
Autoencoding Pixies
Guy Emerson

The aim of distributional semantics is to learn the meanings of words
from a corpus of text. Below are six instances of the word “pepper”,
from the English Wikipedia. From these, a human might infer that pep-
pers are plants cultivated for food. Distributional semantics develops
algorithms to learn this kind of information automatically.

... annuum includes the “bell pepper” variety, which is sold in ...

... Ideal growing conditions for peppers include a sunny position with ...

... capsaicin in a pungent (hot) pepper is concentrated in blisters ...

... Pickled or marinated peppers are frequently added to ...

... In Hungary, sweet yellow peppers – along with tomatoes – are ...

... genome. Over 75% of the pepper genome is composed of ...

The aim of formal semantics is to develop mathematical models of
meaning. A widely used approach is truth-conditional semantics, which
describes meaning in terms of truth, relative to a model. A model repre-
sents the world – for example, the toy model below consists of fourteen
entities. The meaning of the word “pepper” is the set of entities for
which it is true, indicated by the orange line.

In this poster, I will show:

� How to learn truth-conditional semantics from a corpus

� How this can be done efficiently

� How this improves performance on semantic tasks

Representing the meaning of a word as a set of entities is awkward if
we don’t already know all entities. We can instead view the meaning of
a word as a way of classifying each entity, based on its features. This is
shown below, where each image is not an individual entity, but rather
a representation of an entity’s features. I will call such a representation
a pixie. The meaning of a word is a truth-conditional function, mapping
pixies to probabilities of truth.

0

1

The aim is to define a machine learning model that uses truth-
conditional functions, and train the model on a corpus.

chef cut pepper

ARG1 ARG2

Given a corpus parsed into seman-
tic dependency graphs, as shown
here, the model can learn from pre-
cise linguistic relationships. A suit-
able corpus is WikiWoods, a parsed
version of the English Wikipedia.

So, more precisely, the aim is to define a model that can generate de-
pendency graphs, and optimise the model so that it generates graphs
which closely match the graphs observed in the corpus.

Below is a probabilistic graphical model that generates dependency
graphs. The idea is that each observed dependency graph describes
an unobserved situation consisting of multiple entities. For example,
the graph above describes a situation with a chef, a pepper, and a cut-
ting event. Each of these latent entities is represented by a pixie.

Y ZX
ARG2ARG1

∈ X

Tr, X Tr, Y Tr, Z

∈{>,⊥} V

P Q R

∈ V

Each node is a random variable.
Nodes in the top row are entities,
each represented by a pixie in the
space X . Nodes in the middle row
are truth values, either true (>) or
false (⊥). The rectangular plate de-
notes repetition of nodes: for each
word r in the vocabulary V, it can
be true or false for each of the en-
tities. Finally, nodes in the bottom
row are words. For each entity, the
model chooses one word out of all
the words that are true.

This model has two parts that must be optimised: the world model,
which captures how pixies co-occur with each other; and the lexical
model, which consists of a truth-conditional function for each word.

A probabilistic generative model can be trained by maximising the like-
lihood of the observed data. This requires inferring the latent pixies,
but unfortunately, exact calculations are intractable. I propose using
amortised variational inference to approximately infer the latent pixies.

Y ZX

h(X) h(Y) h(Z)

e(p) e(q) e(r)

1
,s

e
lf

1,
A
R
G
1

1,A
R
G
1 −
1

1
,s

e
lf

1,
A
R
G
2
−1 1,A

R
G
2

1
,s

e
lf

2
,s

e
lf

2,
A
R
G
1

2,A
R
G
1 −
1

2
,s

e
lf

2,
A
R
G
2
−1 2,A

R
G
2

2
,s

e
lf

Further, I propose using a graph-
convolutional network to perform
variational inference. The input is
a dependency graph, and the out-
put is a predicted pixie for each
node. At the bottom, the network
is initialised with an embedding for
each word. (For example, p, q, r
could be “chef”, “cut”, “pepper”.)
These pass through two convolu-
tional layers, to get the predicted
pixies at the top. In each layer,
each node is updated based on its
neighbours. This allows the predic-
tions to be contextualised: for ex-
ample, peppers are not cut in the
same way that grass is cut.

The Pixie Autoencoder is the combination of the generative model and
the inference network. They are trained together: the generative model
is trained using the inference network’s predictions and the inference
network is trained to approximately fit the generative model.

Y ZX

h(X) h(Y) h(Z)

e(p) e(q) e(r)

T,Y

The Pixie Autoencoder can be used
to perform logical inference. Given
a dependency graph, we could ask
what other words would be true of
the same entities. For example, if
a chef is cutting a pepper, is that
cutting event also a slicing event?
Or a mowing event? (Presumably
yes and no, respectively.) To an-
swer such questions, the inference
network can be applied to the de-
pendency graph, and then a truth-
conditional function from the gen-
erative model can be applied to the
relevant pixie node. This gives the
truth value node at the top, where
 could be “slice” or “mow”.

The GS2011 dataset evaluates semantic similarity in context, compar-
ing pair of verbs with the same subject and object. For example, a chef
cutting a pepper is similar to a chef slicing a pepper, but not very sim-
ilar to a chef mowing a pepper. The dataset contains 199 pairs, with
similarity judgements from multiple human annotators. Given below
are Spearman rank correlations with the average judgements.

Model Correlation

Word2Vec .348

BERT .446

Pixie Autoencoder .504

The Pixie Autoencoder is compared
against two established models,
Word2Vec (which represents each
word as a vector), and BERT (which
predicts contextualised vectors).

BERT has been found effective on a range of other tasks. It is a larger
model than the Pixie Autoencoder, and has been trained on more data.
The higher performance of the Pixie Autoencoder suggests that linguis-
tic structure is helpful for fine-grained semantic tasks.

For full details, and for further results, read the paper:
https://arxiv.org/abs/2005.02991


