∈ φα(a) =⇒ a ∈ φ(s) =⇒ b ∈ φ(s) =⇒ s ∈ φα(b)

to show that φα is monotone.
This gives us the two assignments. We show they form an inverse pair. Consider any

monotone function f , as above. For a ∈ A, s ∈ S we have

s ∈ fσα(a)⇐⇒ a ∈ fσ(s)⇐⇒ s ∈ f(a)

to show that fσα = f for one of the inverse properties. A similar calculation shows the other
inverse properties.

(e) For each element a ∈ A let
h(a) = 〈{a}〉

that is
p ∈ h(a)⇐⇒ a ∈ p

for each p ∈ ΥA. This gives a function

h : A - O(ΥA)

and almost trivially it is monotone.

150 5. Adjunctions

For each element s ∈ S let η(s) be the set of open sets neighbourhoods of s, that is

U ∈ η(s)⇐⇒ s ∈ U

for each U ∈ OS. This gives a function

η : S - Υ(OS)

for almost trivially η(s) is an upper section of OS. We need to check that η is continuous.
We show that for each basic open set of Υ(OS) the inverse image across η is open in S.

Each such basic open set has the form

〈{U1, . . . , Um}〉

for U1, . . . , Um ∈ OS. Thus

P ∈ 〈{U1, . . . , Um}〉 ⇐⇒ U1, . . . , Um ∈ P

for each upper section P of OS. For each s ∈ S we have

s ∈ η←
(
〈{U1, . . . , Um}〉

)
⇐⇒ η(s) ∈ 〈{U1, . . . , Um}〉
⇐⇒ U1, . . . , Um ∈ η(s)

⇐⇒ s ∈ U1 ∩ · · · ∩ Um

so that
η←
(
〈{U1, . . . , Um}〉

)
= U1 ∩ · · · ∩ Um

which is open in S.
(f) So far we have hardly mentioned the required functorality and naturality conditions.

That is because they are ensured by a more general construction. Consider first the material of
Subsection 3.3.2 and Exercise 3.5.2. Let 2 = {0, 1} with the sierpinski topology (that is {1} is
open but {0} is not). Let

ΞS = Top[S,2]

the set of continuous characters of S. We partially order ΞS with the pointwise comparison.
There is an obvious bijection between

OS ΞS

and Exercise 3.5.2 shows that this is natural. Thus the two functors

Top
O,Ξ

- Pos

are naturally equivalent. In particular, we can replace O by the enriched hom-functor Ξ =
Top[−,2].

Now view 2 as a poset with 0 < 1. Let

ΠA = Pos [A,2]

the set of ‘monotone characters’ of A. There is an obvious bijection between

ΥA ΠA

5.6. Contravariant adjunctions 151

for we simply match each upper section of A with is characteristic function. We now use the
sierpinski topology on 2 to furnish ΠA as a space, the subspace of the product space. We check
that the bijection above is a homeomorphism. Thus we have two functors

Pos
Υ,Π

- Top

and with a little bit of work, we see these are naturally equivalent. In particular, we can replace
O by the enriched hom-functor Π = Pos [−,2].

The object 2 lives in both categories. It is both a poset and a topological space. It is a
schizophrenic object. Furthermore, it induces both of the functors. With this observation we
can check all the functorality and naturality required for the contravariant adjunction. In fact,
all the calculation can be done down in Set . The details are given in the next exercise. �

5.6.2 (a) Consider arrows

A
f
- AS S

φ
- SA

from the two arrow sets. These are functions in curried form.

f : A - S - F φ : S - A - F

By uncurrying these are essentially the same as the 2-placed functions

f : A× S - F φ : S × A - F

each of which consumes its inputs as a pair rather than one after the other. We chip the order of
these two inputs. Thus we say f and φ correspond precisely when

f(a)(s) = φ(s)(a)

for each a ∈ A and s ∈ S. I bet you didn’t know that curry and chips are part of the bread and
butter of certain parts of mathematics.

(b) Consider a diagram induced by a Alg -arrow l and a Spc-arrow λ.

f � - φ

A Alg [A,AS] Spc[S,SA] S

B

l

6

Alg [B,AT]

A(λ) ◦ − ◦ l

?

Spc[T,SB]

S(l) ◦ − ◦ λ

?

T

λ

6

g � ? - ψ

Across the top we have a corresponding pair f, φ of arrows, that is

f(a)(s) = φ(s)(a)

152 5. Adjunctions

for each a ∈ A and s ∈ S. The functors give us a pair g, ψ of arrows at the bottom. We must
show that these correspond, that is

(?) g(b)(t) = ψ(t)(b) (?)

for each b ∈ B and t ∈ T .
We have

A(λ) = − ◦ λ S(l) = − ◦ l

since both A,S are enriched hom-functors. The two functions

g = A(λ) ◦ f ◦ l ψ = S(l) ◦ φ ◦ λ

must be matched. For each b ∈ B and t ∈ T we have

g(b) = A(λ)
(
f
(
l(b)
))

= f
(
l(b)
)
◦ λ ψ(t) = S(l)

(
φ
(
λ(t)

))
= φ

(
λ(t)

)
◦ l

so that
g(b)(t) = f

(
l(b)
)(
λ(t)

)
ψ(t)(b) = φ

(
λ(t)

)(
l(b)
)

and hence the given correspondence between f, φ ensures the required correspondence between
g, ψ.

(c) For A ∈ Alg unit is induced by the identity arrow on SA.

A
hA- (A ◦S)A SA

idSA - S

Thus for each
p ∈ SA that is p : A - F

we have
hA(a)(p) = idSA(p)(a) = p(a)

so that hA(a) is ‘evaluation at a’. In the same way

ηS(s)(π) = π(s)

for each s ∈ S and π ∈ AS. �

6
Posets and monoid sets

6.1 Posets and complete posets

6.1.1 We show that f has a right adjoint precisely when f preserves suprema, that is

f(
∨
X) =

∨
f [X]

for each subset X of S.
Suppose first that f a g, that is

f(a) ≤ b⇐⇒ a ≤ g(b)

for all a ∈ S and b ∈ T . Consider any subset X ⊆ S. For each b ∈ T we have

f(
∨
X) ≤ b⇐⇒

∨
X ≤ g(b)

⇐⇒ (∀x ∈ X)[x ≤ g(b)]

⇐⇒ (∀x ∈ X)[f(x) ≤ b]⇐⇒
∨
f [X] ≤ b

to show that
f(
∨
X) =

∨
f [X]

as required.
Conversely, suppose f does preserve suprema. For each b ∈ T let

g(b) =
∨
X where x ∈ X ⇐⇒ f(x) ≤ b

to produce a function g : T - S. We easily check that g is monotone, and we show that
f a g as follows. Consider any b ∈ T with the associated set X . For each a ∈ S we have

f(a) ≤ b =⇒ a ∈ X =⇒ a ≤ g(b)

to give one of the required implications. For the other we use the preservation property of f .
Thus if

a ≤ g(b) =
∨
X

then
f(a) ≤ f(

∨
X) =

∨
f [X] ≤ b

as required.
The map f has a left adjoint precisely when it preserves infima. �

153

154 6. Posets and monoid sets

6.2 Two categories of complete posets

6.2.1 When they exists we have∨
∅ = ⊥ =

∧
S

∧
∅ = > =

∨
S

respectively. �

6.2.2 Consider the following 4-element poset.
• •

• •
The set of two lower nodes has two upper bounds but no supremum. �

6.2.3 We require two implications, but by symmetry it suffices to verify just one of them.
Suppose the poset S has all suprema. We show that S has all infima. Let X be an arbitrary
subset of X . Let `(X) be the set of all lower bounds of X . We must show that `(X) has a
largest member.

Since S has all suprema we may take

a =
∨
`(X)

and show that a is the infimum of X . Consider any x ∈ X and y ∈ `(X). We have

y ≤ x

by construction of `(X). Letting y range over `(X) we see that x is an upper bound of `(X),
and hence

a ≤ x

since a is the least upper bound of `(X). Letting x range over X this shows that a ∈ `(X), as
required. �

6.2.4 We use two subsets of the reals as posets. We draw these sets pointing upwards, with
larger number in higher positions. Consider the following two posets.

S T

• 3 •

◦ 2

• 1

• 0 •
On the right we have all the real numbers from 0 to 3 including these two end points. This poset
T is complete (by the Dedekind completeness of the reals). On the left we omit the central
third, we include 1 but exclude 2. This poset S is also complete. The only problem is to find
the infimum of its top half. That infimum is 1, whereas the infimum of the corresponding set
in T is 2. This observation shows that the inclusion of S into T is a

∨
-morphisms but not a∧

-morphism. �

6.3. Sections of a poset 155

6.3 Sections of a poset

6.3.1 Let X be any family of lower sections of the poset S. We show that each of
⋃
X and⋂

X is a lower section.
Consider any a ≤ x ∈

⋃
X . We have a ≤ x ∈ X for someX ∈ X . But now a ∈ X ⊆

⋃
X

to give a ∈
⋃
X .

Consider any a ≤ x ∈
⋂
X , and consider any X ∈ X . We have a ≤ x ∈ X , so that a ∈ X ,

and hence a ∈
⋂
X .

Consider any lower section X and any x ∈ X . We have ↓ x ⊆ X , so that⋃
{↓ x | x ∈ X} ⊆ X

and the converse inclusion is immediate. �

6.3.2 For a, b in the parent poset we have

a ≤ b =⇒ a ∈ ↓b =⇒ ↓a ⊆ ↓b a ≤ b =⇒ b ∈ ↑a =⇒ ↑b ⊆ ↑a

to show that η∃ is monotone, but a - ↑a is antitone. Taking complements is antitone, so η∀

is monotone. �

6.4 The two completions

6.4.1 For the second part we have

y ∈ (↑X)′ ⇐⇒ y /∈↑ X
⇐⇒ ¬(∃x)[x ∈ X & x ≤ y]
⇐⇒ (∀x)[x ∈ X ⇒ x � y]

and
y ∈

⋂
η∀[X]⇐⇒ (∀x)[x ∈ X ⇒ y ∈ η∀(x)]

⇐⇒ (∀x)[x ∈ X ⇒ y ∈ ↑(x)′]

⇐⇒ (∀x)[x ∈ X ⇒ x � y]

for the required result. �

6.4.2 For the second part consider any Y ∈ LS and let X = Y ′ so that

↑X = Y ′

to give
Y = (↑X)′ =

⋂
η∀[X]

by Exercise 6.4.1. Thus, assuming that g, h are
∧

-morphisms, we have

g(Y) = g
(⋂

η∀[X]
)

=
∧

(g ◦ η∀)[X]

h(Y) = h
(⋂

η∀[X]
)

=
∧

(h ◦ η∀)[X]

which leads to the required result. �

156 6. Posets and monoid sets

6.4.3 We deal with the ∀-version, in other words we show

f]
(⋂
X
)

=
∧
f][X]

for each X ⊆ LS.
Remembering this definition of this f], for each t ∈ T we have

t ≤ f]
(⋂
X
)
⇐⇒ t ≤

∧
f
[(⋂

X
)′]

⇐⇒ (∀s ∈ S)
[
s ∈

(⋂
X
)′ ⇒ t ≤ f(s)

]
⇐⇒ (∀s ∈ S)

[
t � f(s)⇒ s ∈

(⋂
X
)]

⇐⇒ (∀s ∈ S)(∀X ∈ X)[t � f(s)⇒ s ∈ X]

and
t ≤

∧
f][X]⇐⇒ (∀X ∈ X)[t ≤ f](X)]

⇐⇒ (∀X ∈ X)(∀s ∈ S)[s /∈ X ⇒ t ≤ f(s)]

⇐⇒ (∀X ∈ X)(∀s ∈ S)[t � f(s)⇒ s ∈ X]

which gives the required result. �

6.5 Three endofunctors on Pos

6.5.1 In each case the ∃-version is straight forward but the ∀-version need a little more care.
To produce the explicit description of ∀(f)(X) we remember how to take a negation through

quantifiers and connectives. We have

b ∈ ∀(f)(X)⇐⇒ b /∈ ↑f [X ′]

⇐⇒ ¬[b ∈ ↑f [X ′]]

⇐⇒ ¬(∃x ∈ S)[x ∈ X ′ & f(b) ≤ x]

⇐⇒ ¬(∃x ∈ S)[x /∈ X & f(b) ≤ x]

⇐⇒ (∀x ∈ S)[x ∈ X ⇒ f(b) ≤ x]

as required.
To show that ∀(f) is monotone consider lower sections X1 ⊆ X2 of S. For each b ∈

∀(f)(X1) and x ∈ S we have

f(x) ≤ b =⇒ x ∈ X1 =⇒ x ∈ X2

to verify that b ∈ ∀(f)(X2). The required implication also follows directly from the definition
of ∀(f).

To show that ∀ is a functor consider any pair

R
g

- S
f

- T

of monotone maps between posets. We require

∀(f ◦ g) = ∀(f) ◦ ∀(g)

6.6. Long strings of adjunctions 157

that is
∀(f ◦ g)(X) = ∀(f) ◦ ∀(g)(X)

for all X ∈ LR. Unravelling the definition we see that

↑(f ◦ g)[X ′] = ↑f [↑g[X ′]]

is required. Consider any c ∈ ↑f [↑g[X ′]]. We have f(b) ≤ c for some b ∈ ↑g[X ′] which gives
g(a) ≤ b for some a ∈ X ′. Then

f(g(a)) ≤ f(b) ≤ c

to show that
c ∈ ∀(f ◦ g)(X)

and so obtain one of the two required inclusions.
The other inclusion follows by a similar argument. �

6.5.2 A proof of the left hand equivalence is straight forward.
For the right hand equivalence consider any X ∈ LS and Y ∈ LT . Then

Y ⊆ ∀(f)(X)⇐⇒ Y ⊆ (↑f [X ′])′

⇐⇒ ↑f [X ′] ⊆ Y ′

⇐⇒ f [X ′] ⊆ Y ′

⇐⇒ (∀x ∈ S)[x ∈ X ′ ⇒ f(x) ∈ Y ′]
⇐⇒ (∀x ∈ S)[f(x) ∈ Y ⇒ x ∈ X]

⇐⇒ (∀x ∈ S)[x ∈ f←(Y)⇒ x ∈ X]⇐⇒ f←(Y) ⊆ X

as required. �

6.6 Long strings of adjunctions

6.6.1 There are many possible examples all with small posets. For instance we have

∃(f)(∅) = ∅ ∀(f)(∅) =
(
↑f [S]

)′
so if ↑f [S] is not the whole of T then the two induced maps are different. Thus

S
f

- T

• - •
•

is a very small example. �

6.6.2 For Y ∈ LT and a ∈ S we have

a ∈ ∃(g)(Y)⇐⇒ (∃y ∈ T)[a ≤ g(y) & y ∈ Y]

⇐⇒ (∃y ∈ T)[f(a) ≤ y & y ∈ Y]

⇐⇒ f(a) ∈ Y ⇐⇒ a ∈ I(f)(Y)

158 6. Posets and monoid sets

to show ∃(g) = I(f).
For X ∈ LS and b ∈ T we have

b ∈ ∀(f)(X)⇐⇒ (∀x ∈ S)[f(x) ≤ b⇒ x ∈ X]

⇐⇒ (∀x ∈ S)[x ≤ g(b)⇒ x ∈ X]

⇐⇒ g(b) ∈ X ⇐⇒ b ∈ I(g)(X)

to show ∀(f) = I(g). �

6.6.3 You will probably find that the components are listed the other way up with a left adjoint
below its right adjoint. Show

δn+1
i+1 a σn+1

i a δn+1
i

and
∃(δni) = δn+1

i+1 ∀(δni) = δn+1
i

∃(δn+1
i) = δn+2

i+1 ∀(δn+1
i) = δn+2

i

for all 0 ≤ i ≤ n. This is a bit fiddly, but not difficult. �

6.7 Two adjunctions for R-sets

6.7.1 (a) Let R = {±1} under multiplication. For an R-set A let

a• = a(−1)

for each a ∈ A.
(b) Let R = {1, 0} under multiplication. For an R-set A let

a• = a0

for each a ∈ A.
(c) Let R = {±1,±i} under multiplication. For an R-set A let

a• = ai •a = a(−1)

for each a ∈ A.
(d) With ω3 = 1 let R = {1, ω, ω2} under multiplication. For an R-set A let

a• = aω •a = aω2

for each a ∈ A.

Other roots of unity give many other examples of this kind. These algebras usually need
more than two carried 1-placed operations. As a bit of entertainment look for a description
using ϑ42 = 1. �

6.8. The upper left adjoint 159

6.8 The upper left adjoint

6.8.1 We require (
(x, r)s

)
t = (x, r)(st)

for all ∈ X and r, s, t ∈ R. However, since R is associative, we see that both sides evaluate to
(x, rst) for the required result. �

6.8.2 For an arbitrary function

Y
g
- X

we require

ΣY
Σ(g)

- ΣX

to be a morphism, that is
Σ(g)

(
(y, r)s

)
=
(
Σ(g)(y, r)

)
s

for each y ∈ Y and r, s ∈ R. But, remembering how ΣY and ΣX are structured, we have

Σ(g)
(
(y, r)s

)
= Σ(g)(y, rs) =

(
g(y), rs

)
=
(
(g(y), r)

)
s =

(
Σ(g)(y, r)

)
s

as required.
We also require that the arrow assignment Σ passes across composition, that is

Σ(h ◦ g) = Σ(h) ◦ Σ(g)

for each pair

Z
g

- Y
g
- X

of composible sets. By evaluating at an arbitrary pair (z, r) ∈ ΣZ, we see that this is almost
immediate. �

6.8.3 Consider any morphism

ΣX
f
- A

to an arbitrary R-set. We have
(x, r) = ηX(x)r

for each (x, r) ∈ ΣX , and hence

f
(
(x, r)

)
= f

(
ηX(x)r

)
= f

(
ηX(x)

)
r =

(
f ◦ ηX

)
(x)r

since f is a morphism.
Applying this observation to a parallel pair of morphisms gives the required result. �

160 6. Posets and monoid sets

6.8.4 We have seen that there is only one possible function g], that given by

g](x, r) = g(x)r

for x ∈ X and r ∈ R. Since

(g] ◦ ηX)(x) = g]
(
ηX(x)

)
= g](x, 1) = g(x)1 = g(x)

we see that this function does make the triangle commute (in Set). Thus it suffices to show that
g] is a morphism.

We require
g]
(
(x, r)s

)
= g](x, r)s

for each x ∈ X and r, s ∈ R. Remembering the way ΣX is structured we have

g]
(
(x, r)s

)
= g](x, rs) = g(x)rs =

(
g(x)r

)
s = g](x, r)s

as required. �

6.8.5 For an arbitrary function

Y
g
- X

we apply Theorem 6.8.5 to the composite

Y
g
- X

ηY - ΣX

to obtain Σ(g). Thus Σ(g) is the unique morphism for which the square

Y
g
- X

Σ(g) =
(
ηX ◦ g

)]
ΣY

ηY
?

- ΣX

ηX
?

commutes. This is defined in equational form on the right. Evaluating at an arbitrary (y, r) ∈
ΣY we have

Σ(g)(y, r) =
(
ηX ◦ g

)]
(y, r)

=
(
ηX ◦ g

)
(y)r

= ηX
(
g(y)

)
r

= (g(y), 1)r = (g(y), r)

which agrees with Definition 6.8.2. At the last step of this calculation we remember how ΣX
is structured. �

6.8. The upper left adjoint 161

6.8.6 As in the subsection, we must show that

ηX ◦ g = Σ(g) ◦ ηY

where

Y
g
- X

is an arbitrary function. To do that we evaluate both sides at an arbitrary y ∈ Y . We have(
ηX ◦ g

)
(y) = ηX

(
g(y)

)
=
(
g(y), 1

)
and (

Σ(g) ◦ ηY
)
(y) = Σ(g)

(
ηY (y)

)
= Σ(g)

(
y, 1
)

=
(
g(y), 1

)
to give the required result. �

6.8.7 We require
εA
(
(a, r)s

)
=
(
εA(a, r)

)
s

for each a ∈ A and r, s ∈ R. But

εA
(
(a, r)s

)
= εA(a, rs) = a(rs)

(
εA(a, r)

)
s = (ar)s

so it suffices to remember that A is an R-set. �

6.8.8 As in the subsection, we must show that

εB ◦ Σ(f) = f ◦ εA

where

A
f

- b

is an arbitrary morphism. To do that we evaluate both sides at an arbitrary (a, r) ∈ ΣA. We
have (

εB ◦ Σ(f)
)
(a, r) = εB

(
Σ(f)(a, r)

)
= εB

(
f(a), r

)
= f(a)r

and
f
(
◦ εA

)
(a, r) = f

(
εA(a, r)

)
= f(ar)

so remembering that f is a morphism gives the required result. �

162 6. Posets and monoid sets

6.8.9 For a given morphism

ΣX
f
- A

suppose there is a function

X
g

- A such that εA ◦ Σ(g) = f

holds. For each (x, r) ∈ ΣX we have(
εA ◦ Σ(g)

)
(x, r) = εA

(
Σ(g)(x, r)

)
= εA

(
g(x), r

)
= g(x)r

to give
g(x)r = f(x, r)

for each such x and r. In particular, we have

g(x) = f(x, 1)

to show there is at most one such function g.
It suffices to show that this particular function does make the triangle commute.
For this function g we have(

εA ◦ Σ(g)
)
(x, r) = g(x)r = f(x, 1)r = f(x, r)

where at the last step we remember that f is a morphism and the way that ΣX is structured. �

6.9 The upper adjunction

6.9.1 Consider first the composite

ΣX
Σ(ηX)

- (Σ ◦ U ◦ Σ)X
εΣX- ΣX

on ΣX . We must show that this is the identity function on ΣX .
For each

(x, r) ∈ ΣX

we have
Σ(ηX)(x, r) = (ηX(x), r)

where
ηX(x) = (x, 1)

by the definitions of Σ and η. Thus(
εΣX ◦ Σ(ηX)

)
(x, r) = εΣX(ηX(x), r) = ηX(x)r

by the definition of η. We now remember the action on ΣX to get(
εΣX ◦ Σ(ηX)

)
(x, r) = ηX(x)r = (x, 1)r = (x, r)

for the required result.

6.9. The upper adjunction 163

Next consider the composite

UA
ηUA- (U ◦ Σ ◦ U)A

U(εA)
- UA

on UA. In terms of functions he two components are

A
η

- ΣA ΣA
ε

- A

a - (a, 1) (a, r) - ar

so the composite is

A
η

- ΣA
ε

- A

a - (a, 1) - a1 = a

the identity on A, as required. �

6.9.2 For an arbitrary function

X
g

- A

and x ∈ X we have(
εA ◦ Σ(g)

)
(x) = εA

(
Σ(g)(x)

)
= εA

(
g(x), r

)
= g(x)r

which agrees with the suggested g].
For an arbitrary function

X ×R
f
- A

and (x, r) ∈ X ×R we have(
U(f) ◦ ηX

)
(x, r) = f

(
ηX(x, r)

)
= f(x, 1)

which agrees with the suggested f[. �

6.9.3 Remembering how ΣX is structured, we require(
g](x, r)

)
s = g]

(
(x, r)s

)
for each x ∈ X and r, s ∈ R. But(

g](x, r)
)
s =

(
g(x)r

)
s g]

(
(x, r)s

)
g](x, rs) = g(x)(rs)

so that fact that the target of g is an R-set gives the required result. �

164 6. Posets and monoid sets

6.9.4 For an arbitrary function

X
g

- A

the equality
g][= g

is almost trivial.
For an arbitrary morphism

ΣX
f
- A

and (x, r) ∈ ΣX we have

f[
](x, r) = f[(x)r = f(x, 1)r = f

(
(x, 1)r

)
= f(x, r)

as required. At the last two steps remember that f is a morphism and how ΣX is structured. �

6.9.5 For (]) we must show that(
U(l) ◦ g ◦ k

)]
=
(
l ◦ g] ◦ Σ(k)

)
for each pair k, g of functions and morphism l, as indicated in the section. To do that we evaluate
both sides at an arbitrary (y, r) ∈ ΣY . Using the definition of (·)] we have(

U(l) ◦ g ◦ k
)]

(y, r) =
(
l ◦ g ◦ k

)
(y)r = l

(
(g ◦ k)(y)

)
r = l

(
(g ◦ k)(y)r

)
since l is a morphism. We also have(

l ◦ g] ◦ Σ(k)
)
(y, r) =

(
l ◦ g]

)(
Σ(k)(y, r)

)
=
(
l ◦ g]

)(
k(y), r

)
= l
(
g]
(
k(y), r

))
= l
(
g
(
k(y)

)
r
)

to give the required result.
For ([) we must show (

l ◦ f[◦ k
)

=
(
l ◦ f ◦ Σ(k)

)
[

for each function k and pair f, l of morphisms, as indicated in the section. To do that we evaluate
both sides at an arbitrary y ∈ Y . Using the definition of (·)[and Σ we have(

l ◦ f[◦ k
)
(y) = l

(
f[
(
k(y)

))
= l
(
f
(
k(y), 1

))
=
(
l ◦ f

)(
k(y), 1

)
and (

l ◦ f ◦ Σ(k)
)
[
(y) =

(
l ◦ f ◦ Σ(k)

)
(y, 1)

=
(
l ◦ f

)(
Σ(k)(y, 1)

)
=
(
l ◦ f

)(
k(y), 1

)
to give the required result. �

6.10. The lower adjunction 165

6.10 The lower right adjoint

6.10.1 We require
(hr)s = hrs

for each function h : R→ X and r, s ∈ R. But for each r, s, t ∈ R we have

(hr)s(t) = hr(st) = h(r(st)) = h((rs)t) = hrs(t).

for the required result. �

6.10.2 For each pair of functions

R
h

- X
g
- Y

we require
Π(g)(hr) =

(
Π(g)(h)

)r
that is

g ◦ hr = (g ◦ h)r

for each r ∈ R. But for each r, s ∈ R we have

(g ◦ hr)(s) = g
(
hr(s)

)
= g
(
h(rs)

)
=
(
g ◦ h

)
(rs) = (g ◦ h)r(s)

for the required result. �

6.10.3 Remembering how ΠA is structured we require

ηA(as) = ηA(a)s

for each a ∈ A and s ∈ R. To verify this we evaluate both sides at an arbitrary r ∈ R. Thus

ηA(as)(r) = (as)r = a(sr) = ηA(a)(sr) = ηA(a)s(r)

as required. �

6.10.4 Referring to the diagram we require

ηB ◦ f = Π(f) ◦ ηA

for an arbitrary morphisms f , as in the section. Thus we require

ηB
(
f(a)

)
= Π(f)

(
ηA(a)

)
for each a ∈ A. Remembering the definition of Π this is

ηB
(
f(a)

)
= f ◦ ηA(a)

so we evaluate both sides at an arbitrary r ∈ R. We have

ηB
(
f(a)

)
(r) = f(a)r

(
f ◦ ηA(a)

)
(r) = f(ηA(r)) = f(ar)

so that remembering that f is a morphism gives the required result. �

166 6. Posets and monoid sets

6.10.5 It suffices to show that the composite

Π(f]) ◦ ηA

is the given morphism f . To do that we first evaluate at an arbitrary a ∈ A. This gives(
Π(f]) ◦ ηA

)
(a) = Π(f])

(
ηA(a)

)
= f] ◦ ηA(a)

by the construction of Π. This is a function R - A, so we evaluate at an arbitrary r ∈ R to
get (

Π(f]) ◦ ηA
)
(a)(r) = f]

(
ηA(a)(r)

)
= f](ar) = f(ar)(1)

by the construction of f].
We now remember that f is a morphism, and the way ΠX is structured. Thus(

Π(f]) ◦ ηA
)
(a)(r) = f(ar)(1) = f(a)r(1) = f(a)(r1) = f(a)(r)

to give the required result. �

6.10.6 Consider any morphism

A
k
- ΠX

from an R-sets to a cofree R-set. Remembering how ΠX is structured we have

k(a)(r) = k(a)(r1) = k(a)r(1) = k(ar)(1) =
(
εX ◦ k

)
(ar)

where the third equality holds since k is a morphism. �

6.10.7 We require
εY ◦ Π(g) = g ◦ εX

for an arbitrary function

X
g
- Y

between sets. To verify this we evaluate at an arbitrary function h : R→ X . Thus(
εY ◦ Π(g)

)
(h) = εY

(
Π(g)(h)

)
= εY (g ◦ h)

= (g ◦ h)(1)

= g
(
h(1)

)
= g
(
εY (h)

)
=
(
g ◦ εX

)
(h)

for the required result. �

6.10.8 Consider the 2-step function g[given by

g[(a)(r) = g(ar)

for each a ∈ A and r ∈ R. We have(
εX ◦ g[

)
(a) = εX

(
g[(a)

)
= g[(a)(1) = g(a)

6.11. The lower adjunction 167

so the triangle does commute. It remains to show that g[is a morphism.
Remembering the way ΠX is structured, we require

g[(ar) = g[(a)r

for each a ∈ A and r ∈ R. To check this we evaluate both sides at an arbitrary s ∈ R. Thus

g[(ar)(s) = g
(
(ar)s

)
g[(a)r(s) = g[(a)(rs) = g

(
a(rs)

)
which, since A is an R-set, gives the required result. �

6.11 The lower adjunction

6.11.1 For each a ∈ A we have(
εΠA ◦ U(ηA)

)
(a) = εΠA

(
ηA(a)

)
= ηA(a)(1) = a1 = a

to verify the left hand equality.
For each function h : R→ X we have(

Π(εX) ◦ ηΠX

)
(h) = Π(εX)

(
ηΠX(h)

)
= εX ◦ ηΠX(h)

and we must show that this is just the function h. To do that we evaluate at an arbitrary r ∈ R.
Thus (

Π(εX) ◦ ηΠX

)
(h)(r) = εX

(
ηΠX(h)(r)

)
= εX

(
hr
)

= hr(1) = h(r)

to give the required result. �

6.11.2 For the left hand equality we evaluate the compound

A
f
- ΠX

εX - X

at an arbitrary a ∈ A. Thus (
εX ◦ f

)
(a) = εX

(
f(a)

)
= f(a)(1)

as required.
For the right hand equality we first observe that the compound

A
ηA- (Π ◦ U)A

Π(g)
- ΠX

is a 2-step function
A - R - X

so we evaluate first at a ∈ A and then at r ∈ R. Thus we obtain(
Π(g) ◦ ηA

)
(a) = Π(g)

(
ηA(a)

)
= g ◦ ηA)(a)

followed by (
Π(g) ◦ ηA

)
(a)(r) = g

(
ηA(a)(r)

)
= g(ar)

for the required result. �

168 6. Posets and monoid sets

6.11.3 For each morphism

A
f
- ΠX

we require
f][= f

that is
f][(a)(r) = f(a)(r)

for each a ∈ A and r ∈ R. But we have

f][(a)(r) = f](ar) = f(ar)(1) = f(a)r(1) = f(a)(r1) = f(a)(r)

as required. At the final couple of steps we remember that f is a morphism and how ΠX is
structured.

For each function

A
g

- X

we require
g[
] = g

that is
g[
](a) = g(a)

for each a ∈ A. But we have

g[
](a) = g[(a)(1) = g(a1) = g(a)

as required. �

6.11.4 For the given function g we require

g[(ar) = g[(a)r

for each a ∈ A and r ∈ R. To verify this we evaluate both sides at an arbitrary s ∈ R. Thus

g[(ar)(s) = g
(
(ar)s

)
g[(a)r(s) = g[(a)(rs) = g

(
a(rs)

)
to give the required result. �

6.11. The lower adjunction 169

6.11.5 To prove (
Π(l) ◦ f ◦ k

)]
=
(
l ◦ f] ◦ U(k)

)
it is convenient to set

m = (f ◦ k)

so that m is a morphism. For each b ∈ B we have(
Π(l) ◦ f ◦ k

)]
(b) =

(
Π(l) ◦m

)]
(b)

(
l ◦ f] ◦ U(k)

)
(b) = l

(
f]
(
k(b)

))
=
(
Π(l) ◦m

)
(b)(1) = l

(
f
(
k(b)

)
(1)
)

= Π(l)
(
m(b)

)
(1) = l

(
m(b)(1)

)
=
(
l ◦m(b)

)
(1) =

(
l ◦m(b)

)
(1)

to give the required result.
To prove

Π(l) ◦ g[◦ k =
(
l ◦ g ◦ U(k)

)
[

it is convenient to set
n = (l ◦ g)

so that n is a mere function. For each b ∈ B we have(
Π(l) ◦ g[◦ k

)
(b) = Π(l)

(
g[
(
k(b)

))
= l ◦

(
g[
(
k(b)

))
and hence for each r ∈ R we have(

Π(l) ◦ g[◦ k
)
(b)(r) =

(
l ◦
(
g[
(
k(b)

)))
(r)

= l
(
g[
(
k(b)

)
(r)
)

= l
(
g
(
k(b)r

))
= n

(
k(b)r

)
to evaluate the left hand side. In a similar way, for the right hand side we have(

l ◦ g ◦ U(k)
)
[
(b)(r) =

(
n ◦ k

)
(br) = n

(
k(br)

)
which, since k is a morphism, gives the required result. �

