## **Extending Parametric Comparison**

James Baker, Theoretical and Applied Linguistics (joint work with Ian Roberts)

Following work by **Longobardi**, **Guardiano** and colleagues on *nominals*, applying methods developed in evolutionary biology:

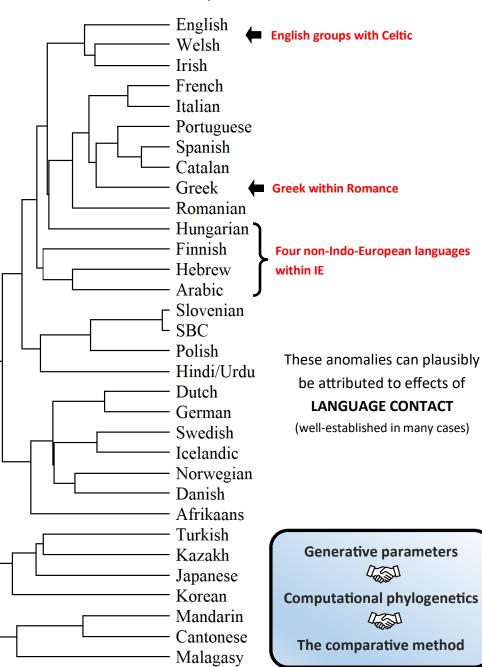
⇒ AIM: to computationally generate linguistic phylogenies from parameters of *clausal* syntax

88 parameters in (currently) 33 languages:

- ◆ Assuming a broadly *generative*, *minimalist* framework: fine-grained, discrete descriptions of linguistic variation
- ♦ Salient patterns of variation within the clause: e.g.
  - presence/absence of grammatical categories (person, tense, evidentiality, passive voice, ...);
  - \* locus of feature realisation (e.g. is tense marked on verbs?, ...);
  - \* word order and movement (e.g. verb-object ordering, wh-movement, ...)
- ◆ Each parameter in each language valued either +, -, or 0

Code Descriptor

\* 0 values predictable from other values, e.g. + Grammaticalised Tense → 0 Future Tense


Hindi/Urdu Mandarin

| Sample of |  |
|-----------|--|
| parameter |  |
| values    |  |

|                   |     | Descriptor                             | B  |    | minary or aa | aaa |
|-------------------|-----|----------------------------------------|----|----|--------------|-----|
| P <sub>V</sub> 1  | VGP | Grammaticalised Person in EP(V)        | +  | +  | +            | -   |
| P <sub>V</sub> 2  | VGN | Grammaticalised Number in EP(V)        | +  | +  | +            | -   |
| P <sub>V</sub> 3  | VGG | Grammaticalised Gender in EP(V)        | -  | +  | +            | -   |
| P <sub>V</sub> 4  | PCV | Φ-feature checking on V                | +  | +  | +            | 0-  |
| P <sub>V</sub> 5  | PSV | Φ-feature spread to V                  | -  | -  | +            | 0-  |
| P <sub>V</sub> 6  | SAG | Secondary agreement                    | -  | -  | -            | 0-  |
| P <sub>V</sub> 7  | SCL | Subject clitic distinct from agreement | -  | -? | -            | 0-  |
| P <sub>V</sub> 8  | SCE | Subject clitic enclisis                | 0- | 0- | 0-           | 0-  |
| $P_V9$            | GRT | Grammaticalised Tense                  | +  | +  | +            | -   |
| P <sub>V</sub> 10 | GPT | Grammaticalisation of Past             | +  | +  | +            | 0-  |
| P <sub>v</sub> 11 | GFT | Grammaticalisation of Future           | +  | +  | +            | 0-  |

- From parameter values we can calculate a syntactic distance for each pair of languages (using Jaccard formula)
  - \* matrix of all distances forms the input to phylogenetic programs

Output phylogeny (UPGMA method) largely corresponds to traditional family trees, with some anomalies:



Basque