Skip to content

All SAP systems will be unavailable on Saturday 10th December 2022 from 0800-1800 UK Time.

If you can’t place an order, please contact Customer Services to complete your order.

UK/ROW directcs@cambridge.org +44 (0) 1223 326050 | US customer_service@cambridge.org 1 800 872 7423 or 1 212 337 5000 | Australia/New Zealand enquiries@cambridge.edu.au 61 3 86711400 or 1800 005 210, New Zealand 0800 023 520

Register Sign in Wishlist
Regular Variation

Regular Variation

£91.99

Part of Encyclopedia of Mathematics and its Applications

  • Date Published: June 1989
  • availability: Available
  • format: Paperback
  • isbn: 9780521379434

£ 91.99
Paperback

Add to cart Add to wishlist

Other available formats:
eBook


Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields.

    Reviews & endorsements

    'The book is beautifully written with an attractive style of presenting main results then discussing variants immediately in a smaller typeface. The exposition is precise and succinct, yet enough detail is provided for main proofs to be verified. Thus the book will appeal to the student as much as to the specialist. With the importance of the subject to classical analysis as well as to the various fields of application, it seems destined to become a classic. Students in need of inspiration for problems will find plenty here as well.' Mathematical Reviews

    'The authors presented themselves with an enormous task in gathering material from widely scattered areas to illustrate a single theme. It is a measure of how well they have succeeded that everything now seems coherent and interwoven. For this they deserve our sincere thanks.' Bulletin of the London Mathematical Society

    'An opera of real analysis …' Bulletin of the American Mathematical Society

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: June 1989
    • format: Paperback
    • isbn: 9780521379434
    • length: 516 pages
    • dimensions: 234 x 156 x 25 mm
    • weight: 0.797kg
    • availability: Available
  • Table of Contents

    Preface
    Preface to the paperback edition
    1. Karamata theory
    2. Further Karamata theory
    3. De Haan theory
    4. Abelian and Tauberian theorems
    5. Mercerian theorems
    6. Applications to analytic number theory
    7. Applications to complex analysis
    8. Applications to probability theory
    Appendices
    References.

  • Authors

    N. H. Bingham, Royal Holloway, University of London

    C. M. Goldie, University of Sussex

    J. L. Teugels, Katholieke Universiteit Leuven, Belgium

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×