The Riemann Hypothesis

Frank Vega

the date of receipt and acceptance should be inserted later

Abstract Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma} \times n \times \log\log n$ holds for all n > 5040, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We prove in another paper that the Robin inequality is true for all n > 5040 which are not divisible by any prime number between 2 and 953. Using this result, we show there is a contradiction just assuming the possible smallest counterexample n > 5040 of the Robin inequality. In this way, we prove that the Robin inequality is true for all n > 5040 and thus, the Riemann Hypothesis is true.

Keywords Riemann hypothesis \cdot Robin inequality \cdot sum-of-divisors function \cdot prime numbers

Mathematics Subject Classification (2010) MSC 11M26 · MSC 11A41 · MSC 11A25

1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [6]. As usual $\sigma(n)$ is the sum-of-divisors function of n [3]:

$$\sum_{d|n} d$$

where $d \mid n$ means the integer d divides to n. Define f(n) to be $\frac{\sigma(n)}{n}$. Say Robins(n) holds provided

$$f(n) < e^{\gamma} \times \log \log n$$
.

F. Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

ORCiD: 0000-0001-8210-4126 E-mail: vega.frank@gmail.com

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, and log is the natural logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all n > 5040 if and only if the Riemann Hypothesis is true [6].

It is known that Robins(n) holds for many classes of numbers n [8]. Let $q_1 = 2, q_2 = 3, \ldots, q_m$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^m q_i^{a_i}$ with $a_1 \geq a_2 \geq \cdots \geq a_m \geq 0$ is called an Hardy-Ramanujan integer [3]. A natural number n is called superabundant precisely when, for all m < n

$$f(m) < f(n)$$
.

Theorem 1.2 *If n is superabundant, then n is an Hardy-Ramanujan integer* [2].

Theorem 1.3 *The smallest counterexample of the Robin inequality greater than* 5040 *must be a superabundant number* [1].

We prove the nonexistence of such counterexample and therefore, the Riemann Hypothesis is true.

2 Known Results

These are known results:

Lemma 2.1 [3]. For n > 1:

$$f(n) < \prod_{q|n} \frac{q}{q-1}. \tag{2.1}$$

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$\theta(x) = \sum_{q \le x} \log q$$

where $q \le x$ means all the prime numbers q that are less than or equal to x.

Lemma 2.2 [7]. For $x \ge 41$:

$$\theta(x) > (1 - \frac{1}{\log(x)}) \times x.$$

Besides, we know that

Lemma 2.3 [7]. For $x \ge 286$:

$$\prod_{q \le x} \frac{q}{q-1} < e^{\gamma} \times (\log x + \frac{1}{2 \times \log(x)}).$$

For the counting prime function $\pi(x)$, we know that

Lemma 2.4 [7]. For $x \ge 17$:

$$\frac{x}{\log x} < \pi(x) < 1.25506 \times \frac{x}{\log x}.$$

The following lemma is crucial

Lemma 2.5 [5]. For x > -1:

$$\frac{x}{x+1} \le \log(1+x) \le x.$$

The smallest counterexample of the Robin inequality greater than 5040 complies with

Lemma 2.6 If n > 5040 is the smallest counterexample of the Robin inequality, then $q < \log n$ where q denotes the largest prime factor of n [3].

In addition, we know that

Lemma 2.7 $\sigma(n)$ and f(n) are multiplicatives [3]. Besides, for a prime number q and a positive integer $a \geq 0$, we have that $\sigma(q^a) = \frac{q^{a+1}-1}{q-1}$ [3]. We know that $f(q^{a+1}) > f(q^a)$ for all primes q and all $a \geq 0$.

In basic number theory, for a given prime number q, the q-adic order of a natural number n is the highest exponent $v_q \ge 1$ such that q^{v_q} divides n. This is a known result:

Lemma 2.8 *In general, we know that* Robins(n) *holds for a natural number* n > 5040 *that satisfies* $v_2(n) \le 19$, *where* $v_q(n)$ *is the q-adic order of* n [4].

Moreover, we have that

Lemma 2.9 Robins(n) holds for all $10^{10^{10}} \ge n > 5040$ [4].

3 Useful Lemmas

We show some tools that could help us in the final proof.

Lemma 3.1 Let $q \ge 2$ be a prime and let $b \ge 0$ be a positive integer. If $q^a || n$, then

$$f(q^b \times n) = f(n) \times \frac{q^{a+b+1} - 1}{q^{a+b+1} - q^b}$$

where $q^a || n$ signifies that q^a divides n, but q^{a+1} does not divide n.

Proof We assume that $q^a\|n$. Since $\sigma(n)$ and f(n) are multiplicatives according to the lemma 2.7, then we would only need to study $f(q^{a+b})$ where we know from the lemma 2.7 that $\sigma(q^a) = \frac{q^{a+1}-1}{q-1}$. Then,

$$\begin{split} f(q^{a+b}) &= \frac{q^{a+b+1}-1}{q^{a+b}\times(q-1)} \times \frac{q^{a+1}-1}{q^a\times(q-1)} \times \frac{q^a\times(q-1)}{q^{a+1}-1} \\ &= f(q^a) \times \frac{q^{a+b+1}-1}{q^{a+b}\times(q-1)} \times \frac{q^a\times(q-1)}{q^{a+1}-1} \\ &= f(q^a) \times \frac{q^{a+b+1}-1}{q^b} \times \frac{1}{q^{a+1}-1} \\ &= f(q^a) \times \frac{q^{a+b+1}-1}{q^{a+b+1}-q^b}. \end{split}$$

Let's see another inequalities:

Lemma 3.2 If n > 5040 is the smallest counterexample of the Robin inequality, then

$$\frac{\log\log n}{\log q} < \left(1 + \frac{1}{2 \times \log^2 q}\right)$$

and

$$\frac{\log\log\log n}{\log q} < \frac{\log\log q}{\log q} + \frac{1}{2 \times \log^3 q}$$

when we assume that $q \ge 953$ is the largest prime factor of n.

Proof Let $\prod_{i=1}^m q_i^{a_i}$ be the representation of n as a product of the first m consecutive primes $q_1 < \cdots < q_m$ with natural numbers as exponents a_1, \ldots, a_m . According to the theorems 1.2 and 1.3, the primes $q_1 < \cdots < q_m$ must be the first m consecutive primes since n > 5040 should be an Hardy-Ramanujan integer. We assume that $q_m \ge 953$. For $q_m \ge 953$, we have that

$$\prod_{q \le q_m} \frac{q}{q-1} < e^{\gamma} \times (\log q_m + \frac{1}{2 \times \log(q_m)})$$

because of the lemma 2.3. We use that lemma 2.1 to show that

$$e^{\gamma} \times \log \log n \le f(n) < \prod_{q \le q_m} \frac{q}{q-1} < e^{\gamma} \times (\log q_m + \frac{1}{2 \times \log(q_m)})$$

since we assume that n is a counterexample of the Robin inequality. In this way, we obtain that

$$\log\log n < (\log q_m + \frac{1}{2 \times \log(q_m)})$$

which is the same as

$$\frac{\log\log n}{\log q_m}<(1+\frac{1}{2\times\log^2(q_m)}).$$

Besides, if we apply the logarithm to the both sides of the inequality, then

$$\log\log\log n < \log\left(\log q_m \times \left(1 + \frac{1}{2 \times \log^2(q_m)}\right)\right)$$

that is equivalent to

$$\log\log\log n < \log\log q_m + \log(1 + \frac{1}{2 \times \log^2(q_m)}).$$

We use that lemma 2.5 to show that

$$\log(1+\frac{1}{2\times\log^2(q_m)})\leq \frac{1}{2\times\log^2(q_m)}.$$

Therefore, we finally have that

$$\frac{\log\log\log n}{\log q_m} < \frac{\log\log q_m}{\log q_m} + \frac{1}{2 \times \log^3 q_m}.$$

Let's show another inequality

Lemma 3.3 For all primes $q_m \ge 953$, we have that

$$\sum_{q \le q_m} \frac{\log \log q}{q_m} > \frac{1}{\log q_m}.$$

Proof This is the same as

$$\sum_{q \le q_m} \log \log q > \frac{q_m}{\log q_m}.$$

According to the lemma 2.4, it is enough to show that

$$\sum_{q \leq q_m} \log \log q \geq \pi(q_m) > \frac{q_m}{\log q_m}$$

when $q_m \ge 953$. We know that for all primes $p > q_m \ge 953$, then

$$\log \log p > 1$$
.

Hence, it is enough to prove that

$$\sum_{q \leq q_m} \log \log q \geq \sum_{q \leq 953} \log \log q \geq \pi(953).$$

We compute that

$$\sum_{q \le 953} \log \log q > 274.$$

However, we know that $q_{274} = 1759 > 953$ and thus,

$$274 \ge \pi(953)$$
.

Therefore, the proof is done.

4 Proof of Main Theorems

Theorem 4.1 Let $\prod_{i=1}^{m} q_i^{a_i}$ be the representation of n as a product of the first m consecutive primes $q_1 < \cdots < q_m$ with natural numbers as exponents a_1, \ldots, a_m . We obtain a contradiction just assuming that n > 5040 is the smallest integer such that Robins(n) does not hold.

Proof According to the theorems 1.2 and 1.3, the primes $q_1 < \cdots < q_m$ must be the first m consecutive primes since n > 5040 should be an Hardy-Ramanujan integer. From the recent article [8], we know that necessarily $q_m \ge 953$. Under our assumption, we know that

$$f(n) \ge e^{\gamma} \times \log \log n.$$

For b = 1 and the lemma 3.1, we know that

$$f(n) = f(q_i \times m) = f(m) \times \frac{q_i^{a_i+2} - 1}{q_i^{a_i+2} - q_i}$$

for every prime q_i that divides n where $m = \frac{n}{q_i}$. If we subtract f(m) to both sides of the inequality, then we obtain that

$$f(n) - f(m) \ge e^{\gamma} \times \log \log n - f(m)$$
.

Then,

$$\begin{split} f(n) - f(m) &= f(m) \times \frac{q_i^{a_i + 2} - 1}{q_i^{a_i + 2} - q_i} - f(m) \\ &= f(m) \times \left(\frac{q_i^{a_i + 2} - 1}{q_i^{a_i + 2} - q_i} - 1 \right) \\ &= f(m) \times \left(\frac{q_i - 1}{q_i^{a_i + 2} - q_i} \right) \\ &= f(m) \times \left(\frac{q_i - 1}{q_i \times (q_i^{a_i + 1} - 1)} \right) \\ &= f(m) \times \left(\frac{1}{q_i \times \sigma(q_i^{a_i})} \right) \\ &= f(m') \times f(q_i^{a_i - 1}) \times \left(\frac{1}{q_i \times \sigma(q_i^{a_i})} \right) \\ &= f(m') \times \frac{\sigma(q_i^{a_i - 1})}{q_i^{a_i - 1}} \times \left(\frac{1}{q_i \times \sigma(q_i^{a_i})} \right) \\ &< f(m') \times \frac{\sigma(q_i^{a_i})}{q_i^{a_i}} \times \left(\frac{1}{q_i \times \sigma(q_i^{a_i})} \right) \\ &= f(m') \times \frac{1}{q_i^{a_i + 1}} \end{split}$$

where $m' = \frac{n}{q_i^{a_i}}$ and we know that $q_i^{a_i} \| n$ and $\frac{\sigma(q_i^{a_i})}{q_i^{a_i}} > \frac{\sigma(q_i^{a_i-1})}{q_i^{a_i-1}}$ because of the lemma 2.7. In this way, we have that

$$f(m') \times \frac{1}{q_i^{a_i+1}} \ge e^{\gamma} \times \log \log n - f(m).$$

We know that Robins(m') and Robins(m) hold, since n > 5040 is the smallest integer such that Robins(n) does not hold. Consequently, we only need to prove that

$$e^{\gamma} \times \log \log m' \times \frac{1}{q_i^{a_i+1}} > f(m') \times \frac{1}{q_i^{a_i+1}}$$

$$\geq e^{\gamma} \times \log \log n - f(m)$$

$$> e^{\gamma} \times \log \log n - e^{\gamma} \times \log \log m.$$

As result, we have that

$$\log\log m' \times \frac{1}{q_i^{a_i+1}} > \log\log(q_i \times m) - \log\log m$$

since $m = \frac{n}{a_i}$. We know that

$$\begin{split} \log\log(q_i\times m) - \log\log m &= \log\left(\log q_i + \log m\right) - \log\log m \\ &= \log\left(\log m \times \left(1 + \frac{\log q_i}{\log m}\right)\right) - \log\log m \\ &= \log\log m + \log\left(1 + \frac{\log q_i}{\log m}\right) - \log\log m \\ &= \log(1 + \frac{\log q_i}{\log m}). \end{split}$$

In addition, we know that

$$\log(1 + \frac{\log q_i}{\log m}) \ge \frac{\log q_i}{\log n}$$

using the lemma 2.5. Certainly, we will have that

$$\log(1 + \frac{\log q_i}{\log m}) \ge \frac{\frac{\log q_i}{\log m}}{\frac{\log q_i}{\log m} + 1} = \frac{\log q_i}{\log q_i + \log m} = \frac{\log q_i}{\log n}.$$

As a consequence, we would have

$$\log\log m' \times \frac{1}{a^{a_i+1}} > \frac{\log q_i}{\log n}$$

which is equivalent to

$$\log n \times \log \log m' > q_i^{a_i+1} \times \log q_i.$$

However, we know that

$$\log n \times \log \log n > \log n \times \log \log m'$$

and thus

$$\log n \times \log \log n > q_i^{a_i+1} \times \log q_i.$$

For $n > 10^{10^{10}}$, we have that $\log n \times \log \log n > 1$ according to the lemma 2.9. Moreover, for $q_i \ge 3$, then $q_i^{a_i+1} \times \log q_i > 1$. In addition, for $q_1 = 2$, we have that $q_1^{a_1+1} \times \log q_1 > 1$ since $a_1 \ge 20$ due to the lemma 2.8. Since the both sides of the inequality is greater that 1 for all primes q_i which divides n, then we can multiply the inequalities to obtain

$$(\log n \times \log \log n)^{\pi(q_m)} > n \times N_m \times \prod_{i=1}^m \log q_i$$

where $N_m = \prod_{i=1}^m q_i$ is the primorial number of order m. If we apply the logarithm to the both sides of the inequality, then we would have

$$\pi(q_m) \times (\log \log n + \log \log \log n) > \log n + \log N_m + \sum_{i=1}^m \log \log q_i$$

which is equivalent to

$$\pi(q_m) imes (\log\log n + \log\log\log n) > \log n + \theta(q_m) + \sum_{i=1}^m \log\log q_i.$$

If we apply the lemma 2.4, then we would have

$$1.25506 \times \frac{q_m}{\log q_m} \times (\log \log n + \log \log \log n) > \log n + \theta(q_m) + \sum_{i=1}^m \log \log q_i.$$

Let's introduce the lemma 2.2 in this inequality and thus

$$1.25506 \times \frac{q_m}{\log q_m} \times (\log \log n + \log \log \log n) > \log n + (1 - \frac{1}{\log q_m}) \times q_m + \sum_{i=1}^m \log \log q_i.$$

In addition, we can transform this into

$$1.25506 \times \frac{q_m}{\log q_m} \times (\log\log n + \log\log\log n) > q_m + (1 - \frac{1}{\log q_m}) \times q_m + \sum_{i=1}^m \log\log q_i$$

because of the lemma 2.6. If we divide the both sides by q_m , then

$$1.25506 \times \frac{1}{\log q_m} \times \left(\log\log n + \log\log\log n\right) > 1 + 1 - \frac{1}{\log q_m} + \sum_{i=1}^m \frac{\log\log q_i}{q_m}.$$

According to the lemma 3.3, we know that

$$-\frac{1}{\log q_m} + \sum_{i=1}^m \frac{\log \log q_i}{q_m} = \alpha > 0.$$

Consequently, we would have that

$$1.25506 \times (\frac{\log \log n}{\log q_m} + \frac{\log \log \log n}{\log q_m}) > 2 + \alpha.$$

If we use the lemma 3.2, then

$$1.25506 \times (1 + \frac{1}{2 \times \log^2 q_m} + \frac{\log \log q_m}{\log q_m} + \frac{1}{2 \times \log^3 q_m}) > 2 + \alpha.$$

We know that

$$1.25506 \times \left(1 + \frac{1}{2 \times \log^2 q_m} + \frac{\log \log q_m}{\log q_m} + \frac{1}{2 \times \log^3 q_m}\right)$$

$$\leq 1.25506 \times \left(1 + \frac{1}{2 \times \log^2 953} + \frac{\log \log 953}{\log 953} + \frac{1}{2 \times \log^3 953}\right)$$

and we have that

$$1.25506 \times (1 + \frac{1}{2 \times \log^2 953} + \frac{\log \log 953}{\log 953} + \frac{1}{2 \times \log^3 953}) \approx 1.62266460495.$$

Consequently, we have that

$$2 > 1.25506 \times \left(1 + \frac{1}{2 \times \log^2 q_m} + \frac{\log \log q_m}{\log q_m} + \frac{1}{2 \times \log^3 q_m}\right) > 2 + \alpha > 2$$

and

is a contradiction. To sum up, we obtain a contradiction just assuming that n > 5040 is the smallest integer such that Robins(n) does not hold.

Theorem 4.2 Robins(n) holds for all n > 5040.

Proof Due to the theorem 4.1, we can assure there is not any natural number n > 5040 such that Robins(n) does not hold.

Theorem 4.3 The Riemann Hypothesis is true.

Proof This is a direct consequence of theorems 1.1 and 4.2

References

- Akbary, A., Friggstad, Z.: Superabundant numbers and the Riemann hypothesis. The American Mathematical Monthly 116(3), 273–275 (2009). DOI doi:10.4169/193009709X470128
- Alaoglu, L., Erdős, P.: On highly composite and similar numbers. Transactions of the American Mathematical Society 56(3), 448–469 (1944). DOI doi:10.2307/1990319
- 3. Choie, Y., Lichiardopol, N., Moree, P., Solé, P.: On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357–372 (2007). DOI doi:10.5802/jtnb.591
- 4. Hertlein, A.: Robin's Inequality for New Families of Integers. Integers 18 (2018)
- Kozma, L.: Useful Inequalities. http://www.lkozma.net/inequalities_cheat_sheet/ineq. pdf (2021). Accessed on 2021-09-27
- Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. pures appl 63(2), 187–213 (1984)
- Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics 6(1), 64–94 (1962). DOI doi:10.1215/ijm/1255631807
- Vega, F.: Robin Criterion on Divisibility (2021). URL https://hal.archives-ouvertes.fr/ hal-03228263. To appear in The Ramanujan Journal