Categorical Homotopy Theory
£82.99
Part of New Mathematical Monographs
- Author: Emily Riehl, Harvard University, Massachusetts
- Date Published: August 2014
- availability: Available
- format: Hardback
- isbn: 9781107048454
£
82.99
Hardback
Other available formats:
eBook
Looking for an inspection copy?
This title is not currently available on inspection
-
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Read more- Gives a unified presentation of the theory of homotopy limits and colimits
- Isolates the key categorical components of the definition of a model category
- Discusses the enriched category theory relevant to homotopy theory
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: August 2014
- format: Hardback
- isbn: 9781107048454
- length: 372 pages
- dimensions: 229 x 152 x 25 mm
- weight: 0.72kg
- contains: 55 exercises
- availability: Available
Table of Contents
Part I. Derived Functors and Homotopy (Co)limits:
1. All concepts are Kan extensions
2. Derived functors via deformations
3. Basic concepts of enriched category theory
4. The unreasonably effective (co)bar construction
5. Homotopy limits and colimits: the theory
6. Homotopy limits and colimits: the practice
Part II. Enriched Homotopy Theory:
7. Weighted limits and colimits
8. Categorical tools for homotopy (co)limit computations
9. Weighted homotopy limits and colimits
10. Derived enrichment
Part III. Model Categories and Weak Factorization Systems:
11. Weak factorization systems in model categories
12. Algebraic perspectives on the small object argument
13. Enriched factorizations and enriched lifting properties
14. A brief tour of Reedy category theory
Part IV. Quasi-Categories:
15. Preliminaries on quasi-categories
16. Simplicial categories and homotopy coherence
17. Isomorphisms in quasi-categories
18. A sampling of 2-categorical aspects of quasi-category theory.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×