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Abstract

Robin criterion states that the Riemann Hypothesis is true if and only if the inequalityσ(n) < eγ×
n × log log n holds for all n > 5040, where σ(n) is the sum-of-divisors function and γ ≈ 0.57721
is the Euler-Mascheroni constant. We show there is a contradiction just assuming the possible
smallest counterexample n > 5040 of the Robin inequality. In this way, we prove that the Robin
inequality is true for all n > 5040 and thus, the Riemann Hypothesis is true.
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1. Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 [1]. As usual
σ(n) is the sum-of-divisors function of n [2]:∑

d|n

d

where d | n means the integer d divides to n and d - n means the integer d does not divide to n.
Define f (n) to be σ(n)

n . Say Robins(n) holds provided

f (n) < eγ × log log n.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log is the natural logarithm.
The importance of this property is:

Theorem 1.1. Robins(n) holds for all n > 5040 if and only if the Riemann Hypothesis is true [1].

Let q1 = 2, q2 = 3, . . . , qm denote the first m consecutive primes, then an integer of the form∏m
i=1 qei

i with e1 ≥ e2 ≥ · · · ≥ em is called an Hardy-Ramanujan integer [2]. A natural number n
is called superabundant precisely when, for all m < n

f (m) < f (n).
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Theorem 1.2. If n is superabundant, then n is an Hardy-Ramanujan integer [3].

Theorem 1.3. The smallest counterexample of the Robin inequality greater than 5040 must be a
superabundant number [4].

We prove the nonexistence of such counterexample and therefore, the Riemann Hypothesis
is true.

2. Proof of Main Theorems

Let n =
∏s

i=1 qei
i be a factorisation of n, where we ordered the primes qi in such a way that

e1 ≥ e2 ≥ · · · ≥ es. We say that e = (e1, . . . , es) is the exponent pattern of the integer n [2].
Note that

∏s
i=1 pei

i is the minimal number having exponent pattern e when p1 = 2, p2 = 3, . . . , ps

denote the first s consecutive primes and e1 ≥ e2 ≥ · · · ≥ es. We denote this (Hardy-Ramanujan)
number by m(e) [2].

Theorem 2.1. Let
∏m

i=1 qei
i be the representation of n as a product of the primes q1 < · · · < qm

with natural numbers as exponents e1, . . . , em. We obtain a contradiction just assuming that
n > 5040 is the smallest integer such that Robins(n) does not hold.

Proof. According to the theorems 1.2 and 1.3, the primes q1 < · · · < qm must be the first m
consecutive primes and e1 ≥ e2 ≥ · · · ≥ em since n > 5040 should be an Hardy-Ramanujan
integer. Let e denote the factorisation pattern of n × qm. Based on the result of the article [5],
the value n × qm cannot be a square full number [2]. Therefore n × qm > m(e) and consequently,
n > m(e)

qm
. Thus, we have that Robins( m(e)

qm
) holds, because of n > 5040 is the smallest integer

such that Robins(n) does not hold. We know that f (pe) > f (qe) if p < q [2]. In this way, we
would have that f ( m(e)

qm
) > f (n) since f (q2

i ) > f (qi) × f (qm) for some positive integer 1 ≤ i < m.
Certainly, we have that

f (q2
i )

f (qi)
=

q3
i − 1

q2
i × (qi − 1)

×
qi

qi + 1
=

q3
i − 1

q3
i − qi

. (1)

Let’s define ω(n) as the number of distinct prime factors of n [2]. From the article [5], we know
that ω(n) ≥ 969672728 and the number of primes lesser than qm which have the exponent equal
to 1 in n is approximately

ω(n) −
ω(n)
14
=

13 × ω(n)
14

≥
13 × 969672728

14
> 900410390.

In this way, there exists a positive integer 1 ≤ i < m such that

f (q2
i )

f (qi)
=

q3
i − 1

q3
i − qi

≥ f (qi+900000000) > f (qm)

where we could have that q2
i - n, qi | n, qi+900000000 | n and q2

i |
m(e)
qm

. Finally, we have that

f (n) < f (
m(e)
qm

) < eγ × log log
m(e)
qm

< eγ × log log n.

However, this a contradiction with our initial assumption. To sum up, we obtain a contradiction
just assuming that n > 5040 is the smallest integer such that Robins(n) does not hold.
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Theorem 2.2. Robins(n) holds for all n > 5040.

Proof. Due to the theorem 2.1, we can assure there is not any natural number n > 5040 such that
Robins(n) does not hold.

Theorem 2.3. The Riemann Hypothesis is true.

Proof. This is a direct consequence of theorems 1.1 and 2.2

Acknowledgments

I thank Richard J. Lipton and Craig Helfgott for helpful comments.

References

[1] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl 63 (2)
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