Group Theoretic Proof of Infinitude of Primes

Lemma. If there are finitely many primes namely $p_1, p_2, p_3, ..., p_n$, and $n = p_1.p_2.p_3....p_{n-1}$, and $n-1=p_1.p_2.p_3...p_{n-1}-1$ then $|U(n)|=2, \forall n>2$ where U(n) is a group under multiplication modulo n and $n \in \mathbb{N}$.

Proof. Assume that, |U(n)| > 2.

Then there exists at least one $k \in U(n)$ other than n-1 such that k is not a new prime.

Since,
$$gcd(k, n) = 1 \implies k \neq \prod_{i=1}^{n} p_i^{m_i}, (m_i \in \mathbb{Z}^+).$$

Otherwise, $gcd(k, n) \neq 1 \implies k \notin U(n)$

It's only possible if k = n-1 or k is a new prime. Both of these cases contradicts our assumption.

Since, k is arbitrary there is no such $k \in U(n) \implies |U(n)| = 2$.

Theorem. There are infinitely many primes.

Proof. From the preceding section, it's clear that, |U(n)| = 2, if the number of primes are finite.

It's known that, there are infinitely many U(n) groups where the number of non-identity elements in U(n) that satisfy the equation,

$$x^4 = 1$$
.

is a multiple of 4 i.e. |U(n)| = 4q + r, for infinitely many n where q and r are arbitrary constants.

But, here in this case, $\forall n, |U(n)| = 2$ i.e. there is only one element that satisfies the equation. (contradiction)

Hence, it is proved that, primes can not be finite. So, there are infinite number of primes.