When the Riemann Hypothesis might be false

Frank Vega

the date of receipt and acceptance should be inserted later

Abstract Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) < e^{\gamma} \times n \times \log\log n$ holds for all natural numbers n > 5040, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. Let $q_1 = 2, q_2 = 3, \ldots, q_m$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^m q_i^{a_i}$ with $a_1 \geq a_2 \geq \cdots \geq a_m \geq 0$ is called an Hardy-Ramanujan integer. If the Riemann Hypothesis is false, then there are infinitely many Hardy-Ramanujan integers n > 5040 such that Robin inequality does not hold and $n < (4.48311)^m \times N_m$, where $N_m = \prod_{i=1}^m q_i$ is the primorial number of order m.

Keywords Riemann hypothesis \cdot Robin inequality \cdot sum-of-divisors function \cdot prime numbers

Mathematics Subject Classification (2010) MSC $11M26 \cdot MSC \ 11A41 \cdot MSC \ 11A25$

1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [4]. As usual $\sigma(n)$ is the sum-of-divisors function of n [2]:

$$\sum_{d|n} d$$

where $d \mid n$ means the integer d divides to n and $d \nmid n$ means the integer d does not divide to n. Define f(n) to be $\frac{\sigma(n)}{n}$. Say Robins(n) holds provided

$$f(n) < e^{\gamma} \times \log \log n$$
.

F. Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

ORCiD: 0000-0001-8210-4126 E-mail: vega.frank@gmail.com 2 F. Vega

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, and log is the natural logarithm. The importance of this property is:

Theorem 1.1 *If the Riemann Hypothesis is false, then there are infinitely many natural numbers* n > 5040 *such that* Robins(n) *does not hold* [4].

We recall that an integer n is said to be square free if for every prime divisor q of n we have $q^2 \nmid n$ [2]. Robins(n) holds for all natural numbers n > 5040 that are square free [2]. In addition, we show that Robins(n) holds for some n > 5040 when $\frac{\pi^2}{6} \times \log \log n' \le \log \log n$ such that n' is the square free kernel of the natural number n. Let $q_1 = 2, q_2 = 3, \ldots, q_m$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^m q_i^{a_i}$ with $a_1 \ge a_2 \ge \cdots \ge a_m \ge 0$ is called an Hardy-Ramanujan integer [2]. Based on the theorem 1.1, we know this result:

Theorem 1.2 If the Riemann Hypothesis is false, then there are infinitely many natural numbers n > 5040 which are an Hardy-Ramanujan integer and Robins(n) does not hold [2].

We prove if the Riemann Hypothesis is false, then there are infinitely many Hardy-Ramanujan integers n > 5040 such that Robins(n) does not hold and $n < (4.48311)^m \times N_m$, where $N_m = \prod_{i=1}^m q_i$ is the primorial number of order m.

2 A Central Lemma

These are known results:

Lemma 2.1 [2]. For n > 1:

$$f(n) < \prod_{q|n} \frac{q}{q-1}. \tag{2.1}$$

Lemma 2.2 [3].

$$\prod_{k=1}^{\infty} \frac{1}{1 - \frac{1}{g_L^2}} = \zeta(2) = \frac{\pi^2}{6}.$$
 (2.2)

The following is a key lemma. It gives an upper bound on f(n) that holds for all natural numbers n. The bound is too weak to prove $\mathsf{Robins}(n)$ directly, but is critical because it holds for all natural numbers n. Further the bound only uses the primes that divide n and not how many times they divide n.

Lemma 2.3 Let n > 1 and let all its prime divisors be $q_1 < \cdots < q_m$. Then,

$$f(n) < \frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i + 1}{q_i}.$$

Proof We use that lemma 2.1:

$$f(n) < \prod_{i=1}^{m} \frac{q_i}{q_i - 1}.$$

Now for q > 1,

$$\frac{1}{1 - \frac{1}{q^2}} = \frac{q^2}{q^2 - 1}.$$

So

$$\frac{1}{1 - \frac{1}{q^2}} \times \frac{q+1}{q} = \frac{q^2}{q^2 - 1} \times \frac{q+1}{q}$$
$$= \frac{q}{q-1}.$$

Then by lemma 2.2,

$$\prod_{i=1}^{m} \frac{1}{1 - \frac{1}{q_i^2}} < \zeta(2) = \frac{\pi^2}{6}.$$

Putting this together yields the proof:

$$f(n) < \prod_{i=1}^{m} \frac{q_i}{q_i - 1}$$

$$\leq \prod_{i=1}^{m} \frac{1}{1 - \frac{1}{q_i^2}} \times \frac{q_i + 1}{q_i}$$

$$< \frac{\pi^2}{6} \times \prod_{i=1}^{m} \frac{q_i + 1}{q_i}.$$

3 A Particular Case

We can easily prove that Robins(n) is true for certain kind of numbers:

Lemma 3.1 Robins(n) holds for n > 5040 when $q \le 5$, where q is the largest prime divisor of n.

Proof Let n > 5040 and let all its prime divisors be $q_1 < \cdots < q_m \le 5$, then we need to prove

$$f(n) < e^{\gamma} \times \log \log n$$

that is true when

$$\prod_{i=1}^{m} \frac{q_i}{q_i - 1} \le e^{\gamma} \times \log \log n$$

according to the lemma 2.1. For $q_1 < \cdots < q_m \le 5$,

$$\prod_{i=1}^m \frac{q_i}{q_i-1} \leq \frac{2\times 3\times 5}{1\times 2\times 4} = 3.75 < e^{\gamma} \times \log\log(5040) \approx 3.81.$$

However, we know for n > 5040

$$e^{\gamma} \times \log \log(5040) < e^{\gamma} \times \log \log n$$

and therefore, the proof is complete when $q_1 < \cdots < q_m \le 5$.

4 F. Vega

4 Helpful Lemmas

For every prime number $p_n > 2$, we define the sequence $Y_n = \frac{e^{\frac{1}{2 \times \log(p_n)}}}{(1 - \frac{1}{\log(p_n)})}$.

Lemma 4.1 For every prime number $p_n > 2$, the sequence Y_n is strictly decreasing.

Proof For every real value $x \ge 3$, we state the function

$$f(x) = \frac{e^{\frac{1}{2 \times \log(x)}}}{\left(1 - \frac{1}{\log(x)}\right)}$$

which is equivalent to

$$f(x) = g(x) \times h(u)$$

where $g(x) = e^{\frac{1}{2 \times \log(x)}}$ and $h(u) = \frac{u}{u-1}$ for $u = \log(x)$. We know that g(x) decreases as $x \ge 3$ increases, Moreover, we note that h(u) decreases as u > 1 increases where $u = \log(x) > 1$ for $x \ge 3$. In conclusion, we can see that the function f(x) is monotonically decreasing for every real value $x \ge 3$ and therefore, the sequence Y_n is monotonically decreasing as well. In addition, Y_n is essentially a strictly decreasing sequence, since there is not any natural number n > 1 such that $Y_n = Y_{n+1}$.

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$\theta(x) = \sum_{p \le x} \log p$$

where $p \le x$ means all the prime numbers p that are less than or equal to x.

Lemma 4.2 [5]. For $x \ge 41$:

$$\theta(x) > (1 - \frac{1}{\log(x)}) \times x.$$

Besides, we know that

Lemma 4.3 [5]. For x > 286:

$$\prod_{q \le x} \frac{q}{q-1} < e^{\gamma} \times (\log x + \frac{1}{2 \times \log(x)}).$$

We will prove another important inequality:

Lemma 4.4 Let $q_1, q_2, ..., q_m$ denote the first m consecutive primes such that $q_1 < q_2 < \cdots < q_m$ and $q_m > 286$. Then

$$\prod_{i=1}^{m} \frac{q_i}{q_i - 1} < e^{\gamma} \times \log \left(Y_m \times \theta(q_m) \right).$$

Proof From the theorem 4.2, we know that

$$\theta(q_m) > (1 - \frac{1}{\log(q_m)}) \times q_m.$$

In this way, we can show that

$$\begin{split} \log\left(Y_m \times \theta(q_m)\right) &> \log\left(Y_m \times \left(1 - \frac{1}{\log(q_m)}\right) \times q_m\right) \\ &= \log q_m + \log\left(Y_m \times \left(1 - \frac{1}{\log(q_m)}\right)\right). \end{split}$$

We know that

$$\begin{split} \log\left(Y_m\times(1-\frac{1}{\log(q_m)})\right) &= \log\left(\frac{e^{\frac{1}{2\times\log(q_m)}}}{(1-\frac{1}{\log(q_m)})}\times(1-\frac{1}{\log(q_m)})\right) \\ &= \log\left(e^{\frac{1}{2\times\log(q_m)}}\right) \\ &= \frac{1}{2\times\log(q_m)}. \end{split}$$

Consequently, we obtain that

$$\log q_m + \log \left(Y_m \times (1 - \frac{1}{\log(q_m)}) \right) \ge (\log q_m + \frac{1}{2 \times \log(q_m)}).$$

Due to the theorem 4.3, we prove that

$$\prod_{i=1}^{m} \frac{q_i}{q_i - 1} < e^{\gamma} \times (\log q_m + \frac{1}{2 \times \log(q_m)}) < e^{\gamma} \times \log(Y_m \times \theta(q_m))$$

when $q_m > 286$.

5 Proof of Main Theorems

The next theorem implies that Robins(n) holds for a wide range of natural numbers n > 5040.

Theorem 5.1 Let $\frac{\pi^2}{6} \times \log \log n' \le \log \log n$ for some n > 5040 such that n' is the square free kernel of the natural number n. Then $\mathsf{Robins}(n)$ holds.

Proof Let n' be the square free kernel of the natural number n. Let n' be the product of the distinct primes q_1, \ldots, q_m . By assumption we have that

$$\frac{\pi^2}{6} \times \log \log n' \le \log \log n.$$

6 F. Vega

For all square free $n' \le 5040$, Robins(n') holds if and only if $n' \notin \{2,3,5,6,10,30\}$ [2]. However, Robins(n) holds for all natural numbers n > 5040 when $n' \in \{2,3,5,6,10,15,30\}$ due to the lemma 3.1. When n' > 5040, we know that Robins(n') holds and so

$$f(n') < e^{\gamma} \times \log \log n'$$
.

By the previous lemma 2.3:

$$f(n) < \frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i + 1}{q_i}.$$

Suppose by way of contradiction that Robins(n) fails. Then

$$f(n) \ge e^{\gamma} \times \log \log n$$
.

We claim that

$$\frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i + 1}{q_i} > e^{\gamma} \times \log \log n.$$

Since otherwise we would have a contradiction. This shows that

$$\frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i + 1}{q_i} > \frac{\pi^2}{6} \times e^{\gamma} \times \log \log n'.$$

Thus

$$\prod_{i=1}^{m} \frac{q_i + 1}{q_i} > e^{\gamma} \times \log \log n',$$

and

$$\prod_{i=1}^{m} \frac{q_i+1}{q_i} > f(n'),$$

This is a contradiction since f(n') is equal to

$$\frac{(q_1+1)\times\cdots\times(q_m+1)}{q_1\times\cdots\times q_m}.$$

Theorem 5.2 If the Riemann Hypothesis is false, then there are infinitely many Hardy-Ramanujan integers n > 5040 such that $\mathsf{Robins}(n)$ does not hold and $n < (4.48311)^m \times N_m$, where $N_m = \prod_{i=1}^m q_i$ is the primorial number of order m.

Proof Let $\prod_{i=1}^m q_i^{a_i}$ be the representation of some natural number n > 5040 as a product of primes $q_1 < \cdots < q_m$ with natural numbers as exponents a_1, \ldots, a_m . The primes $q_1 < \cdots < q_m$ must be the first m consecutive primes and $a_1 \ge a_2 \ge \cdots \ge a_m \ge 0$ since the natural number n > 5040 could be an Hardy-Ramanujan integer. We assume that Robins(n) does not hold. Indeed, we know there are infinitely many Hardy-Ramanujan integers such as n > 5040 when the Riemann Hypothesis is false according to the theorem 1.2. From the lemma 4.4, we know that

$$\prod_{i=1}^{m} \frac{q_i}{q_i - 1} < e^{\gamma} \times \log\left(Y_m \times \theta(q_m)\right) = e^{\gamma} \times \log\log(N_m^{Y_m})$$

when $q_m > 286$. In this way, if Robins(n) does not hold, then $n < N_m^{Y_m}$ since by the lemma 2.1 we have that

$$f(n) < \prod_{i=1}^{m} \frac{q_i}{q_i - 1}.$$

That is the same as $n < N_m^{Y_m-1} \times N_m$. We can check that $q_m^{Y_m-1}$ is monotonically decreasing for all primes $q_m > 286$ due to the lemma 4.1. Certainly, the function

$$g(x) = x^{\left(\frac{e^{\frac{1}{2 \times \log(x)}}}{(1 - \frac{1}{\log(x)})} - 1\right)}$$

complies that its derivative is lesser than zero for all real numbers x > 286. Indeed, a function g(x) of a real variable x is monotonically decreasing in some interval if the derivative of g(x) is lesser than zero and the function g(x) is continuous over that interval [1]. We know that q_m could comply with $q_m \ge 1000000!$ for infinitely many Hardy-Ramanujan integers n > 5040 such that Robins(n) does not hold, where $(\ldots)!$ is the factorial function. Certainly, if q_m would have an upper bound by some positive value, then there would not be infinitely many natural numbers n > 5040 which are an Hardy-Ramanujan integer and Robins(n) does not hold because of the theorem 5.1. Consequently, it is enough to show that

$$q_m^{Y_m-1} \le g(1000000!) < 4.48311$$

for all primes $q_m \ge 1000000!$. Moreover, we would obtain that

$$q_m^{Y_m-1} > q_i^{Y_m-1}$$

for every integer $1 \le j < m$. Finally, we can state that $n < (4.48311)^m \times N_m$ since $N_m^{Y_m-1} < (4.48311)^m$ when n > 5040 could be any of the infinitely many Hardy-Ramanujan integers such that Robins(n) does not hold and $q_m \ge 1000000!$.

Acknowledgments

I thank Richard J. Lipton and Craig Helfgott for helpful comments.

References

- Anderson, G., Vamanamurthy, M., Vuorinen, M.: Monotonicity Rules in Calculus. The American Mathematical Monthly 113(9), 805–816 (2006). DOI 10.1080/00029890.2006.11920367
- Choie, Y., Lichiardopol, N., Moree, P., Solé, P.: On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357–372 (2007). DOI doi:10.5802/jtnb.591
- 3. Edwards, H.M.: Riemann's Zeta Function. Dover Publications (2001)
- Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. pures appl 63(2), 187–213 (1984)
- Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics 6(1), 64–94 (1962). DOI doi:10.1215/ijm/1255631807