Ordered Permutation Groups
£62.99
Part of London Mathematical Society Lecture Note Series
- Author: A. M. W. Glass
- Date Published: January 1982
- availability: Available
- format: Paperback
- isbn: 9780521241908
£
62.99
Paperback
Other available formats:
eBook
Looking for an inspection copy?
This title is not currently available on inspection
-
As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals.
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: January 1982
- format: Paperback
- isbn: 9780521241908
- length: 332 pages
- dimensions: 228 x 152 x 19 mm
- weight: 0.499kg
- availability: Available
Table of Contents
Part I. Opening the innings:
1. Introduction
2. Doubly Transitive A
Part II. The structure theory:
3. Congruences and blocks
4. Primitive ordered permutation groups
5. The wreath product
Part III. Applications to ordered permutation groups:
6. Simple-permutation groups
7. Uniqueness of representation
8. Pointwise suprema and closed subgroups
Part IV. Applications to lattice-ordered groups:
10. Embedding theorums for lattice-ordered groups
11. Normal valued lattice-ordered groups
Part V. The author's perogative:
12. Algebraically closed lattice-ordered groups
13. The word problem for lattice-ordered groups.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×