Characteristic Classes and the Cohomology of Finite Groups
£36.99
Part of Cambridge Studies in Advanced Mathematics
- Author: C. B. Thomas
- Date Published: November 2008
- availability: Available
- format: Paperback
- isbn: 9780521090650
£
36.99
Paperback
Looking for an inspection copy?
This title is not currently available on inspection
-
The purpose of this book is to study the relation between the representation ring of a finite group and its integral cohomology by means of characteristic classes. In this way it is possible to extend the known calculations and prove some general results for the integral cohomology ring of a group G of prime power order. Among the groups considered are those of p-rank less than 3, extra-special p-groups, symmetric groups and linear groups over finite fields. An important tool is the Riemann - Roch formula which provides a relation between the characteristic classes of an induced representation, the classes of the underlying representation and those of the permutation representation of the infinite symmetric group. Dr Thomas also discusses the implications of his work for some arithmetic groups which will interest algebraic number theorists. Dr Thomas assumes the reader has taken basic courses in algebraic topology, group theory and homological algebra, but has included an appendix in which he gives a purely topological proof of the Riemann - Roch formula.
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: November 2008
- format: Paperback
- isbn: 9780521090650
- length: 144 pages
- dimensions: 229 x 152 x 9 mm
- weight: 0.22kg
- availability: Available
Table of Contents
1. Group cohomology
2. Products and change of group
3. Relations with subgroups and duality
4. Spectral sequences
5. Representations and vector bundles
6. Bundles over the classifying space for a discrete group
7. The symmetric group
8. Finite groups with p-rank less than or equal to 2
9. Linear groups over finite fields.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×