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ABSTRACT 

Software development effort estimation is an active area in arena of software project 

management. Ranging from expert judgement to machine learning techniques various 

parametric and non-parametric methods were proposed with the aim of improving 

accuracy of estimation so that upcoming projects are completed within constraints of 

schedule and budgets. 

Nowadays, software development organizations use machine learning techniques in 

different areas to improve decision-making process so that their performance is boosted. 

In this dissertation, with the goal of increasing the accuracy in effort estimates, we 

applied programming models in an environment of software development 

organizations. We collected empirical data from two organizations and constructed a 

consolidated data sets. The programming models applied in this study are K-Means 

clustering, Support Vector Machines using polynomial kernel, Random Forest, Linear 

Regression, K Nearest Neighbor and Neural Networks using ORANGE tool. 

The obtained results demonstrate the use of data mining and machine learning 

techniques in general increases the accuracy of predictions with lesser error magnitude 

as compared to experts. Moreover, we recommend application of programming models 

in comparable environment of software development organizations to get reliable and 

more generalized predictions for decision making. 
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Chapter 1 

Introduction 

Software development effort estimation is an imperative process that lies further down 

in the area of software project management. Inaccuracy in predictions lead a software 

project to failure. As one of the prime missions of software industry is to reduce the 

estimation error so that successful completion of project is ensured. Therefore, the area 

of software effort estimation is active and is considered as an important for researchers 

and industry. Therefore, the objective of this chapter is to present the overview of the 

research topic, then highlight the challenges and motivations for this study. Afterwards, 

we defined problem statement and highlighted the contributions for selected area of 

research. Then, we introduced the applied research methodology which has also been 

depicted in Figure. Finally, thesis structure which is also represented in Figure for better 

understanding and summary of this chapter is provided at the end. 

1.1 Overview of Research 

Software development effort estimation is considered as a basic activity underneath the 

wide-ranging methods of Software Project Management. During the past three decades 

plethora of work has been done in arena of Software development effort estimation. 

However, none of the prevailing practices outperform in all milieus [1]. As various 

studies has been steered to improve effort estimation all around the work. To the best 

of our knowledge research work has been ended in the region of Islamabad-Pakistan. 

Therefore, the ambition of this research work is to amplify accurateness in predictions 

of software development effort. 

Accurate prediction of software development effort is very challenging. Accurate 

predictions are demanding to complete software project successfully [2]. Various 

studies have been conducted with the intention of bringing accuracy to predictions [3]. 

Software development organizations are worried about completing projects 

successfully as the urge for software projects is increasing every single day [4]. With 

the same intentions projects managers predict effort but most of the time it is either 

underestimated or over estimated. These estimations could cause stern complications 

[5] which are related to budget, schedule. The difficulties in meeting schedule and 

budget boundaries leads a project to fail badly under provided resources [6]. 

The overestimation of effort is considered as one of the main problems. This leads 

towards a compromise in developing a project with quality and ultimately, testing a 

product could not be performed properly. However, underestimation is another serious 

issue in field of estimation. It leads towards the allocation of resources. For 

underestimated projects more resources are allocated to project [7]. To overcomes 

challenges in making effort predictions, a lot of work has been done for the last three 

decades. A lot of researchers have conducted studies in order to bring accuracy in 

predictions. 

Furthermore, Boehm in 1981 proposed a technique known as Expert Judgement [8]. 

Even now, Expert Judgment is considered as most widely used technique in software 

development organizations as addressed in work of Khan B et al [9] and Mallidi and 

Sharma [10]. In some additional studies a thumb rule was used for prediction purpose. 

Then some models such as PRICE, SLIM [11], COCOMO [12], Function points [13] 

etc. were proposed with the intent of bringing accuracy in predictions. Similarly, the 

application of data mining and its impact overestimation were investigated in different 

studies as highlighted in systematic literature review from 1990-2019 [14]. According 

to general perception machine learning techniques were adopted for increasing 



 

 

accuracy in predictions due the reason it delivers predictions after completing numerous 

rounds [2]. 

We have seen plenty of work to bring accuracy in software development effort 

predictions. Consequently, we noted the use of machine learning techniques such as 

Logistic Regression [15], Linear Regression [16], Support Vector Machine, Decision 

Trees [17], K-Nearest Neighbor [18], Neural Network [19], Na¨ıve Bayes [20], Fuzzy 

Logic [21] and many other. Then combination of two or more techniques were used to 

implemented such as Multi-layer Perceptron (MLP) and Genetic Algorithm (GA) [22]. 

Similarly, another hybrid method with combination of ensemble-based technique based 

on expert estimation. Another hybrid method with the combination of analogy-based 

estimation with Fuzzy logic [23] and many other similar methods were acknowledged 

from literature analysis. 

However, none of the existing techniques fit in all environments. Most of the proposed 

solutions were tested over publicly available sets such as COCOMO [18], NASA [14], 

ISBSG [24], Desharnais, Maxwell and Miyazakil etc. [19]. Some of the studies 

investigated application of machine learning techniques over their known data sets 

which were collected from software development industries from different regions of 

the world. Furthermore, it has been released the importance of bringing accuracy of 

estimation in industry [25] and academic research [21]. Moreover, from the analysis of 

existing techniques we figured out, none of the existing technique fit in all environment. 

The reason behind is availability of data sets and features. 

The prediction highly depends on the type of data set [26]. 

As we have seen the effect of applying machine learning algorithms in different 

environments, but none of these techniques was adopted in all different conditions. In 

addition, from the analysis of literature and survey steered in software industry it 

became prominent these algorithms were mostly analyzed over public available data 

sets. Now, researchers and software development industry are more active to bring 

accuracy in software effort estimation. On that account, the motive of this study is to 

boost accuracy of software development effort estimation from software industry 

positioned region of Islamabad-Pakistan. 

This research work lies in the area of software development effort estimation. Over the 

last three decades ample of research works have been done in order to bring accuracy 

in software effort predictions. However, none of the methods outperform in all 

environments. Moreover, to the best of our knowledge no similar work has been 

conducted to improve effort predictions for the software development organizations 

developed in Islamabad-Pakistan. Consequently, with the aim of increasing accuracy in 

predictions, this study has two objectives. First, we identified the strengths and 

weaknesses of existing software effort estimation technique. Secondly, our leading 

purpose of this study is to improve the effort estimation process in software 

development organizations located in Islamabad-Pakistan. 

To achieve the goal of bringing accuracy of predictions we applied combination of data 

mining and machine learning to the data available. First, we applied machine learning 

algorithms such as K- nearest neighbor, neural network, support vector machine, Linear 

regression and random forest that has extensively been used for improving predictions. 

Then, we replicated in work done by H karna et al [25] which uses data mining 

technique acknowledged as K-Means clustering earlier than application of machine 

learning algorithm. In the succeeding phase, we compared the accuracy of machine 

learning algorithms with and without use of K-Means Clustering. At the end, for a new 



 

 

project, we use combination of expert judgement and machine learning algorithm to 

predict effort of software project. 

Firstly, we applied machine learning algorithms over the data set which was collected 

from two software development organizations sited in region of Islamabad Pakistan. 

We collected empirical data from a survey conducted for two software organizations. 

We collected data of 38 projects P1-P38. Out of which P1-P28 were employed for 

training and P29-P38 were used for testing algorithms. We selected these projects on 

the basis of project size such as Small, Medium and Large. Moreover, we considered 

the projects which are developed within organization. We have not considered 

outsourced projects. Secondly, we performed K-means clustering 



 

 

1.2. APPLICATION OF RESEARCH 

over data set to identify the difference of clustering over prediction. Finally, in the thirds 

phase we analyzed the impact of using the similar techniques for upcoming projects. 

We realized machine learning when applied to the data sets used in this study increases 

accuracy of estimation as compared to those of experts. Overall, for new projects, the 

models used in this study utilized the input from experts and then machine learning 

algorithms produce predictions of effort for software project. Thus, we conclude the use 

of machine learning algorithms in general increases the accuracy of effort and help 

project managers to allocate reasonable resources to project for successful completion 

within constraints of schedule and budget. 

1.2 Application of Research 

In the area of software development effort estimation, this study aims to improve the 

accuracy of effort estimation of software development projects for software 

organizations located in Islamabad. In direction to propose a method of estimation to 

organizations, this study first identifies the maximum used techniques from literature. 

With respect to research, this study has following applications: 

1. This research is applicable in the organizations which involve software 

development such as software industry. 

2. This research is also helpful for Business analysts, project managers and 

Estimators. 

3. In context of research, this research is applicable in the area of effort estimation 

for comparison and generalization of results. 

4. This research is applicable in all fields which involve projects and their effort 

estimation is unresolved. 

1.3 Problem Statement 

In Software development, accurate effort estimation is significant for project manager 

[18]. The problems of overestimation and underestimation could cause serious 

complications [15] such as schedule, budget and would ultimately lead towards project 

failure [27], ranging from expert estimation [8, 28] to machine learning techniques, [29, 

30, 31, 32] none of these method fit in different environments [1]. Furthermore, the 

trend of increasing estimation accuracy within software organizations has been realized 

in literature [25, 33, 34]. Therefore, the motivation of this 

1.4. RESEARCH MOTIVATION 

study is to increase accuracy of estimation and provide decision support system for two 

software development organizations located in region of Islamabad-Pakistan. Based on 

problem statement, we developed following research questions: 

RQ1: What are the strengths and weaknesses of existing software effort 

estimation techniques? 

RQ2: How could Effort Predictions in Software Development Organizations be 

improved? 

1.4 Research Motivation 

Software development effort estimation is considered as a challenging process in area 

of software project management. As underestimation and overestimation of project are 

the main challenges in prediction of effort. However, if the effort of project is not 

predicted closer to actual effort, project manager is unable to control the flow of project 

for successful delivery. Furthermore, the accuracy of predicting effort is poor in 

software industry located in Islamabad- Pakistan. Moreover, we have not seen 

considerable work done in the region of Islamabad-Pakistan for improvement of 

predictions. 



 

 

1.5 Research Objectives 

The objective of this research is to deliver decision support system for software 

development organizations by estimating effort and assign reasonable resources to 

project prior to starting phase. To meet this we divided our work into following: 

1. We proposed a framework for improvement of effort prediction. 

2. To overcome problems enforced by inaccurate estimations. 

3. To conduct an experimental study for improving up accuracy. 

4. To help project manager allocate reasonable resources for upcoming projects. 

1.6 Research Contributions 

The primary contribution of this research work is to improve software development 

effort estimation for the software organizations located in region of Islamabad Pakistan. 

To this, first we identified the problem of effort estimation is the selected 

1.7. SIGNIFICANCE OF RESEARCH 

region. Then, proposed a framework which includes designing questionnaire, data 

collection, data analysis and then application of machine learning and data mining. To 

the best of our knowledge none of the similar work has been done in the selected 

environment. The secondary objective of this research work is to identify strengths and 

weaknesses of existing techniques to analyze the impact of machine learning over effort 

estimation. 

First of all we have critically analyzed the literature to identify the strength and 

weakness of the state-of-the-art effort estimations techniques and we have utilized the 

identified limitations to answer our research question1. Further, we have proposed a 

model for effort estimation that employs the effectiveness of K-mean clustering (well-

known supervised learning algorithm). Proposed model is validated in the software 

industry of Islamabad Pakistan. By validating the proposed model we affirm that this 

model can be efficiently used to measure the effort of projects. Broadly, this research 

work has following contributions in the area of software development effort estimation. 

1. Identified the strengths and weaknesses of existing techniques for effort 

estimation. 

2. Propose a model with the combination of unsupervised and supervised learning 

techniques to estimate effort estimation of software projects within the 

organizations located in region of Islamabad- Pakistan. 

3. The model predicts effort which would help the project members to take decisions 

regarding resource allocation to each new project for successful completion of 

project within budget and time. 

Thus, the results express improvement in effort estimation with the combination of 

expert judgement and machine learning algorithms. The proposed framework could be 

adopted for predicting accurate estimation for software development organizations. 

1.7 Significance of Research 

Software development effort estimation is one of the most significant process in the 

field of software engineering. As inaccurate predictions in software development 

organizations have shaped a massive problem for software engineers and project 

managers to complete projects within offered budget and schedule. As the existing 

practices of expert judgement have not been able to produce robust predictions 

1.8. RESEARCH METHODOLOGY 

in software industry. Therefore, the application of machine learning algorithms in over 

the data sets collected from software industry located in Islamabad-Pakistan could 

improve prediction accuracy. 



 

 

1.8 Research Methodology 

The objective of this research work is to improve effort estimation for software 

development organizations. To achieve the main aim, we first explored the area of 

software project management and highlighted the importance of effort estimation for 

successful delivery of project. After gaining relevant knowledge, we adopted a tool 

known questionnaire as done in H karna et al [25] for data collection. We collected data 

from two software development organizations and analysis was performed using 

ORANGE tool. Finally, we applied machine learning algorithms over data set to predict 

effort and then analyzed the results using different performance measures. The overall 

methodology is presented in Figure 1.1. 

1.8.1 Topic Selection 

In the first phase we studied software project management in details and highlighted the 

most important area in it. From the analysis of problems in different area of project 

management, we identified software effort allocation to a project is the trickiest process 

and is performed at the start of process. We also realized software development effort 

estimation is one the foremost concern of industry and researchers. To bring accuracy 

in predictions over the past three decades a plethora of work has been done but 

unfortunately, none of the method outclassed in all set-ups. After the analysis of gaps 

and challenges that were identified from literature, we selected our research topic. 

1.8.2 Literature Review 

To collect relevant data for effort estimation, we surfed different digital libraries. We 

collected data from Google Scholar, IEEE and Wiley were explored, and appropriate 

data is retrieved. The most relevant studies were studied and provided in Chapter 3 of 

this dissertation with details. 

1.8.3 Development of Framework 

Based on literature, we identified strength and weakness of existing literature. After the 

detailed study of literature, we developed a conceptual framework for 

1.8. RESEARCH METHODOLOGY 



 

 

 
Figure 1.1: Research Methodology 

effort prediction of software projects. The components of Conceptual Framework are 

provided in Chapter 4 of this dissertation. After attaining knowledge about the topic and 

highlighting the issues of previous frameworks we proposed a framework for effort 

estimation. 

1.8.4 Data Collection 

This section is related to data collection process. At this phase we selected two 

organizations located in Islamabad-Pakistan. We collected data of 38 already completed 

software projects P1-P38. We selected 28 projects for training and then 10 projects P29-

P38 for testing purpose. We used a tool named as questionnaire for data collection. 

There are two types of variable involved in this study first one is numeric values and 

the second is categorical variable which could also be named as ordinal values. The 

details of data set is provided in chapter 4 of this description. 

1.9. THESIS STRUCTURE 



 

 

 
Figure 1.2: Thesis Structure 

1.8.5 Analysis of Result 

We performed all experiments in ORANGE tool. After results were produced, we 

analyzed the result using different validation methods used in effort estimation. We 

applied CHI- square and ANOVA to understand trends of data set and Pearson 

correlation to find the relationship between independent and target variable. 

1.8.6 Drawing Conclusions 

At the end, conclusions were drawn after performing analysis of formed results. To 

reach a single conclusion, we performed experiments in two main steps. First one 

comprises of application of machine learning and in step we applied clustering before 

applying machine learning. Furthermore, we have analyzed the results using different 

evaluation measures to come up with one solution. 

1.9 Thesis Structure 

The remaining sections of his dissertation is ordered in following style: Machine 

Learning algorithm have been presented in Chapter 2. Chapter 3 constitutes of 

Literature Review. Conceptual framework and results & discussions are part of Chapter 

4 and Chapter 5. Finally, in Chapter 6, we provided Conclusions and Future works. The 

structure of this dissertation is provided in Figure 1.2. 

1.9. THESIS STRUCTURE 

1.9.1 Chapter 2- Data Mining & Machine Learning Algorithms 

This chapter presents the details of data mining techniques and machine learning 

algorithms that were used in this study for the prediction of effort. 

1.9.2 Chapter 3- Literature Review 

This chapter provides the literature review in two section. First section provides the 

application of data mining in the field of software engineering. Then, in second section, 

we explain data mining and machine learning when applied in the area of software 

development effort estimation. 

1.9.3 Chapter 4-Conceptual Framework 

This chapter defines the proposed conceptual framework and explain each component 

of this framework in detail. 

1.9.4 Chapter 5- Results and Discussions 

This chapter provides in depth interpretation of the results. The validation measures and 

provides the discussions. 

1.9.5 Chapter 6- Conclusions & Future Work 

This is the last chapter of this dissertation which provides the conclusion and guide the 

future perspective to the attentive researchers in area of software development effort 

estimation 
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Chapter 2 Preliminary Studies  
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Chapter 1 has provided the introduction of research topic. The objective of this chapter 

is to provide in depth view of the algorithms used in this study. The used algorithms are 

K-Means clustering, Support Vector Machine, K-Nearest Neighbor, Random Forest, 

Neural network and Linear regression. We also described Expert Judgement and the 

evaluation measures used in this study. 

2.1 Software Development Effort Estimation 

Software Development Effort Estimation is a process of predicting work hours required 

to complete software project successfully. It is usually expressed in person month, man-

hour or work-hours. As we have seen in literature, software estimation techniques such 

as thump rule, expert based judgement, checkpoints, seer, Price-S, Function points, 

COCOMO methods [35], Analogy based estimation, top down, bottom up approaches, 

price to win were proposed for estimation. But, accuracy of predictions seemed to 

decline with increasing size and complexity of software projects. Due to this problem 

of parametric methods researchers have shifted towards application of machine learning 

for estimation as we have in [36]. Further, machine learning is applied for situations 

where we have increased size of data set and we want to improve the performance [37]. 

Thus, with aim of increasing accuracy of estimates random forest trees were applied for 

bring up accuracy in predictions. In addition, use of case-based reasoning [38], and 

combination of functional point with neural network, CBR and regression is 

implemented in [39]. The combination of regression with analogy based estimation is 

noted in [40] with improved estimates. The application of machine learning has not 

stopped here; more researchers have applied different machine learning algorithms. 

Major type of machine learning techniques for effort estimation involve use of concept 

learning (CL), artificial intelligence (AI), decision trees (DT), artificial neural networks 

(ANN), instance based learning (IBL) and analytical learning [41]. So, the use of more 

techniques such as neural network has been investigated and proved to be feasible 

technique for bottom up data [42]. With the increased number of experiments for 

applying data mining and machine learning has continued with investigation of different 

techniques repeatedly in different environment such as application of case based 

reasoning, rule induction and artificial neural networks for Canadian dataset is reported 

in [43]. We again noticed an experiment using genetic algorithm over Desharnais 

dataset which is tested for software development effort estimation [44]. 

Moreover, the effectiveness of transfer learning has been investigated for environment 

of Tukutuku datasets [45]. Similarly, with many other methods, ensemble based effort 

estimation is another machine learning based technique for estimation purpose. This 

effectiveness of this technique was investigated in [46, 47]. Similarly, like many other 

researchers’ fuzzy logic also considered effective in combination with analogy based 

approach [48]. In addition, from the systematic literature review, it was noted that 8 

types of machine learning techniques were under investigation till year 2010 [49]. 

Even today the process of effort estimation has not been generalized for all types of 

software development projects and researchers are keenly interested in finding one 

solution. Therefore, as seen in [50] where use of gradient boosting and deep learning is 

analyzed. Similarly another method known as Neural network is tested proves to be a 

better model for estimation [2]. Moreover in a systematic literature review till year 

2018, we realized the importance and applicability of machine learning algorithms 

could help in improving effort estimation of software projects 

[24]. 

From the overview presented above, we concluded numerous techniques have been 

proposed such as Expert judgement, parametric models and then era of machine 
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learning for effort estimation had been started long time ago. With the use of data 

mining we have seen application of machine learning has widely been used to bring 

accuracy in estimation. But still, none of these work in all environments. Thus, 

extending the research in arena of software development effort estimation, this study 

has applied data mining and machine learning algorithms over the data set collected for 

organizations located in Islamabad-Pakistan. 

To meet the objectives of this research work, we applied several machine learning and 

data mining techniques. In this chapter, first we explained Expert Judgement Estimation 

and then we provided in depth view of all the selected methods such as supervised and 

unsupervised learning algorithms. At the end we have provided details of evaluation 

measures which are used for validation of research. 

2.1.1 Effort Estimation using Expert Judgement and Machine Learning 

To apply combination of expert judgement and machine learning, this section helps us 

in gaining deep understanding of expert judgement and then machine learning. 

2.1.1.1 Expert Judgement 

Boehm in 1981 proposed a method known as expert judgement for software 

development effort estimation [8]. Expert judgement is a quantification step and result 

in effort estimates [51]. The meaning of quantification step is to provide a numeric value 

in terms of hours/ days or months. This number is then used to allocate resources to 

individual. 

Expert judgement has two categories: structured [52] and unstructured. The 

unstructured estimation technique is not reliable and yields inaccurate results [53]. 

Unstructured effort estimation is purely based on intuition, knowledge of estimator. 

Unstructured estimation is not supported by researchers for reason of high inaccurate 

estimations. Furthermore, the structured expert-based judgement is preferable as it is 

mixture of multiple methods such as using checklists for making estimates. Moreover, 

work break down structure and Delphi method are used by experts to produce estimates 

without using any other parametric model [54]. 

Usually expert judgement is based on historical data [55]. It also depends on motivation, 

experience, knowledge [9]. Most of the time effort of software projects is estimated by 

using this technique. There is no better evidence that these techniques perform work 

well [56, 57]. Different machine learning techniques from expert judgement to artificial 

intelligence techniques, the estimation accuracy remains different in all conditions [58]. 

However, expert judgement remains highly inconsistent [59]. The degree of error in 

expert judgement is conscious and unconsciousness [60]. Due to the above mentioned 

reasons, in this study expert judgement is used with combination of machine learning 

techniques. 

2.1.1.2 Machine Learning Algorithms & Data Mining Techniques 

In this Section, we explained in detail the machine learning, the types and techniques 

which are used for the estimation of effort. 

2.1.1.3 What is machine learning? 

Starting from learning, which has been defined in dictionary as: “to gain knowledge, or 

understanding of, or skill in, by study, instruction, or experience,” and “modification 

of a behavioral tendency by experience” [55]. According to Tom Mitchell, machine 

learning is defined as ”A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P, if its performance at tasks 

in T, as measured by P, improves with experience E” [56]. 

The statistical learning has applications in different arena such as finance, science and 

industry [57]. Some very basic example of statistical learning are as follows: 
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• Identify risk factors in cancer on the basis of demographic information. 

• Prediction of price in stock market. 

• Estimation related to amount of glucose etc. 

Furthermore, the use of machine learning for effort estimation has been used for 

prediction of effort estimation as seen in [58] where fuzzy logic was implemented to 

predict effort based on factors such as complexity, size and developer characteristics. 

In addition, from [59] we have noted the work is done using machine learning to 

increase the precision and reliability using confidence intervals. However, estimating 

software project with respect to schedule and budget using machine learning techniques 

such as decision trees, support vectors, radial basis function and principle component 

analysis is studied in [35]. Even today, machine learning algorithms are applied to 

improve effort estimation in different environments such as Random forest is applied 

to increase accuracy of COCOMO II in [36]. 

2.1.1.4 Why do we use machine learning? 

Machine Learning applied over two conditions. First, when there are multiple features, 

and all are of equal importance. Second, the size of available data is large, and human 

cannot analyses the trends and patterns of data set. We can also say machine learning 

solves complex problems by increasing learning experience and adaptability of features 

[60]. Therefore, for prediction over such conditions, machine learning algorithms are 

applied to get better and suitable results. 

2.1.1.5 What are the types of machine learning algorithms? 

Learning is extensive domain. When combined with machine learning, it is divided into 

multiple sub fields to solve wide range of problems. The learning paradigm is classified 

into four parameters [60]. 

1. Supervised and unsupervised 

2. Active and passive learners 

3. Helpfulness of the teacher 

4. Online and batch learning protocols 

 
Figure 2.1: Classification 

2.1.1.6 Supervised Learning and Unsupervised Learning Techniques 

In this dissertation, we are concerned about supervised and unsupervised learning. Rest 

of the learning methods are out of the scope for this research work. As, we have defined 

above learning depends on the environment and the learners. Thus, in order to 

understand the difference between both, let’s first take an example of spam e-mail 

detection and anomaly detection. For the first example, we have labelled data set with 
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two labels spam and not spam. The learners are trained on this data set. However, for 

anomaly detection, all the learners are trained with the data set with no labels. The task 

of learners is to detect the unusual messages. As we know learning is process of gaining 

experience to increase expertise. For unseen training example, supervised learning with 

identify the missing information in new examples and classify it. In above example, the 

classification in terms of spam and not spam. In contrast to supervised learning, 

unsupervised learning is trains classifier using labelled data and forms suitable clusters 

based on characteristics. 

The two main concepts for supervised learning to gain experience are classification and 

regression [60]. alternatively, unsupervised learning technique are based on relationship 

between data variables [56]. There are multiple algorithms, however in this section we 

would explain the algorithms which are most widely used in area of effort estimation 

and research community supports use of such algorithms. 

2.1.1.7 Classification 

Classification problem in machine learning is based on discrete valued output i.e. either 

0 or 1. [61, 62] The classification of two groups is presented in Figure 2.1. 

 
Figure 2.2: Regression 

2.1.1.8 Regression 

The most used tool to understand the relationship of variable of dependent (Y) and 

independent variables (x1......xn) which are part of any system [63]. The aim of this 

analysis is to find the function which finds of the target variable by considering input 

variables. In regression we produce a continuous valued output [64]. Moreover, this 

function should always have the minimum possible error for input variables. However, 

to minimize the error, another parameter  is used to find the difference between the 

predicted and actual values. Furthermore, the sum of ı can be reduced by using least 

square method with the objective of find best possible function [65]. The concept of 

simple regression is presented in Figure 2.2. 

In the next sub-sections, we have explained supervised learning techniques such as 

Support Vector Machine, Linear Regression, Random Forest, K nearest neighbor and 

Neural Networks. Afterwards, we have explained unsupervised learning techniques 

such as clustering. The clustering technique that was employed in this research work is 

known as K-means clustering. 

2.1.2 Support Vector Machine 

Vapnik proposed support vector machine algorithm [72]. This approach is revolves 

around training data. First it considers complete data set and then smaller subsets are 

considered in training models. Furthermore, SVM could be adopted for both regression 

and classification problem solving [63, 73]. Support Vector machine is implemented in 

conditions when we have nonlinear data (see Figure 2.3, adopted from [74]). 
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Therefore, SVM forms nonlinear optimization function to generate a convex function 

to reach global optimum for solving any problem. Moreover, instead of providing 

probabilistic solutions to any problems, this algorithm results in forming 

 
Figure 2.3: Non-Linear Data points [74] 

some decision. Instead of using the optimal boundary SVM defines hyper planes. In 

SVM we select decision boundary when margin is maximized [73].The concept of using 

margins was first introduced by Tong and Koller [74]. The margin is stated as the 

perpendicular distance between data points which is closet to decision boundary. 

Whenever the margin is maximized, the decision boundary is located by support 

vectors. These support vectors are the closet subsets of data points. The Figure 2.4 is 

adopted from [73]. It explains the margin and maximized margin with circles denoting 

data points in a subset which are also known as support vectors. 

2.1.2.1 SVM with linearly separable data 

When using SVM for classification, there are two to do so. First one described in this 

section is two class classification. The linear model used in two class classification is 

expressed in Equation. 

 y(x) = wtθ(x) + b (2.1) 

There are N values in training set from x1......xn with target values t1......tn where tn 

belongs to -1,1. The data points of training set are classified with respect to function 

y(x). Assuming that the feature space is linearly separable and only option for b and w 

exists if the function is in the form of Equation 2.1. 

This equation should satisfy following conditions (referred to equation 2.2, 2.3 ) 

 y(xn) < 0fortn = +1&y(xn) > 0 (2.2) 

 
Figure 2.4: SVM: Margin [73] 

 y(xn) < 0fortn = +1&y(xn) > 0 (2.3) 
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However, for all training examples which are also known as data point following 

equation 2.4 should be followed. 

 tn = −1,tny(xn) > 0 (2.4) 

As described above, SVM finds the maximum margin boundary for decision boundary. 

The maximum margin is can be a motivation for computational learning theory also 

named as statistical learning. Furthermore, to find the best suitable hyperplane, distance 

should be calculated for maximized [69] with the use of following Equation 2.5 given 

below: 

  (2.5) 

The meaning of maximizing margin is to minimize the vector w which is 

multidimensional. This can also be inscribed as equation 2.6 below: 

  (2.6) 

This is according to the given constraints between the margin of two classes. To ensure 

the constraints, we can a Lagrange multiplier(α) See equation 2.7 below 

  (2.7) 

Therefore, to find the point at which slope is equal to zero, which is also known as 

saddle point the following equations 2.8 & ?? should be used. 

  (2.8) 

 = 0 (2.9) 

In case of a corresponding input data (xi) is a support vector, the (α) is not equal to zero 

[69, 75]. These support vectors are used to define the boundary of class. 

Adding the values from equation 2.8 and 2.9 into 2.7, we get the following equation 

2.10 which is subjected to following limitations. 

  (2.10) 

with respect to equation 2.11  

N αi ≥ 

0&X[αiyi] = 0 (2.11) 

i=1 

This equation is used to find the vectors and their input data. The decision function also 

known as hyper plan w can be calculated from this equation. Another parameter b which 

is known as bias can be calculated from equation 2.12 below. 

 ) (2.12) 

2.1.2.2 Two class Classification with linearly Non- separable data 

There are conditions when have linear data which cannot be separated due to feature 

similarity within data set [69]. in this situation linear function could not perform well. 

Therefore, the distance i should be calculated. This is the distance between the margin 
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and bad classified data. The penalty function can be written as (referred to equation 

2.13): 

  (2.13) 

As a result, the nonlinear function from equation 2.6 will be as following Equation 2.14. 

  (2.14) 

w.r.t equation 2.15 

  (2.15) 

In the above equation the parameter C is used to minimize error in classification and 

maximize the margin. This is also known as “trade-off” parameter [76]. The equation 

for soft margin w.r.t constrains is written as equation 2.16: 

  (2.16) 

w.r.t constraints given in equation 2.17  

N o ≤ αi ≤ 

C;X[αiyi] = 0 (2.17) 

i=1 

where α as constraint tries to adjust its value equal to or it should be less than parameter 

c. 

2.1.2.3 Kernel used in SVM 

Even when the best hyperplane is found, SVM for nonlinear data would not work well. 

Therefore, in order to increase generalization of model, input data and its mapping with 

high dimensional dot product is calculated. This is known as Hilbert space [77]. The 

concept of nonlinear data is presented in Figure 2.3. The inner product after the selection 

of kernel can be calculated as equation 2.18. 

 θ(xi,xj) = K(xi,xj) (2.18) 

Thus, to solve this equation for nonlinear data following equation 2.19 defines 

constraints for kernel function g(x) must be satisfied. 

Z 

 K(xi,xj)g(xi)g(xj)dxixj ≥ 0 (2.19) 

Furthermore, the type and equations for different kernels are presented in Figure 

2.5, which is adopted from [69]. 
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Figure 2.5: Kernel Function, [69] 

With respect to kernel the equation of hyper plane is given in Equation [? ]. 

N 

 d(x) = X[yiαiK(x,xi) + b] (2.20) 

i=1 

2.1.2.4 SVM with Linear Regression 

Support vector machine also work as a regressive model. In case of Linear decision 

function, the equation 2.21 if given below: 

 f(x) = wT x + b (2.21) 

in the above equation x is the vector which is used to predict the target variable Y with 

use of n-dimensional feature space with weight w and the bias parameter b. As we have 

already described classical regression in above sections. The difference of applying 

SVM with regression lies in the decision function where another parameter  using this 

parameter is presented in Figure 2.7 which is adopted from [69]. This shows SVM when 

implemented for regression avoids or ignores the sensitivity parameter(reference to 

Figure 2.6) and make use of slack term ξ to find best hyperplane [73, 78]. Therefore, 

the objective function Lp is given in equation 2.22 & 2.23. The purpose of this equation 

is to find best weights and reduce the risks. 

) (2.22) w.r.t 

 0 (2.23) 

 
Figure 2.6: insensitivity parameter and slack variables, [70] 

The restrictions in above equation show that is any error is less than  is out of objective 

function. The concept explained above is the insensitivity theory described by Vapnik 

[69, 72]. Furthermore, just like classification, for solving 

0 optimization problems 

the Langrage multipliers (αi,αi) are used to follow the similar conditions given in 

equation 2.24 & 2.25: 

  (2.24) 

 ) = 0 (2.25) 
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Thus, from the above equations, the equation for SVR is presented in Equation 

2.26. 

 
w.r.t equation 2.27 given below 

  (2.27) 

 
Figure 2.7: SVM for Non-Linear Data, [70] 

However, when there are nonzero langrage multipliers, the bias parameter and weighing 

parameter were determined by one of the following equations 2.28. 

  (2.28) 

2.1.2.5 SVM with Nonlinear Regression 

To run SVM for nonlinear data, the basic concept remains the same as described for 

linear data. However, the high dimensional mapping in Hilbert space has to be fixed. 

The insensitive margins for nonlinear data are presented in Figure 2.9. 

Thus, a method for optimal weighing vector w for regression in this case be written as 

given in equation 2.29: 

N 

 w = X(αi − αi
0)φ(xi) (2.29) 

i=1 

Furthermore, need to use the kernel as we have no information for φ in Hilbert space. 

Thus, the final equation in this case is given in equation 2.20 below. 

 N N N N 

 yi = XX(αi − αi0)φ(xTi )φ(xj) + b = XX(αi − αi0)K(xi,xj) + b (2.30) 

 i=1 j=1 i=1 j=1 

However, if we use kernel trick there is no need to calculate weighting vector, all we 

need to find is parameter b. This is calculated by using following equation 

2.31. 

NSV 

 b = yi − X αiyiK(xi,xj) (2.31) 

i,j=1 

General steps for executing SVM for classification & Regression: 

Following are the steps which are executed for running SVM in classification and 

Regression. 

1. Preparation of pattern matrix 
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2. Kernel Selection 

3. Parameter Selection 

4. Execution of training algorithms 

5. Classification/ regression 

Thus, in the process of performing regression using SVM in orange tool, we have fixed 

the parameter values as which are provided in chapter 4. In the next section we explain 

another supervised learning technique known as Linear Regression. 

2.1.3 Linear Regression 

Another statistical used for the analysis of independent variables also known as 

explanatory variables and target variable which is dependent variable [66]. Let’s 

suppose the input vector (X) belongs to subset of Rd. The label associated to input vector 

is Y. To get the linear function of h: Rd → R. For some feature d, the linear function is 

given in Figure 2.8, adopted from [79]. 

The hypothesis of linear regression is represented in Figure 2.8 [79]. 

 y = hθ(x) = θ0 + θ1x (2.32) 

In the above equation, the function is formed in which all input values are mapped to 

their corresponding target value (y). To measure accuracy of hypothesis that we have 

formed, we use cost function. The average of the results is calculated with X as an input 

and y being output. Therefore, the cost junction for linear regression is presented in 

Equation 2.33. 

  (2.33) 

 
Figure 2.8: Linear Regressive function for single feature,[79] 

Where hθ(xi) − yi means difference between actual and predicted values. The function is 

also known as mean of squares of this term. 

Moreover, gradient descent is used to estimate features of hypothesis function. We take 

smaller steps based on value of learning rate (α) on cost function to reach steepest point. 
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The gradient descent of algorithm is repeated till it reaches to convergence. Following 

is equation used for gradient descent (See equation 2.34 & 2.35): Apply gradient 

descent for θ o & θ 1 { 

 ) (2.34) 

  (2.35) 

} 

Linear Regression using Multiple Features 

The cost function for multiple variables remain same (Referred to equation 2.33). The 

gradient descent also remains same. The only difference is it has to run several 

 
Figure 2.9: Regression with single and n-dimensional polynomial features [66] 

times till n features. The general form of gradient descent is presented in equation 2.36. 

  (2.36) 

Whenever we have multiple features they may be on different scale or must be 

nonlinear. There different ways to handles such features. One is Feature normalization 

and another is Normal equations. In feature normalization and mean normalization, we 

scale the variable by the division of range of input values to mean or standard deviation. 

Another technique is polynomial regression. (See Figure 2.9, adopted from [66]). In this 

technique we combine multiple features to make one useful feature. Furthermore, to 

find the optimum value of theta we use normal equation instead of gradient descent. 

The general form of normal equation is given in Equation 2.37. 

 θ = (XT X)−1XT y (2.37) 

When using normal equation , feature scaling is not required [80]. To find the linear 

fitting of linear regression, elastic net regression is used [81]. It is applied in conditions 

where we have highly correlated features [82]. This method is based on regularization. 

It combines L1 and L2 in linear form from ridge(Tikhonov regularization) and 

Lasso(least absolute shrinkage and selection operator) regression [81]. To improve 

accuracy elastic net regression finds the highly correlated variables in the model. It uses 

these variables and adds a penalty from ridge regression to find best estimates by 

improving accuracy of model. 

To reduce over fitting ridge in elastic net shrinks the coefficients of regression. It does 

not perform selection of covariates rather it just adjusts the values to fit model 
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Figure 2.10: Random Forest [79] 

in certain circumstances. However, in Lasso the variables are selected, and their value 

of coefficient is shrunk with respect to some threshold value. Both ridge and lasso fit 

the model by keeping value less than threshold value. Therefore, elastic net regression 

combines both penalties. First it finds the highly correlated variables and the tries to 

adjust the value of least square distance less than some value. Lasso finds one important 

variable and ignores all other therefore, ridge in elastic net adds a quadratic term which 

is used to fix the limitation of lasso. Thus, the general form of elastic net regression is 

derived as Equation 2.38 & 2.39. 

  (2.38) 

 B∧ = argminβ(||y − Xβ||)2 + λ2||β||2 + λ1||β||1 (2.39) 

In order to run linear regression using multiple variables in orange tool. We performed 

different settings of parameters which is presented in chapter 4. In the next chapter, we 

presented Random forest. 

2.1.4 Random Forest 

Random forest is a machine learning technique used for classification and regression 

purpose [18]. It works under the principle of decision trees [82]. Decision trees usually 

have three nodes such as leaf node, then internal nodes and finally decision or root node 

(See Figure 2.10 adopted from [79]). In decision trees the branches are the results of 

root and internal nodes. The hierarchies in each division represent the classifications in 

decision trees. Different methods such as entropy, classification error etc. are used to 

find the depth level of trees. The two problems of over fitting and under fitting are 

caused by variance and bias. Variance is error of classifier 

 
Figure 2.11: Variance and Bias, [82] 
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due to its variability. However, bias is error of difference between the predictions and 

actual values. The effect of reducing bias is presented in Figure 2.11 which is adopted 

from [82]. This figure shows if we reduce the variance resultantly it increases bias. 

Bootstrapping also known as bagging is an ensemble method which is used to improve 

classification accuracy of an algorithm. Furthermore, a technique known as Random 

Forest is proves improvements of bagging. It de-correlates trees by using small tweaks. 

Let’s suppose we have one highly strong variables and rest are moderately stronger 

variables. In bagged trees, the highly correlated variable is considered, and rest of the 

variables are not given any importance. As a result, trees which are formed acts as 

highly related trees. Therefore, random forest is developed by Ho [83]. Moreover, 

Random forest splits on the basis of random selection of variables. On average, the 

Equation 2.40 shows random selection and it is not inclined towards highly correlated 

variables. 

  (2.40) 

Where n is number of features and r is random splitting of trees. However, for regression 

problems with random forests, the v/3 (v corresponds to variables) rounds should be 

selected for minimum node size of 5 [83]. Moreover, random forest in orange tool is 

executed by setting no of trees, no of splits in each tree and depth of trees. Thus, 

parameter setting is given in chapter 4. In the next section we explain another supervised 

learning technique named as Neural network. 

 
Figure 2.12: Neural Network Structure [73] 

2.1.5 Neural Network 

Neural network is interconnection of nonlinear elements with the weights. The elements 

along with their weighted sum [61]. The simplest form of neural network is presented 

in Figure 2.12 (which is adopted from[73]). The first layer is the input layer. Next is the 

layer of hidden units. We can have multiple hidden layers. Finally, the last layer 

contains output units or nodes. The one of the important elements in neural networks in 

threshold value. 

The linear functions are easy to implement. These functions work by adding weighted 

input. This is then compared with threshold value. Figure 2.13, which is adopted from 

[61]. This is threshold logic unit (TLU). The output remains in 1 or 0. The output 

depends on the threshold value. Each element is known as perceptron, Adaline and 

neuron. The input vector having multiple features (n-dimensional) is represented by 

 X = (x1,x2........xn) (2.41) 
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The elements present in X is real- valued number. These are specific to binary numbers 

1 and 0. The weights for X are given in TLU are given in W= 

(w1,w2......wn). 

Furthermore, if TLU remains the output to 1 is it follows following condition presented 

in Equation 2.42. If this is not satisfied the output remains 0. The weighted sum is 

calculated as dot product X.W. it is sometimes represented as Xt W. 

 
Figure 2.13: Forward propagation Neural Network [61] 

 
Figure 2.14: Multi-Layer Neural Network 

 0 (2.42) 

The structure of forward propagation is presented in Figure 2.13. The forward 

propagation neural network is simple neural network in which we have no access to 

previous layers. The derivative term of previous layer becomes zero and we cannot trace 

back. In forward propagation, jth term receives input from j-1th term of network. The 

multi layered neural network is presented in Figure 2.14, adopted from [61]. We have 

fixed values of α and no of iterations for application of neural networks. The detail is 

provided in chapter 4. In the next section we explain another supervised learning 

technique known as K nearest Neighbor. 

2.1.6 K nearest Neighbor 

K-nearest neighbor is a memory-based classification classifier [63]. This tool is used to 

identify the hidden patterns [84]. For any target x0, KNN finds the nearest 
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Figure 2.15: K Nearest Neighbor [85] 

neighbor such that the closest training point be x(r), where r = {1,2......k}. Next step of 

KNN is to find the majority of nearest neighbors and their vote. This concept is 

presented in Figure 2.15, adopted from [63]. 

If we have real valued data, we find the Euclidean distance between the data points. 

Thus, we calculate distance between two points. The Equation 2.43 represents formula 

of Euclidean distance. 

 d(i) = ||x(i) − x0|| (2.43) 

The decision boundary of KNN classifier is determined locally and is based on value of 

k [85]. Furthermore, KNN when applied for classification returns the mode of k labels 

however, in case of solving regression problem it returns mean of k labels [66, 67]. 

Moreover, if we choose smaller vale of k, we do not get robust results and higher value 

k of k presents produce low noise and smooth boundaries. To overcome these issues 

weighted method is used over all variables [86]. To use KNN in orange tool, we selected 

the uniform weighted method which assigns equal weightage to all the neighbors and 

selected the value of k to 3. The process of training data with unlabeled data set on the 

basis of characteristics is known as supervised learning. In supervised learning as 

described in previous section, we group data into clusters based on pattern and 

characteristics of data set. Therefore, the K-Means clustering is applied on data set of 

effort estimation. In the following subsection, we explain the clustering process 

specifically K-means clustering. 

2.1.7 K Means Clustering 

The process of grouping similar objects in same group is known as clustering[61, 87] 

and class boundaries are undefined and statistical [88]. The clusters are represented in 

Figure 2.16 (adopted from [89]). There are different clustering algorithms such as 

hierarchical clustering, K- means [90] and C means. The algorithm used in this study is 

K-Means algorithm. The working of K means is presented below. Steps to form 

Clusters The steps to allocate clusters are given below: 

Step 1: User has to select number of clusters and the centroid for each cluster. 

Step 2: Distance between data points is calculated. The item we are predicting 

takes the minimum distance between data points and centroid. Step 3: Repeat the 

step to find centroid again till the user requirements are satisfied. 

Step 4: If we find that the desired clusters are not formed, repeat process from 

step 2 till you achieve desired results. 

Similarity between two Numeric values 

The formula to calculate similarity between two numeric variables [91] is presented in 

equation below (referred to equation 2.44). 
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 D(X,Y ) = |x(n + 1) − x(n)| + |y(n + 1) − y(n) (2.44) 

However, to find similarity based on categorical variables, we first convert the data into 

matrix and then we calculate the Euclidean distance the motive behind using this 

technique is its similitude with human understanding [25]. The primary step in K-Means 

Clustering is to adopt number of clusters which is represented by K. The subsequent 

step deals with picking centroid for each cluster. Simplest way is to select k randomly 

from the given data points, we may have multiple iterations to get accurate centroid for 

each cluster. Usually, distance metrics known as Euclidean distance is widely used in 

clustering phase but we have other measures too [88]. 

Cluster Quality 

Furthermore, to examine cluster superiority and assigning quality of cluster, the 

projected method use Silhouette Index as presented in studies [25, 92]. The Equation 

2.45 demonstrates how silhouette Index is calculated for analyzing the quality 

 
Figure 2.16: K-Mean Clustering [89] 

of cluster. We intend to select K= {3,5,7} for clustering process. We have selected 

ORANGE tool for the application of K-means clustering algorithm. Further detail about 

parameter setting is given in chapter 4. To access the cluster quality equation 2.45 

presents the formula. 

  (2.45) 

where A is considered as average distance to each project and B is measured as average 

distance to projects in all other clusters. In the next section, we have explained most 

widely used evaluation measures in arena of software development effort estimation. 

Furthermore, we have applied all these measures explained in next section. 

2.1.7.1 Accessing Accuracy of Effort Estimates 

The following evaluation measures are used to validate results as researchers have done 

before. The evaluation measures along with techniques are presented in 3. 

The most widely and repeatedly used measures are discussed below: 

Absolute Error 

The difference between actual and estimated values is known as Absolute Error [93]. 

The formula is presented in equation 2.46. 

 abs.err = x1 − x2 (2.46) 

Where x1 is predicted value and x2 is actual value. 

Magnitude of Absolute Error 

Magnitude of absolute error [94] is calculated as (referred to equation 2.47) 

 (2.47) 

[yi
∧] predicted value and yi is actual value. 
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Magnitude of Mean Relative Error 

The sample average MRE is known as MRE [93]. It is calculated as referred to equation 

2.48). 

  (2.48) 

Mean Relative Error 

The equation to calculate mean relative error [93] is given in below. (See equation 2.49) 

  (2.49) 

where, yi is predicted value and y∧i is actual value. 

Relative Error 

The formula to calculate Relative error [93] is given in equation 2.50. 

 100 (2.50) 

Where x1 is predicted value and x2 is actual value. 

Mean Squared Error 

Mean squared error [94] is defined in equation 2.51. 

  (2.51) 

yi is predicted value and y∧i is actual value. 

Prediction (.25) 

Let’s considers the average fraction of the MRE’s off by no more than x as defined by 

[93]. The formula to calculate Pred is given in equation 2.52. 

 
Root Mean Squared Error 

The root mean squared error [94] is defined in equation 2.53. 

  (2.53) 

where yi is predicted value and y∧i is actual value. 

2.1.8 Summary 

The chapter has explained the methods and algorithms that were employed in this study. 

We provided details about linear regression, k nearest neighbor, support vector 

machine, K-means clustering, neural networks and random forests. In the next chapter, 

we would present the related studies of software development effort estimation. 
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The objective of this chapter is to review related work in the arena of software 

development effort estimation. The main focus is to find the answer of first research 

question by critically analyzing the strengths and weaknesses and to come up with the 

limitations. 

3.1 Related Work 

Software development effort estimation is an active area for researchers since 1960s. 

This process falls under software project management. The aim of this chapter is to 

highlight limitations of previously proposed solution. The effort estimation techniques 

are generally grouped into three categories i.e. parametric, non-parametric and machine 

learning based models. Thus, in this section, First we have analyzed the strengths and 

weakness of parametric and non-parametric models. Second, we analyzed machine 

learning based methods for effort estimation of software projects. 

3.1.1 Parametric and non-parametric Estimation methods 

Software Development estimation is an active area for last three decades. There were 

plethora of studies conducted to fix the problem of effort estimation. Therefore, the aim 

of this section is to analyse strength and weaknesses of existing literature for expert 

based estimation, parametric and non-parametric models. 

The non-algorithmic techniques are based on inference and comparing things 

analytically. These techniques require information of already completed projects.[97] 

These techniques are expert judgement and analogy-based estimation. 

Barry Boehm in 1987, proposed a method named as Cocomo[98]. This model is based 

on parametric model and produce effort and duration of software projects. It is 

important to accurately measure the cost drivers which are used for making predictions. 

In 1983, Galorath, Inc. of El Segundo, California proposed a model named as Seer 

model which was developed on the basis of Jensen model [99]. This model takes input 

in form of size, personnel, environment, complexity and constraint. As a result of 

processing, it produces results for cost, effort, schedule, maintenance, risk and 

reliability of projects. 

Boehm [8] in 1981 proposed a technique known as expert judgement. Ballay states 

expert as “person who has the knowledge” and judgement is a process in which a person 

continues to practice. The quantification step of expert judgement is based on the 

knowledge and on spot decision of experts [100]. However, there is no statistically 

collected method for expert judgement. Rather it is based on spontaneous decisions 

which could be either due to political pressure or some unfair measures [101]. The 

expert judgement is considered beneficial because it uses the knowledge gained from 

previous experience. But sometimes it could be challenging to use expert judgement 

due to following reasons. First, the deficient knowledge due to less experience which is 

a basic reason for underestimating an effort of project [9]. This technique is based on 

another method known as Delphi method [102]. This method was proposed in late 

1940s. There are multiple rounds in which participants provide their estimates and with 

consultation they reach to a single effort estimate. Another method which comes under 

expert judgement is known as Work break down structure. This method is a bottom up 

estimation in which each individual item is considered and used for making estimation. 

Another non algorithmic technique is known as analogy-based estimation [9]. This 

technique is based on case-based reasoning. This estimation is performed either of 

system level or making estimates for smaller systems known as sub-systems. This 

technique is based on selection of right analogy, then making boundaries between 

similarities and dissimilarities. Then it is very important to examine the quality of 

analogy. After the detail analysis of these steps the quantification step provides 
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estimates for each project [97]. The main goal is to allocate effort to project to fill needs 

of time and budget [102]. This techniques uses similarity measures such as Euclidean 

distance between the previously completed projects and new projects 

[103]. 

After non algorithmic techniques various methods have been proposed which are known 

as algorithmic techniques. The examples of such methods are explained below. 

Additionally, in 1977, at RCA another method names as Price-S [104] was developed 

as a tool which uses functional points to estimate project size for input. The equation of 

this tool was not released. This model was used to estimate schedule and cost of 

software projects. However, with evolving software solutions they were updating their 

tool. The model named as Putnam’s Software Lifecycle Model (SLIM) [105] was 

proposed by Larry Putnam in 1970s. This model supports model such as Function point 

analysis. However, this model need data for previously completed project. In case of 

unavailability of data, this model requires answering questions to make a Rayleigh 

distribution curve. Thus, if the information of previously complete projects is not 

available or correct this model would not provide better results of estimation. 

Another algorithmic model named as Checkpoints[106] was developed from studies 

named as Capers Jones’. The input of size in this method is made by function point 

analysis. This method is used for prediction at four levels such as task, project, activity 

and phase. This method help users to perform benchmark analysis to make effort 

estimates [102]. Function Point [107] is another method which eliminates the problem 

of line of code by producing the estimates of size and complexity or project. This 

method has nothing to do with the language of program [102]. unfortunately, this 

method is not utilized by many estimation methods. 

This section has provided information related to methods which do not involve machine 

learning. However, from the literature review we concluded none of the above 

presented method works equally good in all environments [102]. Therefore, in the next 

section, we presented a literature review for effort estimation using machine learning 

techniques. 

3.1.2 Machine Learning based Estimation methods 

The trend in estimation has changed and researchers are investigating the use of data 

mining and machine learning for the purpose. Therefore, as seen in Kumar S et al [38] 

machine learning algorithms are applied to publicly available data sets named as 

Desharnais and COCOMO over ORANGE tool for K- Nearest Neighbor (KNN), 

Support Vector Machine (SVM), Random Forest (RF) and Neural Networks(NN) and 

Python for the application of back propagation neural network algorithm. This study 

reported the use of back propagation algorithm to be the best among on given data sets 

for the successful completion of projects which involves estimates related to staff, cost 

and time. The produced effort estimated were evaluated using Mean Magnitude of 

Relative Error (MMRE) and Adjusted square (R2). The main limitation of this study 

was it was implemented and tested over publicly available data sets. Furthermore, this 

study has used only two data sets. Therefore, we are unaware of the application of the 

proposed methodology in different environments. 

Further, in work done by H karna et al [39] we studied the use of data mining method 

such as K- Nearest Neighbor (KNN) which is extended version of Neural Networks was 

applied on agile projects. This study suggested application of data mining for the 

purpose of estimation in industry as this experiment was conducted with industrial data 

set. The method is this study used Estimation error (EE), Magnitude of relative error 

(MRE), Mean Magnitude of Relative Error (MMRE), Pred(x) as evaluation measures 
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for the validation of results. The main limitation of this study was the application over 

one single large agile project. 

Similarly, use of machine learning algorithm has been addressed in work of Arsalan F 

[108] and model is presented. The model uses Random Forest, REPTree, Gussian 

Processes, Linear Regression, M5P, ZeroR, Decision Table, Input Mapped Classifier, 

KStar, Multilayer Perceptron, IBK, Additive Regression, and SMOreg algorithms. As 

a result, Random Forest outperforms on Usp05-ft dataset while Kstar, REPTree and 

Additive Regression outperformed all other over Usp05 data set. Therefore, the results 

encourage estimators to apply machine learning for making accurate predictions. The 

results are evaluated using Adjusted square (R²), MAE, RMAE, RAE, and RMSE. This 

study is limited to two mentioned data sets and the inputs to model need to be improved 

for more reliable predictions. 

To predict the effort estimate as done in various studies, differential evolution algorithm 

for feature optimization and its effectiveness is studied in work of Benala T et al [29]. 

This study has reported the increase in estimation with use differential algorithm over 

partial swarm optimization, analogy based, genetic algorithm, functional link artificial 

neural networks etc. The proposed method was tested on data from real world and 

publicly available datasets. The estimated are evaluated with the use of MdMRE, PRED 

(0.25), MMRE, SA, and ∆. Furthermore, for the improvement of effort estimation the 

feature selection technique in work done by Abran S [109] uses entropy based method. 

This study has reported the positive influence of entropy-based method for numeric 

data. However, the effect of entropy on categorical data variables remain unidentified. 

Furthermore, the effect of entropy was tested for seven data sets still this is not enough 

of generalization of results. Thus, more data sets should be utilized for making 

comprehensive results. 

Alternatively, Principal Component Analysis, a data mining technique was used for 

feature reduction and then classifiers such as K- Nearest Neighbor (KNN), decision 

trees (DT) and Na¨ıve Bayes were applied to make prediction in work of Nejad and 

Tavoli [110]. This study supports the use of PCA with any of these techniques but 

specially KNN, which performs best in current scenario of NASA and COCOMO data 

sets. In future, this study could be implemented to test other machine learning classifiers 

for effort prediction. The analysis of results was made on precision, accuracy and recall. 

This study has main focus of reducing the size of input to model. So, one of the most 

main tasks is to decide which feature would be eliminated from input. 

Also, the study presented by Minku and Yao [111] provides a Dynamic Cross company 

Learning (DCL) method to analyses effect of machine learning on effort prediction. 

This study reported the positive influence of DCL which is a weighing method on 

accuracy of predictions by considering the recent projects. This study was based on two 

datasets from NASA and COCOMO and three data sets. This method does not involve 

the practitioners to identify and choose any previous estimation method. Moreover, the 

results produced by DCL are evaluated using Mean Absolute Error (MAE). DCL 

method, however, needed investigation for industrial data sets. 

In addition, to improve accuracy of COCOMO dataset using gaussian function, results 

presented in work of Shankar G [112] proposed fuzzy approach with gaussian function 

with use of Support Vector Regression over K- Nearest Neighbor (KNN), Linear 

regression (LR) and artificial neural network (KNN). The results showed that SVR and 

ANN performs better in most cases than other techniques. The results proposed by each 

model are evaluated using Root Relative error, relative absolute error, mean absolute 

error, root mean squared error, mean relative error and correlation coefficient. This 
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study however needs more attention and should be tested for data set having different 

characteristics. 

Moreover, the use of data mining techniques such as decision trees and bagging using 

WEKA tool were testified in work of Bedi S R et al [113]. The results produced by both 

techniques are validated by mean absolute error, correlation coefficient, relative 

absolute error, root mean squared error, and root relative absolute error. The data set 

used in this study was Promise repository data set. The comparison of estimates was 

made on effort and months basis. However, both the methods should be used for other 

data sets also. This would bring the generalized results as dependable estimation still 

remains challenging in different environments. 

Using fuzzy C means with neural network & optimizers algorithms such as artificial 

bee colony (ABC), modified cuckoo search (MCS) and hybrid ABC-MCS algorithms 

was studied in work of Azath H et al [30] and informed increase in performance is 

observed with the specified approach. the experiments were conducted over two large 

real-world data sets. The performance of algorithm is evaluated using mean magnitude 

of relative error and mean absolute relative error. The problems of underestimation and 

overestimation leads software projects towards failure. In case of under estimation, the 

cost and delivery are affected. In contrast, the overestimated projects are reason for 

financial loss and outbidding issues inside an organization. 

Thereafter, in work done by Chhabra and Singh [114] proposes a model using fuzzy 

logic combined with intermediate COCOMO to identify effect of cost parameters. 

Fuzzy logic is considered beneficial when there is missing information and prediction 

is at risk. This method also leads to increase in estimation over publicly available 

datasets named as COCOMO and NASA. Moreover, the results are analyzed by using 

MRE, MMRE and Pred. The same method could be extended for functional point 

analysis and other models. However, there is need of hybrid method which are able to 

improve accuracy of predictions. 

A new method using fuzzy logic was proposed in work of Nassif A et al [115] for 

estimation of effort. This technique uses three fuzzy models Sugeno with constant 

output, Mamdani, and Sugeno with linear output. They described use of Sugeno would 

enhance accuracy on data set named as e International Software Benchmarking 

Standards Group (ISBSG). The results were evaluated sing standard measures such as 

effect size, standardized accuracy and mean balanced relative error. This study further 

removes a cover from effect of data heterogeneity and outliers’ impact on effort 

estimation using fuzzy logic. According to this study, there is great impact and unclean 

data sets containing outliers badly effect estimation accuracy. 

To bring rightness in effort estimations researchers are dealing with project’s missing 

data was investigated in work done by Zhang W et al. [116] The techniques used for 

data imputation are Bayesian Regression, Linear regression, M5’ regression, Support 

Vector Machine and BREM. This study informed BREM outperformed all other 

techniques. This experimentation was conducted for CSBSG (Chinese Software 

Benchmarking Standard Group) and ISBSG datasets. The limitations of this study lie 

between the application over more data sets and other performance measures need to 

be implemented for evaluation of model. 

Likewise, Vijay et al [117] in their work analyzed the effectiveness of using fuzzy logic 

when dealing with data. This method presented in this study uses fuzzy based method 

in functional point analysis and quality factors. Thus, fuzzy logic was implemented to 

deal with software size by using triangular fuzzy set and at the end this study has 

reported increase in accuracy of estimation for real world data set collected from 
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software industry. The results generated by proposed method are evaluated with VAF 

and MMRE. The primary focus of this study was to put functional and nonfunctional 

properties of software project in form to effort estimation. Another work using fuzzy 

logic for data imputations was reported in work of Abanane I et al [118]. This study, 

therefore, investigated and reported that use of FA-KP-1 would be beneficial to deal 

with categorical data imputations and thus, it would in return be able to increase 

accuracy of estimation. The missing mechanisms such as NIM, MCAR and MAR are 

used with four data sets to perform analysis. 

Similarly, to deal with multiple imputations of data the work has been done by Abran 

and Bala [119]. This study advises use of multiple imputation techniques instead of 

single imputation due to reason that it brings accuracy to predictions. The data sets from 

ISBSG are selected for this study because they have many missing values such as lines 

of codes, resource level, maximum team size etc. This study has used adjusted R2, 

Pred(x) and MMRE. The problem of data imputation causes misleading and biased 

results. Therefore, this problem should be addressed and sorted. Additionally, the work 

done by Tanveer B et al [33] proposed a hybrid method for estimation of agile projects. 

The use of hybrid model with Gradient boosted trees would increase estimation 

accuracy of software projects. This study has been implemented on data set collected 

from Insiders Technologies GmbH, a German software company. The results are 

evaluated using Pred (x) and MMER. 

Meanwhile, the work using multivariate linear regression and deep structured multi-

layer perceptron using different optimization algorithm was studied in work of Resmi 

and Vijayalakshmi [19]. This study proves the use of the classification techniques along 

with clustering provide better results as compare analogy based estimation without 

machine learning. The data sets from Promise repository named as Cocomonasa60, 

Cocomo81, and Cocomonasa93, ALBRECHT, DESHARNAIS, Miyazaki1, Kemerer 

and MAXWELL are used for this study. Moreover, this study has used following 

evaluation measures: Classification accuracy, correlation coefficient, prediction and 

MMRE. The limitation of this paper was identified as no preprocessing was performed 

prior to application of data mining and machine learning. 

Similarly, usage of neural network in amalgamation with evolutionary techniques for 

effort estimation was investigated in work of Khazaiepoor M et al. [120] Their results 

indicate the effectiveness of techniques on all selected datasets such as Cocomo, 

Desharnais, Albrecht, Maxwell, ISBSG and China. These data sets contain few records 

except for one data set named as CHINA. The results are evaluated using MMRE, 

MdMRE and Pred(x). Moreover, the results show that the prediction over china data set 

are better than other data sets. 

Further, the investigation of hybrid technique using neural network based fuzzy logic 

with incremental data based clustering algorithm and then bootstrapping smoothing was 

noted in work of Souza et al [121]. The practice of this technique not only reduces the 

execution time but also reduces accuracy in predictions. The results are evaluated using 

Root mean squared error (RMSE). Feature selection and correlated feature selection 

remains an important area in software development effort estimation and we need to 

address this problem for data density algorithm. In continuation more work has been 

done by Souza et al [122] with fuzzy regularized neural network for effort prediction of 

software projects. This study supports the usage of their proposed technique for 

estimation of project prior to starting phase. They used a real-world data set for 

evaluation of proposed model. The results proposed by this study are not interpreted 

because they are formed by a black box problem. 
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The application of fuzzy logic has not ended here. Thus, more work has been seen in 

work of Kaur I et al [123], where Neuro fuzzy logic using COCOMO 81 was 

implemented over MATLAB tool. Their study supports use of proposed method for 

cost estimation as it produces better estimates. The experiments were performed over 

NASA data set with application of Cocomo 81 model. The fuzzy logic basically named 

as neuro fuzzy logic was implemented for Cocomo 81. However, it could also be 

implemented for other parametric models such as Slim, Functional point analysis etc. 

The application of Real Time Extreme Learning Machine (RT-ELM) for effort 

estimation was investigated then reported in work of Pillai K et al [31]. This proves 

usage of their approach for publicly available data sets. This technique has online 

sequential learning algorithm to learn from all new recently added projects. The 

estimates produced by this technique shows that radial basis function and the new 

additive hidden nodes are not dependent on data. Furthermore, the results are validated 

from industry and evaluation measures such as RMSE, Correlation, Kurtosis, 

Skewness, IQR, mean, median, maximum and standard deviation. 

However, to analyses effect of support vector regression (SVR) to estimate effort 

during maintenance phase is studied in work of Garcia-Florina A et al [17]. This study 

reports use of SVR with polynomial kernel performs best. This study was conducted 

on five data sets which are collected from ISBSG data sets. The limitations of this 

study are linked to few tested data sets. Furthermore, this study is conducted for 

projects which are under maintenance. This method needs to be tested for all type of 

projects. 

In the study of Carvalho et al [124] we observed ensemble regression methods using 

bagging applied on Linear Regression (B-LR), Ridge Regression (B-RI), Robust 

Regression (B-RR), Lasso Regression (B-LA), Robusta, Lasso and Linear meta-

predictor (ST-LR), Stacking with Ridge, Stacking with Linear, Stacking with Linear, 

Robusta, Lasso and Robusta meta-predictor (ST-RR), Lasso and Ridge meta predictor 

(ST-RI), Lasso meta-predictor (ST-LA) and Stacking with Linear, Robusta, Ridge. 

Consequently, this study as a result of their experimentation, specified use of their 

proposed ensemble regression method to be best among previously generated methods. 

The predictions are evaluated using Mean Absolute Residual (MAR). This study is 

limited to smaller data set with few features. 

An ensemble method using different solo algorithms to form one stack based stable 

ranking method based on publicly available industrial datasets could improve 

estimation accuracy of software projects as mentioned in work of Phannachitta and 

Matsumoto [125]. The results had shown the stack with combination of ordinary least 

square regression, adaBoost, bagging, analogy-based estimation, and bagging provides 

promising results. The total of 13 data sets which are extracted from Promise repository 

are used in this study. To evaluate performance of model, this study has utilized MAE, 

RSD, MBRE, LSD, MBRE and MMER. 

Alternatively, in another work of Thamarai and Murugavalli [126] Genetic algorithm 

based on Expert Judgement for effort prediction was investigated with a technique 

named as Modified Genetic Algorithm-Simulated Annealing (MGASA). This 

technique outperformed all other techniques on NASA dataset in context of software 

effort estimation. The main challenges in effort estimation are selection of features and 

components of projects. Moreover, the results are evaluated using Relative Error (RE), 

Mean Magnitude of Relative Error (MMRE), Magnitude of relative Error (MRE) and 

Pred (Percentage of prediction). This methodology needs to be tested for more data sets 

do that the application of this model would yield efficient and reliable effort estimates. 
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Additionally, in study conducted by Khatoon and Kaur [127] the use of genetic 

algorithm for optimization of COCOMO parameters was evaluated. This study proves 

practice of this approach could be valuable in attaining accuracy over real world data 

sets having characteristics like NASA data sets. 

In studies, of Xia T et al [128], we have seen the tool OIL, based on analogies, which 

was tested over publicly available dataset for estimation and optimization of features. 

These study support using CART and FLASH as they outperformed others. The outlier 

method should be change as it is not effective and does not contribute to improve 

estimates. Effectiveness of model is to be tested on more projects so that results are 

improved. The results are evaluate using IQR which is inter quartile range, Standardized 

accuracy (SA) and MRE. While the same tool in [129] was evaluated using Magnitude 

of Actual Residual, MRE, SA and MAE. This study has used hyperparameter 

optimization. The limitations are linked to use of few classifiers, data preprocessing 

which is process of selection of features. 

Similarly, with intention of increasing accuracy in making predictions, a new method 

using Deep Neural network was proposed in work of Menash S et al. [130] This 

technique uses Bellwether moving window with Tri-weight function on three data 

sets(Desharnais, ISBSG and Kitchenham). This study shows effectiveness of technique 

over new projects in a window. The results are evaluated using Cliff’s δ effect size, 

Brunner’s test at 5% asymptotic significance level, MAE and Yuen’s test. However, a 

new idea which supports the usefulness of software analytics for effort prediction was 

perceived in work of Hassan A et al. [131] Extending their work for use of Bellwether 

to estimate effort and other some other areas is investigated in Krishna R et al [132]. 

The predictions are evaluated using standardized accuracy (SA). 

The use of hybrid method which combines Particle swarm optimization technique with 

case based reasoning over two datasets (Desharnais and Maxwell) was investigated in 

work of Wu D et al [133]. This study supported using combination instead of using one 

as generated result produce lesser error magnitude. The predictions made by model are 

evaluated using MdMRE, MMRE and Pred(x). The results have proved the weighted 

method to be better than unweighted Case Based Reasoning (CBR). 

However, use of hybrid morphological perceptron for effort predictions was studied in 

work of Bilgaiyan S et al [134]. To increase accuracy in predictions, this method has 

used CMPSO algorithm for improvement and optimization of DEF parameters. The 

accuracy of this technique was presented over five publicly available datasets. These 

are Albercht, KotenGray, Cocomo, Kermer and Desharnais data set. The estimates 

made for all the project inside data set are evaluated using Evaluation Function (EF), 

MMRE and Pred(x). 

Further, indicative -based optimization for effort estimation using MATLAB was seen 

in work of Alsalman and Ali [135]. This uses technique known as Cat swarm estimation. 

The use of this technique over NASA dataset produces estimate near to actual effort of 

software projects. This method is evaluated with MRE, RMSE, MORE and MAE. This 

study is limited to one data set; therefore, the results are not generalized. Also, use of 

particle swarm optimization algorithm with COCOMO model had increased accuracy 

over dataset of Turkish company in work of Langsari K et al [136]. This method has an 

ability to take incomplete inputs and could easily deal with them. The method was 

evaluated using MMRE. Additionally, use of data mining for feature selection and then 

effort estimation is presented in work of Jodpimai P et al [137]. This study used thirty 

eight software projects which were collected from two software organizations. The 

evaluation of model is performed by MBRE, MdBRE, MIBRE, MdiBRE, 10-Fold cross 
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validation, Inversed Balanced Relative Error (IBRE) and Balanced Relative Error 

(BRE). This technique proved itself to be better for re-estimating software project. 

More, the use of Analogy based estimation (ABE) with combination of other techniques 

were proposed in this study of Bardsiri [138] This study was conducted on two different 

data sets. First is ISBSG data set and second one is collected by students. Moreover, 

both the data sets are evaluated using Pred (x), MdMRE, and MMRE. Results shows 

proposed technique known as ABEM outperform other developed models. With 

increased number of variables and complexity of software project, the estimation 

remains challenging task. 

To dealing with combinations of algorithms, in the work of Malgonde and Chari [139]. 

proposed an ensemble-based technique on the basis of expert estimation by using 

different machine learning techniques. Their results disclosed, ensemble predictor 

outperformed extra trees, random forest, average and other machine learning 

algorithms. RMSE, MBE and MAE were used for evaluation of models. The data set 

was collected from information available on Project management system. This method 

does not synchronize with new technologies. 

Another ensemble method proposed in work of Pospieszny et al [32] uses SVM, MLP 

and GLM. This method was tested over ISBSG dataset and their results indicate towards 

the effectiveness of using ensemble techniques for estimation at prior stages. The 

predictions were evaluated using Pred (x) and MMRE. The use of machine learning 

techniques such as Deep learning algorithm and Gradient boosting machine is 

investigated in work of Phannachitta P [50] for effort estimation. As a result of 

systematic comparison this paper suggest using machine learning for effort estimation 

of software projects. 

Additionally, for selection of features to improve accuracy of prediction is evaluated in 

work of Fernandez-Deigo M et al [140]. This study performed cross validation and 

MMRE as average value for cross validation to ensure the validity of their results in 

which they reported the use of K-NN work well in case-based reasoning. The main of 

this work to select features and rank them in two categories. These are continuous and 

numeric features. However, feature selection and weighing them properly could bring 

accuracy in predictions. The techniques proposed in work of Bardsiri A [141] uses a 

hybrid technique which outperforms all other techniques. The method was evaluated 

with MdMRE, MMRE and Pred (x). However, in study conducted by Tariq S et al, [24] 

we noted the use M5P and linear regressions for selection of attributes to make effort 

estimates. Further, work of H karna et al [142] use of SVM and ANN could improve 

accuracy as compared to other machine learning techniques. This study also reported 

application of MMRE is used in most of the studies for accuracy predictions. We have 

provided the highly relevant papers from related work in Table 3.1. 



 

 

Table 3.1: Effort Estimation with Machine Learning 

Authors Description of Research Methodology Data set used Evaluation Measures Limitations 

Barry 

Boehm [8] 

The use of expert 

estimation in 

estimation of 

effort. 

Nonparamet- 

ric 

NA NA Based on Single 

technique. 

Kumar 

and Be- 

hera [18] 

Machine Learning 

based prediction 

•SVM 

•KNN 

•NN 

•RF 

•Desharnais 

•COCOMO’81 

MMRE Two data

 sets only 



 

 

Resmi and 

Vijayalakshmi 

[19] 

Analogy based estimation 

based on 

clustering 

•K- 

Means 

•DMLP 

•MLR 

•Firefly 

•Analogy 

based fuzzy 

logic 

•Cocomo81 

•Cocomonasa60 

•Cocomonasa93 

•Deshnaris 

•ALBRECHT 

•Kemerer 

•Miyazakil 

•MAXWELL 

•Correlations 

•MMRE 

•accuracy 

•Pred (25) 

Data 

preprocessing 

    Continued on next page 

Table 3.1 – Effort Estimation with Machine Learning 

Authors Description of Research Methodology Data set used Evaluation Measures Limitations 

Tariq S et 

al [24] 

To select predictor and 

eliminate out- 

liers 

•LR 

•M5P 

•ISBSG •real 

data 

MMRE No outliers’ 

inclusion and 

exclusion. 



 

 

Pospieszny 

P [32] 

Ensemble methods for 

estimation 

•SVM 

•MLP 

•GLM 

•ISBSG •Crossvalidation 

•ME 

•MAE 

•RMSE 

•MSE 

•MMRE 

•Pred 

•MM •R 

•MBRE 

Limitations 

related to data 

sets. 

Farrukh 

Arsalan 

[108] 

Using WEKA tool 

for prediction 

•RF 

•DT 

•Gussian 

Processes 

•LR 

•MLP 

•Upsp05 

•Upsp05-tf 

•R2 •MAE 

•RMAE 

•RRSE 

•RA E 

Applied on two 

publicly available 

datasets 

Continued on next page 



 

 

Table 3.1 – Effort Estimation with Machine Learning 

Authors Description of Research Methodology Data set used Evaluation Measures Limitations 

Nejad and 

Tavoli 

[110] 

PCA classification 

(Rapid Miner) 

•PCA 

•KNN 

•DT 

•Na¨ıve 

bayes 

•COCOMO81 

•NASA 93 

•Accuracy 

•Precision 

•Recall 

two publicly 

available data 

sets. 



 

 

Minku and 

Yao [111] 

Weights

 provided to 

learners by DCL and

 predictive 

performance 

•MLP 

•RT 

•Bag+RT 

•k- 

NN 

•ISBSG2000 

•ISBSG2001 

•ISBSG 

•Nasa60 

•Coc81 

•Nasa93 

•Random 

holdout 

•crossvalidation 

•MAE 

Proper parameter 

setting is 

required 

Bedi R et 

al [111] 

Data mining using 

WEKA tool 

•Bagging 

•DT 

PROMISE •MAE 

•correlation 

•RAE 

•RMSE 

•RRAE 

Leads to use of 

few data sets. 

Ali and 

Gravino 

[14] 

Use of SVM and 

ANN for improvement in 

accuracy 

SLR NASA MMRE keyword

 selection 
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3.2. OUTCOMES OF RELATED WORK 3.2 

Outcomes of Related work 

The aim of this section is to highlight challenges in area of software development effort 

estimation identified from previous sections. 

• Expert judgment is misleading due to spontaneous decisions, less knowledge and 

experience and political pressures. 

• This ultimately leads to underestimation. 

• Another challenge in making estimation is to fulfil the restriction of budget and 

constraint. 

• Data of previously completed projects is input to most of the models therefore, it 

should be updated continuously. 

• The schedule estimates should be very accurate in order to estimate cost properly. 

• The information of size, personnel, environment, complexity and constraint is 

considered as important for accurate effort estimation. Therefore, it should be 

made compulsory to gain and verify the information which is input to most of the 

models. 

• Cocomo model is depend on the time estimates at each level. If the estimator is 

unable to provide the accurate time period for each stage the estimation is not 

correct and is biased. • Individual assessment in functional point analysis could 

provide inaccurate and unreliable estimates. 

• The accurate number of staff and cost should be allocated to project for successful 

completion. 

• The generalization of models is needed as most of the studies either use publicly 

available data sets or data set of single software development organization. 

• The inputs to model should be given a look and more is required in this direction. 

• Effect of entropy method on categorical variables need to be addressed and more 

data sets should be employed for comprehensive results. 
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• For techniques which utilize feature selection, it is important to decide which 

feature is selected because the selected features have impact on estimation. • 

Accurate and dependable estimation still remains a challenge during estimation. 

• Noisy data sets are difficult to handle and ultimately, these kind of data sets effect 

effort estimation badly. 

• The problems of underestimation and overestimation leads software projects 

towards failure. In case of under estimation, the cost and delivery are affected. In 

contrast, the overestimated projects are reason for financial loss and outbidding 

issues inside an organization. 

• Incorrect estimates disturb the planned budgets for completion of software 

projects. 

• Data heterogeneity, data imputations and outliers are main considered as main 

cause of estimation error. 

• The problem of data imputation causes misleading and biased results. 

• The most important challenge in software development effort estimation is to 

bring transparency in it. • The optimization of cost drivers for parametric 

optimization is looked-for the accurate estimations. 

• Pre-processing is necessary and important step. If it is ignored the overall 

estimation accuracy remains effected. 
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• Identification of features and correlated features have a significant impact 

overestimation. 

• The main challenges in effort estimation are selection of features and components 

of projects. 

• On time completion and delivery of software projects remain challenging task. 

• Effort estimation is difficult process because of increasing complexity, addition 

of new variables, change and unusual nature of projects. 

• Effort estimation remains challenging due to new technological improvements in 

organization. 

      

3.3. SUMMARY 

3.3 Summary 

This chapter presented dimensions of software development effort estimation such as 

estimation with machine learning and estimation with parametric and non-parametric 

methods. We further highlighted the limitations of previously related studies. In the 

next chapter, we present proposed methodology. 
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The prior chapters of this dissertation have provided detailed knowledge and 

background of software development effort estimation. These chapter have also defined 

the recent research patterns in arena of effort estimation and how we have formulated 

the problem statement for this research work. The proposed framework is designed with 

the aim of improving software development effort estimation for organizations located 

in region of Islamabad-Pakistan. 

4.1 Proposed Framework 

4.1.1 A machine learning based framework for software development effort 

estimation 

Software development effort estimation is one of the vital process in software 

development. Making accurate prediction prior to starting the project has a significant 

impact on successful completion of project. However, effort estimation remains 

challenging and unresolved problem for last three decades. The research community 

could not come up with one broad solution to solve all estimation problems. With the 

aim of improving software development effort estimation, we have analyzed literature 

and identified the unsolved challenges in arena of software development effort 

estimation. 

Effort estimation of software projects are sometimes misleading due to spontaneous 

decisions, less knowledge and experience and political pressures mostly from the 

managerial staff on experts. This pressure is sometimes caused by the customer as they 

want some giant task to be done in small duration of weeks. Due to this, the schedule 

and budget plans are disturbed and leads project towards failure. Effort estimates are 

made in a realistic manner. The estimates should be supportable to develop credible 

strategies for successful completing software project. These effort estimates are then 

taken by project manager of higher authorities to develop complete cost plan. 

Data of previously completed projects is input to most of the models therefore, it should 

be updated continuously. The information of size, personnel, environment, complexity 

and constraint is considered as important for accurate effort estimation. Therefore, it 

should be made compulsory to gain and verify the information which is input to most 

of the models. The generalization of models is needed as most of the studies either use 

publicly available data sets or data set of single software development organization. 

Moreover, it is important to understand the importance of inputs provided to models for 

estimation. Identification of features and correlated features should be given position as 

they have significant impact overestimation. 

Thus, one most important challenge in software development effort estimation is to 

bring transparency in it so that in time completion and delivery of software project is 

ensured even with changing unusual nature of projects. Another important factor which 

effects effort estimation is new technological improvements in organization. All the 

above-mentioned issues in estimation leads projects towards in two directions. First is 

underestimation of projects and second corresponds to overestimation. The problems 

of underestimation and overestimation leads software projects towards failure. In case 

of under estimation, the cost and delivery are affected. In contrast, the overestimated 

projects are reason for financial loss and outbidding issues inside an organization. 

To the best of our knowledge, there was no work done to improve effort estimation of 

software projects for software development organizations located in Islamabad 

Pakistan. Therefore, there is a need of a model which is capable of minimizing error 

magnitude for estimation in region of Islamabad-Pakistan. Thus, a more efficient and 

reliable model is replicated and is applied for estimation in similar environment. 
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4.1.2 Conceptual Framework 

Software development effort estimation is one of the vital process in software 

development. Making accurate prediction prior to starting the project has a significant 

impact on successfully completion of project. Therefore, there is a need of a model 

which is capable of minimizing error magnitude for estimation in region of Islamabad-

Pakistan. Thus, a more efficient and reliable model is replicated [25] and is applied for 

estimation in similar environment. 

In the proposed framework the first step is was to design a questionnaire. After 

formation of questionnaire, we have collected data from two software development 

organizations located in Islamabad-Pakistan. The collection process was full of 

challenges however, we succeeded to collect information of thirty eight software 

development projects. Thereafter, we performed pre-processing and analyzed the 

properties of variables present in data set. 

The next step of this conceptual framework is to apply data mining techniques on data 

set to form clusters. The results produced by clustering are input to modelling phase in 

which we applied several machine learning algorithms. At 

 
Figure 4.1: Conceptual Framework for Software Development Effort Estimation 

this stage, we have produced effort estimates of project. It is very important to evaluate 

results generated by machine learning algorithms. Thus, the next phase is evaluation 

phase, where we have used measures to validate the produced results. When we were 

satisfied with the generated results, we have deployed this methodology to two selected 

organization which have provided data for this research work. Furthermore, the 

proposed framework is depicted in Figure 4.1. 

The components of framework are explained in following sections. 

4.1.2.1 Design Questionnaire 

The questionnaire is designed based on 21 variables depicted in Table 4.1 used in this 

study. The variables are grouped into three parts as presented in Table 4.1. First one is 

linked with the project characteristics, second with the estimator and third one is related 

to work items which are extracted from work break down structure. These three types 

of variables were used to construct a data set. The answers of questions are given in 

numeric or categorical type. The design questionnaire is provided in chapter 5. 

4.1.2.2 Data Collection 

We gathered data from two software organizations in region of Islamabad-Pakistan. 

Mainly the questionnaire is based on variables which are used for making effort 

estimation. The variables are selected on the basis of work done by Karna et al [25]. 
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The questionnaire contains a demographic section which contains information like 

name, organization name etc. which was not included in study. However, the 

 
Figure 4.2: Data Collection Process 

Table 4.1: Features and Target Variable used to build model 

Variables Project Estimator Item 

 Size Level Phase 

 Volume Company

 Experience 

Area 

Used as Predictor Development 

Method 

Estimation 

Experience 

Item Size 

 Duration Role and their 

Responsibilities 

Activity 

 Precedence Total Experience Priority 

 Turnover Technical

 Competence 

Estimated 

Effort 

 Complexity 

Estimated Effort 

Organizational 

Competence 

Severity 

Target Variable  Actual Effort  

rest of project variables and the questionnaire was adopted from work of Karna et al 

[25]. 

The selected software development organizations were working on same scale and have 

more than 50 employees. Respondents filled these questionnaires for 38 already 

completed software projects which are categorized as small, medium and large. We 

used random sampling procedure [144] for data collection from organizations. As a 

result, 47 respondents (mostly software engineers and project managers) participated in 

survey. Combining the results of survey into a data set comprising 3091 instances 

collected from the data of 28 projects which were used for training. Rest of the projects 

P29-P38 are used for testing phase. This data collection process is given in Figure 4.2. 

4.1.2.3 Pre-Processing 

In this phase the variables are analyzed using ORANGE tool. The description of Orange 

tool has been provided in chapter 5. Following the visualization from [121] we used 

box plots for visualization of variables. The variables are categorized into numeric and 

categorical types. For numeric variables’ ANOVA Test is used to calculate variance 

between mean of groups [145] such as Project volume, total experience, company 

experience, item actual effort, item estimated effort etc. variables which contains three 
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groups of data for small, medium and large projects. However, for the categorical 

variables we have used Chi-Square. This test is used to find the independence of 

variables [146]. The results of these statistical testing show variables are significant as 

their p- values are less than 0.05 and therefore, they would have giant impact on 

estimation. We also performed Pearson correlation analysis to analyze relationship of 

variables. The pre-processing of each attribute that will be used for building models and 

eventually lead towards prediction phase are presented in results section. (referred to 

chapter 5) The equation to calculate degree of freedom for categorical variables is given 

below: 

 df = (r − 1)(c − 1) (4.1) 

4.1.2.4 Data Mining 

At Data mining phase, we apply data mining technique known as clustering. The 

procedure of grouping elements of the basis of similarity is known as Clustering [147]. 

The motive behind using this technique is its similitude nature with human 

understanding . The primary step in K-Means Clustering is to adopt number of clusters 

which is represented by K. The subsequent step deals with picking centroid for each 

cluster. Simplest way is to select k randomly from the given data points, we may have 

multiple iterations to get accurate centroid for each cluster. Usually, distance metrics 

known as Euclidean distance is widely used in clustering phase but we have other 

measures too. So, we applied euclidean distance as it is used to measure the smallest 

distance between object and centroid to assign the cluster. Moreover, euclidean distance 

is the smallest distance in all dimensions. Furthermore, to examine cluster superiority 

and assigning quality of cluster, the projected method use Silhouette Index as presented 

in studies [25]. 

Moreover, to run K-means in Orange tool, We have select K= 3,5,7 for clustering 

process. The clustering process is presented in Figure 4.3. After clustering, next 

 
Figure 4.3: Project Clustering 

phase is to apply machine learning technique to build models that would later predict 

effort of software projects. The results of this phase are given in 5. 

4.1.2.5 Modelling 

At this stage we performed experiments in two stages. First stage involve the model 

formation without taking input from data mining phase. At second stage we performed 

experimentation with the input taken from K-Means algorithm. Whenever the size of 

data set is large, and we have more than more of features we apply machine learning 

over it for prediction purpose. These techniques are used either for classification or 

regression purpose. We apply supervised learning techniques in proposed framework, 

such as Neural Networks, Linear Regression, Support Vector Machine and Random 

Forest using ORANGE tool. The techniques are used to train model and used for 

making predictions in different areas including software development effort estimation. 

Further in this section, we have explained the setting of machine learning algorithms 

and the values of parameter for running experimentation. 
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Algorithm 1: Support Vector Machine 

In the process of performing regression using Support Vector Machine in orange tool, 

we have fixed the parameter values as: Cost=4.0, Regression loss to 2.80. The tolerance 

value and iteration limit are 0.0001 and 100 respectively. Furthermore, the polynomial 

kernel is used with values of g,c,d as 0.03, 0.31, 2.0. The effort estimations made by 

Support Vector Machine are Presented in Chapter 5. 

Algorithm 2: Linear Regression 

In order to run linear regression using multiple variables in orange tool. We performed 

different settings of parameters, but the best results were seen with elastic net 

regression. The value of L1, L2 and α are 0.46, 0.054 and 0.013 respectively. 

The effort estimations made by Linear Regression are Presented in Chapter 5. 

Algorithm 3: Random Forest 

Random forest in orange tool is executed by setting no of trees, no of splits in each tree 

and depth of trees. Thus, we set value of parameters as: no of trees=2, no of split at each 

level=6, depth limit=3 and do not split trees more than=3.The effort estimations made 

by Random Forest are Presented in Chapter 5. 

Algorithm 4: Neural Network 

We have fixed values of α = 0.007 and no of iterations to 20000. Furthermore, we 

selected hidden layers to 4. To run forward propagation neural network, we have 

selected identity activation function. The effort estimations made by Neural Network 

are Presented in Chapter 5. 

Algorithm 5: K-Nearest Neighbour 

To use K-Nearest Neighbour in orange tool, we selected the uniform weighted method 

which assigns equal weightage to all the neighbors and selected the value of k to 3. The 

effort estimations made by K-Nearest Neighbour are Presented in Chapter 5. 

4.1.2.6 Effort Prediction 

At the effort prediction phase, we aim to test the accuracy of machine learning 

algorithms for new- unseen projects. Thus, we selected software projects (P29-P38). 

These projects contains small, medium and large sized projects. The effort estimates of 

these 10 projects are presented in Chapter 5. 

4.1.2.7 Results Validation 

At the stage of results validation, we have utilized the evaluation measures presented in 

chapter 2. These evaluation measures are Root Mean Squared Error (RMSE), Mean 

Squared Error (MSE), Prediction (Pred), Absolute Error (AE), Mean Relative Error 

(MRE) and Mean Magnitude of Relative Error (MMRE) [149]. The evaluation of 

results for algorithms are presented in Chapter 5. 

4.1.2.8 Deployment 

At the last stage, we would deploy the presented model in two selected software 

development organizations in region of Islamabad-Pakistan for accurate effort 

estimation of software projects. This model was applied with the intention of improving 

effort estimation of new projects for reasonable allocation of resources for 
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Figure 4.4: Flow of Proposed Model 

successful in time completion of project. 

4.1.3 Putting Model into Work 

The aim of this study is to propose a framework which improve software development 

effort estimation in region of Islamabad-Pakistan. The proposed model uses machine 

learning and data mining algorithms for effort estimation of upcoming software 

projects. First phase of model is data collection. Although data is collected by 

conducting surveys in this work but here for understanding of model we have we 

selected a publicly available data set named as Desharnais Data Set [150] as an example. 

Another reason behind using this data set is that some variables of Desharnais variable 

and the variables used in study are common. 

After the data is loaded through file widget from orange tool. We have connected the 

input data set to the K-means widget from clustering module. At this phase, the clusters 

based on similarity are produced as a result. We selected three optimum number for 

clusters that are 3 and 5 for this data because we have total of 81 projects. The cluster 

formation phase therefore, this step is very important as, these clusters are used during 

model building for effort estimation. 

At the next stage, we have formed models using machine learning algorithms. We have 

used Support Vector Machine, Neural Networks, Random Forest, Linear Regression 

and K- Nearest Neighbour algorithms for model formation. For the application of each 

algorithm in orange tool we connected widgets for each of the algorithm and model is 

trained with setting parameter value. After the training phase is completed, we have 

selected three projects from Desharnais data set for testing phase which is effort 

prediction phase. Further, at next stage we have evaluated results using Root Mean 

Squared Error, Mean Squared Error, Mean Relative Error, Absolute Error, Mean 

Magnitude of Relative Error and Pred (x). This models evaluated is important for check 

whether the produced estimates are guessed by the model or they are predicted. At the 

last stage, we could deploy this model to the environments which are similar to 

Desharnais settings. 

The work flow of model which is described above is presented in Figure 4.4. The work 

flow consists of five basic steps, first one is data collection. Next, we have applied pre- 
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processing in data preparation phase. Once we have analysed the variables and data set. 

We move onto the Project clustering. After cluster formation, we build the model and 

Effort of new projects is predicted. Thereafter, once we are done with prediction, we 

evaluate the results using above mentioned measures. Last phase is deployment, in 

which we apply the model into software development organizations. 

4.1.4 summary 

This chapter has presented a framework for software development effort estimation. It 

provided a detailed information of model which is based on machine learning. 

In the next chapter, we have explained the obtained results. 
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Chapter 5 Results and Discussions  
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The objective of this chapter is to provide the results of experiments done for prediction 

of software development effort estimation. We developed a model by merging data 

mining and machine learning techniques. For the purposes of prediction, data sets were 

collected from two software development organizations in the region of Islamabad-

Pakistan. At the end, we have compared the results with similar study. 

5.1 Description of Data set 

The purpose of this section is to explain data sets which are used to conduct 

experimentation for software development effort estimation. Thus, we formed two data 

sets. One is used for training another is used for testing of models. The following 

subsections explain both data sets. 

5.1.0.1 Data set used for Training Model 

In the first phase, data is collected from two organizations separately. Then data of both 

organizations are combined, and consolidated data set was formed. The data set contain 

project related information. The variables are either numerical or categorical. (See 

Table 5.1 for variables and their data types) 

Overall data set consists data of 38 already completed projects from two software 

development organizations. We have used 28 projects (P1-P28) for training purpose 

and four software development projects (P29-P38) for testing the performance of 

model. 

Combing the information of each single task for all projects we formed a data set of 

3091 records. The software projects utilized for training contains 9 small sized projects, 

13 medium and 6 large projects. The classification of project size is based on 

organizations internal documentation. The projects of small size are within the range of 

1-50 hours, medium sized projects are between 50-102 hours and large projects are in 

102+ hours. The Actual Effort for all three classes is given in Table 5.2. The variables 

are adopted from work done by H karna et al [25]. Consequently, the data set contains 

information in three parts, first one is linked to the project which contains information 

of project such as Size (Small, Medium & Large), Volume (Implementation 

workhours), Duration (Short, Medium & Long), 

Complexity (Nominal, High & Very High), Development Method (Iterative & 

Sequential), Precedence (True & False) and Turnover (None or Low, Medium and 

High). Second part is linked to Estimator related variables such as Role and 

Table 5.1: Categories of Variable 

Type Categorical Numeric 

Item Phase Item Size 

 Activity Priority 

 Area Estimated Effort 

 Severity 

Completion 

Actual Effort 

Estimator Role and their &responsibilities Level 

 Organizational Competence Total Experience 

 Technical Competence 

Estimation Experience 

Company Experience 

Project Size Actual Effort 

 Duration Estimated Effort 
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 Turnover 

Complexity 

Development Method 

Volume 

their Responsibilities (Software Engineer, Project Manager, Solution Architect, Quality 

Manager & Configuration Manager), Level (Junior, Advanced & Expert), Experience 

divided further into Company Experience, Total Experience and Total Experience all 

expressed in numeric values. 

Then the competence of estimator is again divided into Organizational and Technical 

competence expressed in categorical values (Basic, Intermediate, Advanced & Expert). 

Finally, the last attribute is related to Item (Each single task till project completion) such 

as Phase (Initiation, Definition, Design, Implementation. Operation, & Termination), 

Activity (Design, Quality, Management, Documentation, Implementation, System Test, 

Configuration, Installation and Integration & Acceptance), Area (Project Management, 

Configuration Management, Documentation, System & Quality Management), Item 

Size (Small, Medium Large and Very Large), Priority (True & False), Severity (Low, 

Medium & High), Estimated Effort and Actual Effort represented with numeric values 

in work-hours [h]. Furthermore, we have summarized description of all variables in 

Table 5.3. 

The project used for clustering and then model building consists of 28 projects. The 

actual and estimates made by Estimators of these projects are presented in bar chart in 

Figure 5.1, where red lines show project estimate effort and blue lines show project 

actual effort. 

Table 5.2: Project Size w.r.t Work-hours 

Project Effort in Work-hours[h] 

Small 1+50 

Medium 50-102 

Large 102++ 

 
Figure 5.1: Actual and Estimated Effort of projects used in Training phase 

Table 5.3: Description of Variables. 

Variable Sub-Variable Description 
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Project Size The size of software projects represented 

as categorical value which is defined by 

organizational internal rules. 

Type: Categorical; Values: [Small, 

Medium and Large] 

 Volume The applied effort in implementation 

phase for project completion. 

Type: Numeric; Values: [Hours] 

 Actual Effort The actual effort which is written down 

after project is completed 

Type: Numeric; Values:[Hours] 

 Estimated Ef- 

fort 

The estimated effort which is provided by 

project managers or estimators at the start 

of project. 

Type: Numeric; Values:[Hours] 

 Duration Overall time required the complete a 

project. 

  Continued on next page 
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Variable Sub-Variable Description 

   Type: Categorical; Values: [Small, 

Medium and Large] 

 Turnover Extent to which project members leave in 

between with respect to project team size. 

 Type: Categorical; Values: [None: 

Low; Medium and High] 

 Precedence Highlight if any similar project is 

present. 

 Type: Categorical; Values: [True, 

False] 

 Complexity Identifies the difficulty level of project. 

Type: ordinal; Values: [Normal; High 

and Very High] 

 Development 

Method 

Method adopted to complete software 

project. 

Type: Categorical; Values:

 [Sequential, Iterative] 

Item Activity what type of activity associated with each 

item. 

Type: Categorical; Values 

[Documentation, Quality, 

Implementation, Management, Test, 

Design, Acceptance] 

 Phase The phase with which item is linked to. 

Type: Categorical; Values: [Initiation, 

Definition, Design, Implementation, 

Operation and Termination] 
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 Area area associated with each item. 

Type: Categorical; Values: 

[Documentation, Project Management, 

Configuration Management, Quality 

Management, Installation, Integration, 

and 

System] 

 Priority The sequence of execution for all items. 

  Continued on next page 

 

Variable Sub-Variable Description 

  Type: Numeric; Values: [1,2,3] 

 Severity The impact of one item over other items. 

 Type: Categorical; Values: [Low, 

Medium, High] 

 Estimated Ef- 

fort 

The effort estimates associated with Work 

Items before starting a project. 

Type: Numeric; Values:[Hours] 

 Similarity Information related to similar work that 

has already been done. 

Type: Categorical; Values:[None, Low, 

Medium and High] 

 Actual Effort The effort estimates associated with Work 

Items after completing a project. 

Type: Numeric; Values:[Hours] 

 Item Size Work hours associated with each item. 

Type: Categorical; Values: [Small, 

Medium and Large] 

Size up till 8 [h] are labelled as small Size 

up till 8-16 [h] as Medium, size up till 16-

32 [h] as Large 
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Estimator Role and 

their Respon- 

sibilities 

Responsibility given to all people 

associated to project. 

Type: Categorical; Values: [Software 

Engineer, Project Manager, Quality 

Manager, Configuration manager, 

Solution Architect] 

 Organization’s 

Experience 

work experience of estimator within the 

organization. 

Type: Numeric; Values: [Years] 

 Level Rank given to estimator with respect to 

experience. 

  Continued on next page 

In the next section, we would show the results of statistical testing applied on data set 

to analyze characteristics for further model building phase. 

5.1.1 Data set used for Testing Model 

Variable Sub-Variable Description 

  Type: Categorical; Values: [Junior, 

Advanced and Senior] 

 Organizational 

Competence 

Competence level of estimator within an 

organization. 

Type: Categorical; Values: [Basic, 

Intermediate, Advanced and Expert] 

 Estimator’s 

Experience 

Experience in estimation given in years 

Type: Numeric; Values: [Years] 

 Total 

Experience 

Total employment years. 

Type: Numeric; Values: [Years] 

 Technical 

Competence 

Extent of technically Competent 

Type: Categorical; Values: [Basic, 

Intermediate, Advanced and Expert] 
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The data set used in testing phase consists of software projects from P29- P38. Three 

projects P31, P36 & P38 are categorized as small sized projects. Four medium sized 

projects (P30, P32, P35 & P37) and three large projects (P29, P33 & P34) are used for 

testing machine learning algorithms. 

In the data set used for testing the information related to Project actual effort, Item size, 

turnover, Item actual and estimated effort are not provided. So that model is tested over 

actual data that is provided at early stages of project. The input provided to model is 

based on Estimators. 
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5.2. IMPLEMENTATION DETAILS 

 
Figure 5.2: Orange tool Model Formation 

5.2 Implementation Details 

Orange is a visual programming tool based on Python 3 data mining library. After data 

collection, the first step visualization and then application of programming models for 

building predictive models, we have adopted an open source software named as 

ORANGE Tool [143]. It contains user defined components known as Widgets. These 

widgets contain all the function which are required for model building and evaluation 

purpose. Further, the selected component-based framework is preferred by 

academicians and researchers [148]. 

We have performed the experiments in steps. For the analysis of data set, we have used 

Chi- Square, Anova and Pearson correlation analysis. Further, at next stage, we have 

used K-Means clustering, Support Vector Machine, Neural Network, Random Forest, 

Linear Regression and K-Nearest Neighbour. The application of these algorithms and 

model formation can be visualized in Figure 5.2. 

In addition, we performed this experimentation with processor: Intel(R) Core(TM) i5-

5200U CPU @ 2.20GHz 2.20 GHz with 8.0 GB RAM and 64-bit operating system, 

x64-based processor. 

5.3 Results of Pre-processing 

In this phase, we applied two tests over data sets, first one is Chi-Square which is applied 

for categorical variables to analyze their degree of freedom [151, 146]. However, to 

analyze the variation between means of two or more groups, we applied ANOVA test 

[152, 147]. The threshold p – value set is 0.05. If the value of variable is less than 0.05, 

this indicates their significance. The results and visualization of 

 
Figure 5.3: Project Size 
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Figure 5.4: Project Volume 

statistical testing is given in Box plots in this section. Figure 5.3- Figure 5.28 represents 

box plot for each test. 

5.3.0.1 Project Related Variables 

The first variable in this category in Project Size. Project size is divided into three 

groups small, medium and large based on total number of work hours. The project size 

is categorical variable and Chi-square is applied on it. The value of chi is 6182.00. 

however, the degree of freedom is calculated as 4. The Figure 5.3 represents the number 

of as small, medium and large from the work-items which were used in this study. There 

are 773 work-items of large projects. 1561 from medium sized and 757 for small 

projects. Project volume (See Figure 5.4)is another variable linked to project related 

variables. This is numeric type variable and Anova is applied to compare the mean 

between groups. There are three formed groups are small, medium and large. The p-

value is 0.00 for N=3091. 

Another variable used in this study is Project Duration, which is categorized in three 

groups as short, medium and large. The calculated degree of freedom is 4. This variable 

is used to analyze the duration of already completed projects. The project duration 

variable is represented in Figure 5.5. Project Actual Effort is the most important 

numeric type variable. This variable is used to allocate clusters to projects. The 

difference between mean of groups is calculated using ANOVA test. The p value of 

Anova is 0.00. Later we use this variable to analyze the difference 

 
Figure 5.5: Project Duration 

 
Figure 5.6: Project Actual Effort 

between actual and estimated effort of a project. The box plot of project actual variable 

is presented in Figure 5.6. 
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Another variable used for allocation of cluster is Project Estimated Effort. This variable 

is used to calculate difference between actual and estimated variable. The difference 

between three groups is calculated and represented in Box plot (See Figure 5.7). 

5.3.0.2 Item Related Variables 

The second type or variables used in this study are Item related variable. Item as already 

defined are small tasks used to execute a software development project. These items 

combine to form a project. The variables associated to each item are explained in this 

section. 

 
Figure 5.7: Project Estimated Effort 

 
Figure 5.8: Item estimated effort 

 
Figure 5.9: Item Actual Effort 

Item estimated effort is a numeric type variable for three groups small, medium and 

large. The difference between each group is shown in Figure 5.8. The Anova test 

calculates P-value of item estimated effort as 0.00. This variable is used for clustering 

process. Second type of variable related to Item is Item actual effort. The variable is 

numeric type variable having P- value of 0.00 calculated by performing Anova test. The 

variable is also used in clustering process. The difference in groups is calculated and 

represented in Figure 5.9. Project Item Size is a categorical variable. The variable is 

used as a predictor for model building phase. Chi-value for this variable us calculated 

as 5490.05. the box plot representation is given in Figure 5.10. The item is grouped in 

three categories based on the work hours. Item within range of 1-8 hours is marked as 



CHAPTER 5. 5.3. RESULTS OF PRE-PROCESSING 

 

small, while between 8-16 hours is considered as medium sized item. However, item 

having more than 

16 hours is considered as Large sized item. Development method of software 

 
Figure 5.10: Item Size 

 
Figure 5.11: Item Development Method 

 
Figure 5.12: Complexity 

projects is divided into two categories. These are Iterative and sequential. The projects 

of three categories small, medium and Large are completed using any one methodology. 

The chi- vale for this variable is calculated as 646.50 and degree of freedom is noted as 

2. The box plot representation of the variable is presented in Figure 5.11. 

Software development projects based on their complications is considered as 

complexity. Since the software projects are different from each other so there is a 

chance of difficulty in completing project successfully. The variable complexity is 

divided into three groups i.e. normal, high and very high. There are three categories of 

projects as already explained in above sections. The box plot representation for each 

group and their complexity is represented in Figure 5.12. The chi vale for Project 

complexity is 1413.32 and degree of freedom is calculated as 

4. 

Project Turnover is another variable. This means the percentage employee leave or 

change their project during execution. The type of project turnover is categorical. This 

variable is very important as it depends on the individual resource working on project. 

The employee turnover is considered for each project and their work item. The chi value 

for this variable is 923.68 with degree of freedom 4. The box plot representation for this 

variable is provided in Figure 5.13. 

 
Figure 5.13: Turnover 
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Figure 5.14: Precedence 

 
Figure 5.15: Completion 

Precedence is another categorical variable associated to Item. This variable is used to 

understand the similarity between new item and previously available items. There two 

categories are True and False. The chi-value for precedence is 909.85 with degree of 

freedom as 2. The box plot for precedence is given in Figure 5.14. 

Another variable associated to item is Completion this variable identifies whether the 

item is completed within estimates of not. If the item takes longer duration then 

estimated time, then we mark it as False otherwise it is True. The item completion is 

considered as categorical variable with chi value 350.91 and degree of freedom 2. The 

box plot representation for all projects is given in Figure 5.15. 

Work items are associated to another variable known as Phase. The area of a categorical 

variable divided in 5 categories. These are Definition, Design, Implementation. 

Installation, Operation. These categories are considered for all work items in this study. 

The chi value of completion is 1237.16 and degree of freedom is calculated as 8. The 

box plot representation for Phase is given in Figure 5.16. The area associated with item 

are Configuration Management, Project Management, Documentation, System, Quality 

Management. These areas are together form a variable known as Area which is 

associated to item. This variable is a 

 
Figure 5.16: Phase 

 
Figure 5.17: Area 

 
Figure 5.18: Activity 

categorical variable with chi value of 1504.20 and degree of freedom as 8. the box plot 

representation for this variable is given in Figure 5.17. 
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Project Item is linked to another variable known as Activity. This is a categorical type 

variable with Design, Quality, Management, Documentation, Implementation, System 

Test, Configuration Installation and integration and Acceptance as categories. The chi 

value calculated for this variable is 2108.98 with degree of freedom 16. The box plot is 

provided in Figure 5.18. 

Based on the importance of item, a number is allocated to each item. Numbers from 1-

3 are assigned to item. The number 1 indicates the work item is most important and 

should be executed at first and 3 shows the least important item. Thus, priority is 

numeric variable. The between mean of three groups of projects is calculated using 

Anova test. The test resulted p value of 0.109. Box plot representation of Priority is 

given in Figure 5.19. 

 
Figure 5.19: Priority 

 
Figure 5.20: Severity 

 
Figure 5.21: Similarity 

Another variable related to item is its Severity. This categorical type variable has 

assigned three categories Low, Medium and High. The chi-value for severity is 

calculated as 395.96 and degree of freedom as 4. The box plot is given in Figure 5.20. 

The last variable related to item is Similarity. The three categories are Low, Medium 

and High. These are assigned to each work item. The similarity is checked on three 

bases i.e. Low, Medium and High. The categorical variable is tested using chi-square 

and chi-value is 1624.57 while degree of freedom is 8. The box plot is given in Figure 

5.21. 

5.3.0.3 Estimator Related Variables 

The third kind of variable is linked to the estimator. Estimator is the one who assigns 

effort estimated to project. The first categorical variable in this type is Role and their 

responsibilities. This variable used to analyze the responsibilities of Software engineer, 

project Manager, Quality manager and other people. The chi value is 1772.08 and 
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degree of freedom is calculated as 8. The box plot representation is provided in Figure 

5.22. 

Another variable associated with estimator is level. The estimator might belong to 

Junior, Advanced and Senior category. The chi value for Level is 2134.04 with 

 
Figure 5.22: Role and their responsibilities 

 
Figure 5.23: Level 

 
Figure 5.24: Total Experience 

degree of freedom 6. The box plot is presented in Figure 5.23. 

Experience of estimator is one of the important variables. This is numeric type variable. 

The difference between groups of three projects for total experience of estimated is 

represented in box plots (See Figure 5.24). The p value is 0.00. Then another variable 

known as Organizational Experience is considered as numeric type variable. The 

difference between groups of is plotted in Figure 5.25. The p value as a result of Anova 

test is 0.00. 

Another numeric variable is known as Estimation experience. The total experience of 

estimator in making estimates of effort is considered in this variable. The box plot 

represented in Figure 5.26 shows p value of 0.00. 

Technical Competence (See Figure 5.27) is a categorical variable linked estimator. 

The categories of Technical Competence are Basic, Intermediate, Advanced and 

 
Figure 5.25: Organizational Experience 
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Figure 5.26: Estimation Experience 

 
Figure 5.27: Technical competence 

Expert. The chi value is calculated as 299.36 for degree of freedom as 6. 

Organizational Experience (See Figure 5.28)is a categorical variable linked estimator. 

The categories of Organizational experience are Basic, Intermediate, Advanced and 

Expert. The chi value is calculated as 32293.83 for degree of freedom as 8. 

5.3.1 Correlation Analysis 

Correlation analysis is performed to analyses the relationship between variables. The 

target variable in this study is project estimated effort. Therefore, we apply Pearson 

correlation to analyses the impact of variables on project estimated effort. 

Pearson Correlation is used to identify three relationships such as no relation, positive 

or negative correlation as stated in work of Kim S et al. [148] The value closer to 1 

indicate positive relation, value near to -1 indicate negative relation. 

 
Figure 5.28: Organizational Competence 
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Table 5.4: Pearson Correlation Analysis 

Variable 1 Variable 2 Variable 3 

Project Estimated Effort Item Estimated Effort +1.000 

 Item Actual Effort +0.918 

 Project Actual Effort +0.921 

 Project Volume +0.921 

 Estimation Experience -0.434 

 Total Experience -0.440 

 Organizational Experience -0.404 

 Priority -0.036 

However, value close to 0 indicate no relation. Table 5.4 shows the relation between 

these variables. 

The Table 5.4 above shows variables names as Item estimated effort, Item Actual Effort, 

Project Actual Effort and Project Volume are positively correlated to Project Estimated 

effort. However, variables named as Estimation Experience, Total Experience, Priority 

and Organizational Experience are slightly negatively correlated. 

5.4 Experimental Results 

5.4.1 Project Clustering 

In this study, we applied K-Means Clustering for grouping similar projects in one group. 

The results of Clustering phase prior to model building phase is provided in Table 5.5. 

The project items (also known as tasks) are combined and Silhouette score for each 

project is calculated to analyze the quality of items in a project. Then, the projects are 

grouped in clusters based on their similarity. 

This table represents clusters assigned to projects and their silhouette scores. Values 

closer to 0 indicate poor quality while value closer to 1 indicate good quality projects 

which are far from their neighboring clusters. 

The results of clustering phase also show the projects categorized as small are grouped 

in one cluster C3, medium in C1 are Large projects in C2 cluster when K=3. As soon 

as we increase value of K by 5, we noticed projects are divided into 5 groups or clusters. 

All other projects remain in same cluster however, project no 

24. is a part of separate cluster-C5. In another iteration, value of K is changed to 7. 

Consequently, we noticed formation of two more clusters C6 and C7. Further grouping 

shows the division of project of smaller size are again divided. However, 

Table 5.5: Cluster and Silhouette score of each project 

When K=3 When K=5 When K=7 

P.I

D 

Cluste

r 

Silhouett

e 

Score 

P.I

D 

Cluste

r 

Silhouett

e 

Score 

P.I

D 

Cluste

r 

Silhouett

e 

Score 

2 C1 0.61 1 C1 0.67 1 C1 0.67 

4 C1 0.60 3 C1 0.69 3 C1 0.69 

5 C1 0.62 7 C1 0.68 7 C1 0.69 

6 C1 0.63 8 C1 0.68 8 C1 0.68 

9 C1 0.61 16 C1 0.62 16 C1 0.62 

10 C1 0.62 17 C1 0.68 17 C1 0.60 

11 C1 0.63 2 C2 0.58 21 C1 0.63 

12 C1 0.63 4 C2 0.60 23 C1 0.69 
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13 C1 0.62 5 C2 0.59 2 C2 0.54 

14 C1 0.63 6 C2 0.61 4 C2 0.53 

15 C1 0.63 9 C2 0.60 5 c2 0.53 

19 C1 0.62 10 C2 0.62 6 C2 0.65 

25 C1 0.61 11 C2 0.62 20 C3 0.55 

18 C2 0.55 12 C2 0.61 26 C3 0.57 

20 C2 0.56 13 C2 0.63 28 C3 0.59 

22 C2 0.58 14 C2 0.62 9 C4 0.54 

24 C2 0.61 15 C2 0.61 10 C4 0.55 

26 C2 0.60 19 C2 0.61 11 C4 0.55 

28 C2 0.57 25 C2 0.61 12 C4 0.57 

1 C3 0.64 18 C3 0.56 13 C4 0.58 

3 C3 0.65 20 C3 0.57 14 C4 0.58 

7 C3 0.67 22 C3 0.55 15 C4 0.56 

8 C3 0.68 26 C3 0.54 19 C4 0.57 

16 C3 0.69 28 C3 0.58 25 C4 0.56 

17 C3 0.68 21 C4 0.65 24 C5 0.63 

21 C3 0.67 23 C4 0.69 18 C6 0.59 

23 C3 0.54 27 C4 0.68 22 C6 0.56 

27 C3 0.64 24 C5 0.65 27 C7 0.68 

Project 24 remains in the same Cluster, C5while projects 18 and 22 are part of C6. 

Further division shows project no 27 is a part pf new formed cluster, C7. 

However, the Silhouette score calculated for each cluster is presented in Table 5.6. This 

silhouette score for each cluster is less than 1 this indicated the formed clusters are 

highly cohesive and thus far away from their neighboring clusters. Thus, the formed 

clusters are highly cohesive and hence would have a huge impact on effort prediction. 

Whenever a new project comes, it is placed inside the cluster which has similar 

characteristics. Therefore, for testing purpose we selected four projects P29-P38. 

The results of clustering over all taken projects is given in Figure 5.30. These Figures 

also shows projects within a same cluster are closer to each other. 

5.4.2 Relationship between Cluster Quality & No of Items 

The projects P1-P29 are used to form clusters in this research work. To analyze the 

quality of cluster and their number of items we plotted a line graph (see Figure 5.29). 

This x- axis represents number of Clusters, y- axis shows no of items 

Table 5.6: Caption 

Value of K Silhouette Score 

K=3 0.409 

K=5 0.395 

K=7 0.302 
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Figure 5.29: relationship between no of clusters and average silhouette score 

and third dimension is a representation of Average Silhouette score. The graph 

represents increase in number of clusters would decrease number of items and 

ultimately the quality of formed clusters is reduced. Thus, the optimal number of 

clusters are K= 3,5,7. 

Where red line indicates the relationship between no of clusters and average silhouette 

score. The blue line indicates towards the relationship between Cluster and their number 

of items. 

In the next phase we utilized the results of clustering to form model over projects P1-

P28. . 

5.4.3 Effort Modelling 

This phase takes the results of clustering phase. The projects within clusters are used to 

build model for making effort estimates. The projects P29-P38 are used to validate the 

built models. The projects and their neighboring projects are given in Table 5.7. 

This table shows number of items of projects (P29-P38) and Total number of projects 

in data set. These project number of items plays very significant role in model building 

as they defined the quality of clusters. We performed modelling over Orange tool. The 

model building phase uses P1-P28 projects and 21 variables as predictors and one target 

variable named as actual effort. 

The project P29, P22 and P34 are categorized as larger project having 135 items, 

projects P30, P32, P35 & P37 are categorized as Medium sized projects having 45 

items. Finally, P31, P36 & P38 having 30 items are categorized as Smaller sized project. 

When K= 3, the projects with characteristics of P29 are P28, P26, P22 & P18. Further, 

these projects collectively contain 540 items. However, for K=5 the neighboring 

projects are reduce to single project P26 forming 135 items. Moreover, when K in 

increased to value of 7, the neighboring project is P22 with 135 work items. Similarly, 

medium sized projects used for testing are P30, P32, P35 & P37. When K= 3, the 

projects near to P30 are P25 with 90 work items. However, when we change value of 

K to 5 the close project us P25 with 56 work items. Further when value of K is 7, there 

is no project closer to it. Furthermore, P32 has closer projects P11, P12, P13, P14 & 

P19 with 280 work items for K=3. Changing value of K from 3 to 5, we see a reduction 

in number of projects to one project i.e. P25 with 56 work items. For K= 7, we see no 

closer project to P32. More, for project P35, when K= 3, the closer project is P10. 

Further changing value of k to 5 and then 7, we see P25 and P18 as closer projects 
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having 56 work items. For project P37, we see closer projects as P5, P11 & P15 with168 

work items. However, when we change value of k to 5, we noticed only P15 as closer 

projects with 56 items and no closer project when K=7. 

Table 5.7: Closest Projects and Items in data set 

Projects K=3 K=5 K=7  

Project Items data set 

Projects 

Items data set 

Projects 

Items data set 

Projects 

Items 

P29 135 P28, P26, P22, 

P18 

540 P26 135 P22 135 

P30 45 P9, P2 90 P25 90 − − 

P31 30 − − − − − − 

P32 56 P11, P12, P13, 

P14, P19 

280 P25 56 − − 

P33 135 P18 135 P28, P22 270 − − 

P34 135 P20 135 P26 135 P18 135 

P35 56 P10 56 P25 56 P18 56 

P36 30 P4 30 P11, P19 60 − − 

P37 56 P5, P11, P15 168 P15 56 − − 

P38 30 − − P13 30 − − 

The three projects P31, P36 & P38 are small sized projects used for testing purpose. For 

the project P31, we see no closer projects for K = {3,5,7}. However, for P36 we see P4 

nearer to it with 30 work items when K= 3. However, for K =5 we see P11 & P19 as 

closer projects with 60 work items. Further changing k to 7. 
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Figure 5.30: Clusters assigned to Projects 

We see no nearer projects to P31. For project P38, we see one project closer to it for 

K=5 only. The closer project is P13 with 30 work items. 

Thus, the optimal number of clusters for model building phase are K= {3, 5} and in 

some cases K=7. Increasing number of clusters would affect modelling process badly 

and ultimately would not generate accurate predictions. In the next phase, we would 

represent the results of prediction phase. 

5.4.4 Effort Prediction 

This phase generates results based on training. The projects P29-P38 are used for 

prediction and testing the presented model. In this phase, the effort of an actual projects 

is estimated using Machine Learning models such as Random Forest, Support Vector 

Regression, Linear Regression, Neural Networks and K- nearest neighbor. Table 5.8 

contains the actual and predictions for projects P29-P38. At the end these estimates are 

compared with estimated made by above mentioned machine learning algorithm. . 

Table 5.8: Actual and Estimators estimation 

Project Estimators Actual Effort 
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P29 115.0 150.0 

P30 52.0 79.0 

P31 22.0 40.0 

P32 72.0 65.0 

P33 280.0 180.0 

P34 120.0 193.0 

P35 60.0 90.0 

P36 30.0 45.0 

P37 62.0 80.0 

P38 28.0 44.0 

5.4.4.1 Prediction before Clustering 

In this phase, predictions made by machine learning algorithm such as Support 

Vector Machine, Neural Networks, Random Forests, Linear Regression and KNearest 

Neighbor before application of K- Means Clustering are presented. The algorithms 

prediction of effort for software development projects is given in Table 

Table 5.9: Effort Prediction with Machine Learning 

Project SVM LR NN KNN RF 

P29 144.0 129.0 97.0 185.0 185.0 

P30 66.0 77.0 89.0 68.0 64.0 

P31 52.0 75.0 89.0 42.0 64.0 

P32 78.0 89.0 89.0 42.0 124.0 

P33 148.0 163.0 113.0 154.0 180.0 

P34 167.0 164.0 104.0 180.0 180.0 

P35 66.0 91.0 95.0 57.0 82.0 

P36 81.0 81.0 95.0 154.0 42.0 

P37 81.0 82.0 97.0 154.0 68.0 

P38 86.0 92.0 94.0 144.0 92.0 

5.8. The estimated effort of projects P29-P38 for each machine learning algorithm 

before clustering is presented in Table 5.9. The predictions made by Support Vector 

Machine before prediction for P29-P38 are 144.0, 66.0, 52.0, 78.0, 148.0, 167.0, 66.0, 

81.0, 81.0 and 86.0. Similarly, Linear Regression predicts effort for these projects as 

129.0, 77.0, 75.0, 89.0, 163.0, 164.0, 91.0, 81.0, 82.0 and 92.0. Moreover the 

predictions made by NN and KNN for these ten projects of small, medium and large 

size are 97.0, 89.0, 89.0, 89.0, 113.0, 104.0, 95.0, 95.0, 97.0, 94.0 and 185.0, 68.0, 42.0, 

42.0, 154.0, 180.0, 57.0, 154.0, 154.0, 144.0. Finally, the predictions made by KNN are 

185.0, 64.0, 64.0, 124.0, 180.0, 82.0, 42.0, 68.0 and 

92.0. These estimates are used determine the effect of clustering on predictions. 

5.4.4.2 Prediction after Clustering 

The predictions made by machine learning algorithms such as Linear regression, 

Support vector machine, neural networks, random forest and k nearest neighbor after 

application of K-means clustering algorithm over data set are presented in this section. 

5.4.4.3 Support Vector Machine 

The prediction made by Support Vector Machine after application of K-Means 

clustering are presented in this section (referred to Table 5.10). The predictions made 

for Projects P29-P38 by Support vector machine with K=3 are 154.0, 62.0, 78.0, 57.0, 
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157.0, 187.0, 65.0, 78.0, 82.0 and 92.0. Moreover when value of K was changed to 5 

i.e. K=5, we get effort predictions as 15.0, 65.0, 73.0, 60.0, 166.0, 184.0, 68.0, 81.0, 

92.0 and 92.0. Furthermore, with an iteration we reached K=7 with effort predictions 

as 150.0, 65.0, 73.0, 58.0, 158.0, 185.0, 67.0, 81.0, 82.0 and 92.0. These predictions are 

made using K = {3,5,7}. We have noticed the estimates remain same for P29, P36 & 

P38 for K= {5,7}. However, the predictions are different for other projects. We noticed 

a slight change in predictions for all values of K. 

5.4.4.4 K-Nearest Neighbour 

The effort predictions produced by K-Nearest neighbor after clustering is performed are 

presented in this section. We selected K= {3,5,7} as optimal number of clusters for 

model building and evaluation phase. The predictions using KNearest Neighbour are 

given in Table 5.11. The prediction made in case of K=3 with KNN for Projects P29-

P38 are predicted as 82.0, 68.0, 42.0, 42.0, 180.0, 180.0, 42.0, 42.0 and 42.0. With an 

iterations, we set K=5 and predicted effort 

Table 5.10: SVM for K=3,5,7 

Cluster K=3 K=5 K=7 

Project SVM SVM SVM 

P29 154.0 150.0 150.0 

P30 62.0 65.0 65.0 

P31 78.0 73.0 73.0 

P32 57.0 60.0 58.0 

P33 157.0 166.0 158.0 

P34 187.0 184.0 185.0 

P35 65.0 68.0 67.0 

P36 78.0 81.0 81.0 

P37 82.0 92.0 82.0 

P38 92.0 92.0 92.0 

Table 5.11: KNN for K=3,5,7 

Cluster K=3 K=5 K=7 

Project KNN KNN KNN 

P29 82.0 82.0 82.0 

P30 68.0 68.0 68.0 

P31 42.0 42.0 41.0 

P32 42.0 42.0 42.0 

P33 180.0 180.0 180.0 

P34 180.0 180.0 180.0 

P35 82.0 82.0 82.0 

P36 42.0 42.0 42.0 

P37 42.0 42.0 68.0 

P38 42.0 42.0 42.0 

for these projects was recorded as 82.0, 68.0, 42.0, 42.0, 180.0, 180.0, 82.0, 42.0, 42.0 

and 42.0. Moreover, with final value of K i.e. K=7, we have seen predictions as 82.0, 

68.0, 41.0, 42.0, 180.0, 180.0, 82.0, 42.0, 68.0 and 42.0. The values show that for all 

the projects the prediction remain same for all three clusters. Therefore, we can say 
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there is no effect of forming multiple clusters using K-Means over prediction of K- 

nearest algorithm. 

5.4.4.5 Neural Networks 

Forward propagation neural networks is applied for making predictions. The algorithm 

is tested over K= {3,5,7}. The predictions proposed by neural networks are given in 

Table 5.12. The prediction of Projects P29-P38 for algorithm known as neural network 

with K=3 are noted as 97.0, 91.0, 95.0, 90.0, 106.0, 98.0, 89.0, 

93.0, 97.0 and 88.0. However the prediction for K=5 and K=7 are 96.0, 91.0, 92.0, 

91.0, 109.0, 103.0, 94.0, 95.0, 93.0, 93.0 and 95.0, 88.0, 92.0, 89.0, 97.0, 97.0, 87.0, 

Table 5.12: NN for K=3,5,7 

Cluster K=3 K=5 K=7 

Project NN NN NN 

P29 97.0 96.0 95.0 

P30 91.0 91.0 88.0 

P31 95.0 92.0 92.0 

P32 90.0 91.0 89.0 

P33 106.0 109.0 97.0 

P34 98.0 103.0 97.0 

P35 89.0 94.0 87.0 

P36 93.0 95.0 90.0 

P37 97.0 93.0 91.0 

P38 88.0 93.0 86.0 

Table 5.13: RF for K=3,5,7 

Cluster K=3 K=5 K=7 

Project RF RF RF 

P29 154.0 80.0 111.0 

P30 55.0 68.0 75.0 

P31 41.0 35.0 75.0 

P32 55.0 68.0 75.0 

P33 106.0 99.0 112.0 

P34 98.0 213.0 135.0 

P35 89.0 95.0 62.0 

P36 93.0 95.0 112.0 

P37 97.0 95.0 48.0 

P38 88.0 209.0 112.0 

90.0, 91.0, 86.0 respectively. We further noticed change in prediction for different 

clusters. For example P29, P37, P33 have different values for K= {3,5,7}. 

5.4.4.6 Random Forest 

The effort predictions using Random Forest trees are provided in Table 5.13. The 

predicted effort for ten projects P29-P38 for K={3,5,7} with Random forest are 

presented in this section. The predictions for K=3 are 154.0, 55.0, 41.0, 55.0, 106.0, 

98.0, 89.0, 93.0, 97.0 and 88.0. With K=5, we noted predictions as 80.0, 68.0, 35.0, 

68.0, 99.0, 213.0, 95.0, 95.0, 95.0 and 209.0. However the effort predicted for K=7 is 

noted as 111.0, 75.0, 75.0, 112.0, 135.0, 62.0, 112.0, 48.0 and 112.0. Moreover, we 
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analysed that results show the predictions remain constant for K=5 and K=7 for Project 

P29. However, for P30 the predictions are reduced with increased number of clusters. 

Further for P30 the predictions are almost same for K={3,5&7}. Random Forest for 

P32 changes with changed values of K= 3,5,7. 

Table 5.14: LR for K=3,5,7 

Cluster K=3 K=5 K=7 

Project LR LR LR 

P29 130.0 129.5 129.0 

P30 81.0 80.0 80.0 

P31 89.0 89.0 89.0 

P32 74.0 72.0 75.0 

P33 148.0 148.0 148.0 

P34 164.0 165.0 164.0 

P35 90.0 91.0 91.0 

P36 81.0 81.0 81.0 

P37 86.0 86.0 81.0 

P38 86.0 86.0 86.0 

5.4.4.7 Linear Regression 

The predictions made by machine learning algorithm named as linear regression for 

P29-P38 are presented in this section. The Table 5.14 shows these predictions. The 

prediction for K=3 are 130.0, 81.0, 89.0, 74.0, 148.0, 164.0, 90.0, 81.0, 86.0 and 86.0. 

However, when we changed value of K to 5, i.e. K=5, we get effort predictions as 129.0, 

80.0, 89.0, 72.0, 148.0, 165.0, 91.0, 81.0, 86.0 and 86.0. Furthermore, we have seen 

predictions for K=7 as 129.0, 80.0, 89.0, 75.0, 148.0, 164.0, 91.0, 81.0, 81.0 and 81.0. 

We noticed no change in prediction for P30, P31, P33, P36 & P38 for K= {3,5,7}. 

However, for all other projects the predictions are changed for example for project P29, 

P32 etc. 

5.4.4.8 Model outperformed for each project 

As a result of modelling phase, the model selected for each project (P29-P38) is given 

in Table 5.15. These models are selected because they produce estimates closer to actual 

project effort with K={3,5,7}. When K=3, the models for project P29-P38 are Support 

Vector Machine, Linear Regression, Support Vector Machine, 

Support Vector Machine, K Nearest Neighbour, Support Vector Machine, Linear 

Regression, K Nearest Neighbour, Linear Regression AND K Nearest Neighbour. 

However, for K=5 & 7, we seen outperforming models are the same except for project 

P32 for K=7 where K Nearest Neighbour and Support Vector Machine both perform 

equally well. 

Table 5.15: Models for Each Project 

Cluster K=3 K=5 K=7 

Project Model Model Model 

P29 SVM SVM SVM 

P30 LR LR LR 

P31 SVM SVM SVM 

P32 SVM SVM SVM/KNN 

P33 KNN KNN KNN 
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P34 SVM SVM SVM 

P35 LR LR LR 

P36 KNN KNN KNN 

P37 LR LR LR 

P38 KNN KNN KNN 

Table 5.16: Validation of estimates Before clustering 

 AE MAE MMRE Pred (.25) MSE RMSE 

SVM 200.0 20.0 0.029371 70 546.0 7.380 

LR 215.0 21.5 0.358127 60 698.1 8.355 

NN 414.0 41.4 0.542304 40 2361.0 15.36 

RF 217.0 42.1 0.339472 70 3084.5 17.56 

KNN 426.0 21.7 0.697484 50 819.70 9.053 

5.4.5 Results Validation 

The effort predictions made by models are validated using techniques such as Absolute 

error, Relative error, Mean Absolute Error, Mean Relative Error, Mean Squared Error, 

Root Mean squared Error, Mean Magnitude of Relative Error and Pred(x). 

5.4.5.1 Before Clustering 

In Table 5.16, we represent the predictions made by machine learning algorithms before 

applying clustering. We noted a magnitude of absolute error between 20.0 to 42.1 for 

machine learning algorithms. The minimum error of 20.0 was recorded for Support 

Vector Machine and Neural Network predicts with maximum error among the above-

mentioned algorithms. Further models such as 

5.4.5.2 After Clustering 

The objective of this section is to explain predictions of machine learning algorithms 

after clustering was performed. The Table 5.17, presents results for K=3, using Support 

Vector Machine, Neural Network, Random Forest, K-Nearest Neighbour and Linear 

Regression. We noted the minimum error for K-Nearest 

Table 5.17: Validation of estimates for When K=3 

K=3 AE MAE MMRE Pred(.25) MSE RMSE 

SVM 204.0 20.4 0.360082 50 640.0 8.90 

LR 225.0 22.5 0.367969 60 784.7 8.85 

NN 424.0 42.4 0.545846 40 2563.4 16.0 

RF 262.0 26.2 0.235700 60 1985.6 14.1 

KNN 160.0 16.0 0.169833 70 826.0 16.0 

Table 5.18: Validation of estimates for When K=5 

K=5 AE MAE MMRE Pred(.25) MSE RMSE 

SVM 193.0 19.3 0.348890 50 581.5 7.625 

LR 223.0 22.3 0.364886 70 779.7 8.830 

NN 421.0 42.1 0.550435 40 2466.7 15.71 

RF 425.1 42.5 0.643485 60 1985.0 14.09 

KNN 160.0 16.8 0.169833 50 682.0 8.260 

Neighbour. The Mean Absolute Error for K-Nearest Neighbour is 16.0 however, the 

Neural networks again produced much greater error of Mean Absolute Error equal to 

42.4. 
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Similarly, Table 5.18, represents the prediction error for K= 5. These results show K-

Nearest Neighbour be the best model among all other model. This model produces 

results with mean absolute error of 16.8. When we change value of K to 5, we see both 

neural networks and random forest do not perform well. 

Furthermore, in Table 5.19, setting value of K to 7, we noticed the reduction in mean 

absolute error for K-Nearest Neighbour, and Support Vector Machine remains same for 

K=3 and K=7. The results show, if we change value of K to 7, the estimation error for 

K-Nearest Neighbour is reduced. 

5.4.5.3 Expert Judgement 

To analyses the predictions of Estimator judgments we calculated error rate and used 

different evaluation measure. We noted a magnitude of absolute error of 

Table 5.19: Validation of estimates for When K=7 

K=7 AE MAE MMRE Pred(.25) MSE RMSE 

SVM 220.0 19.3 0.358494 70 601.5 7.775 

LR 222.0 22.2 0.363769 70 787.0 8.87 

NN 420.0 42.0 0.523372 30 2461.0 16.21 

RF 409.0 40.9 0.576322 30 2177.1 14.75 

KNN 134.0 14.1 0.001373 80 566.5 7.52 
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5.5. COMPARISON OF RESULTS 

Table 5.20: Validation of estimates made by expert judgements 

Est. AE MAE MMRE Pred (.25) MSE RMSE 

 339.0 40.2 0.332189 40 2515.8 15.8612 

 
Figure 5.31: Comparison of Estimator and Model Estimates- P29-P32 

339 hrs. for Estimator judgments. Table 5.20 represents results of all evaluation 

measures used for Estimators. we noticed a huge difference between actual and 

predictions of effort. 

5.5 Comparison of Results 

The aim of this section is to perform a comparison between the results produced by 

machine learning algorithms for software development organizations in area of 

Islamabad-Pakistan with the work done by H karna et al [25]. 

For comparison, we provided the analyzed difference between the estimator and models 

in Figure 5.31 & Figure 5.32 for ten projects (P29-P38) which we have to test the 

models generated by machine learning algorithms. The red horizontal line in these 

figures represent actual effort of projects. The vertical bars are labelled as Estimator 

and Expert. These bar shows the effort predicted by estimators and models. Moreover, 

the black dotted line is a trend line. This dotted line shows the difference in accuracy of 

estimation. If we see project P33, the red horizontal 

5.5. COMPARISON OF RESULTS 

Software Effort Estimation Results 

Application of Data Mining and 

Machine Learning algorithms 

[25] 

K= 3 & 5 (Linear Regression 

, Classification and Regression 

Trees) 

Effort estimation using machine 

learning for Organizations 

located in Islamabad 

Pakistan 

K= 5& 7 (Support Vector 

Machine, Linear Regression & 

K- Nearest Neighbor) 



CHAPTER 5. 

 

Table 5.21: Comparison of [25] with proposed method 

 
Figure 5.32: Comparison of Estimator and Model Estimates- P33-P38 

5.6. DISCUSSIONS 

line shows actual effort of 180 work hours. However, estimators tend towards 

overestimation and predicts 280 work hours and model predict 180 work hours which 

is exactly same. Thus, trend line for project P33 shows the decrease in estimates for 

P33. Furthermore, if we see Figure 5.31 & Figure 5.32 we can see it clearly that models 

tend to increase the accuracy of predictions for projects categorized as small, medium 

and large. 

From comparison of predictions (See Table 5.21), we have noticed the same technique 

in both studies improves effort estimation in general. Moreover, the models produce 

improved results for K = 3 & 5 with Linear Regression , Classification and Regression 

Trees in work of H karna et al [25]. Furthermore, the results of this study shows 

improved result for K=5 with Support Vector Machine, Linear Regression & K- Nearest 

Neighbor. made by Estimators with those of machine learning algorithms, we 

determined the combination of machine learning algorithm and Estimator judgements 

produced better and robust results as compared to the situations when they are applied 

individually. Thus, we concluded that machine learning and data mining when applied 

for effort estimation improves the accuracy of predictions. 

5.6 Discussions 

The aim of this study is first to identify the strengths and weaknesses of existing 

techniques. Then, to improve effort predictions of software projects in software 



CHAPTER 5. 

 

development organizations in region of Islamabad-Pakistan. To meet objectives, 

following research questions were answered: 

RQ1: What are the strengths and weaknesses of Existing techniques? 

From the existing literature (See Chapter 3), we analyzed from Estimator judgement to 

parametric methods, none of the techniques outperformed in all environments. 

Therefore, trend is shifted towards application of machine learning techniques such as 

Linear Regression, Artificial Neural Networks, K- Nearest Neighbor, Support Vector 

Machine, Fuzzy logic, and then hybrid techniques by combination of two or more 

techniques. We studied the predictions made by machine learning algorithms in 

different environments by none of the above-mentioned techniques outperformed in all 

environments. We also studied the evolution measures used for validation. The most 

used evaluation measures are Root Mean Squared Error, Mean Squared Error, Absolute 

Error, Relative Error, Mean Relative Error, Magnitude of Mean Relative Error, Pred 

(.25). We also recognized the performance 

5.6. DISCUSSIONS 

of machine learning techniques were patterned using Publicly available data sets. 

However, some studies formed data set after collecting it from different organizations. 

Therefore, we concluded the use of machine learning techniques improve effort 

prediction for different environments. 

RQ2: How could effort prediction in software organizations be improved? 

To answer this question, we collected data from two software organizations in region 

of Islamabad- Pakistan. We gathered data through survey and were able to collect 

information of 38 projects. The data set was divided into two parts: training set (P1-

P28) and test set (P29-P38). Then, we performed experiments in two steps. In first step, 

we applied machine learning techniques such as Neural Networks, K- Nearest 

Neighbor, Support Vector Machine, Elastic net regression and Random Forest. In the 

second step, we applied K-means clustering over test set to form suitable clusters. We 

then applied these machine learning techniques to analyze the impact of K-means 

Clustering over effort prediction. We also noted the predictions made by Estimators. 

These values were recorded to identify the difference between Estimator judgement and 

when Estimator judgement is combined with machine learning techniques. 

From the analysis of error magnitude for test, we concluded, machine learning 

techniques when combine with Estimator judgement provide better results as compared 

to using them individually. We also concluded the minute difference in prediction with 

and without clustering. 

5.6.1 Summary 

This chapter has explained the results produced by application of data mining and 

machine learning. In general, we have seen the improvement in accuracy of estimation 

with application of the algorithms. In the next chapter, we elaborate conclusions and 

future works of this study. 
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Chapter 6 Conclusion and future work  
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CHAPTER 6. 6.1. CONCLUSION 

 
The previous chapters of this dissertation has provided the concept of effort estimation, 

how machine learning is used for effort estimation. We then provided experimental 

support for solution we have provided. At last we have presented results and how they 

are validated. Thus, the objective of this section if to provide conclusions, limitations 

and future work of this study. 

6.1 Conclusion 

In this dissertation, we have provided introduction of software development effort 

estimation in chapter 1. Chapter 2 has provided the preliminary studies for deep 

understanding. Further, Chapter 3 has provided Related work in two sections for the 

arena of software development effort estimation. Thereafter, in chapter 4, we proposed 

a framework for software development effort estimation for the software development 

organizations located in Islamabad-Pakistan. At the end, we have validated the results 

produced by model in chapter 5. 

So, we come to conclusion that software development Effort estimation is necessary 

process to complete projects successfully. We applied machine learning algorithms and 

data mining technique for the effort estimation. We also compared the application of 

data mining techniques when applied with machine learning algorithm and when 

machine learning is applied individually. From the comparison presented in this study, 

we concluded both the methods improve accuracy of estimation when compared to 

humans. 

6.2 Limitations 

Setting up standard conclusions with inside the identical surroundings is a tough task. 

Primarily, due to the fact the method relies upon at the applicable variables that are like 

variables determined in work completed by [25, 154]. Despite that, if the work achieved 

with inside the study might be performed for different environments of software 

development companies. That would, consequently, assist in deducing results. 

Another difficulty of this study could be using this research work is the data utilized is 

gathered from companies of comparable environment. In the identical context, we 

might need to accumulate data from greater companies however right here this wasn’t 

viable because of disinclination in sharing the organizational data. 

      

CHAPTER 6. 6.3. FUTURE WORK 

 
This research reviews the utility of data mining and machine learning algorithms to 

bring improvement in error magnitude of effort estimation within organizations. This 

study is performed inside software organizations located in Pakistan. The purpose of 

this research work is to carry perfection and increase reliability of software effort 

estimation process. 

We have used 38 actual finished projects for this study. Out of these, we’ve got decided 

on four projects to check the constructed models. Thereafter, we’ve got implemented 

data mining and machine learning strategies on 28 projects with the goal of constructing 

predictive models. The formed models are then applied to estimate effort of ten projects 

(P29-P38). We investigated and concluded the use of models produce dependable and 

green effects for effort estimation. 

This research proves we can use software engineering data to solve problems with 

machine learning, data mining and sometimes their combination also proves to be best 

among all other methods. However, the concealed patterns with inside data could stay 

unrevealed if data mining strategies become now no longer used. The use of 

programming version affords regular development in estimation of effort estimates. 
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This recommends the usage of comparable models for different software development 

agencies could be useful for minimizing the definite errors during calculating estimates. 

Therefore, this technique may be implemented to any software development company 

with the improved and updated data sets. 

The research findings propose the utility of data mining and machine learning 

algorithms to construct the predictive model inside the experimental surroundings of 

software development organizations. In future, this study may be prolonged both by 

including extra capabilities to extrude the models for gaining extra dependable 

predictions. The outcomes show validity the applied methods. The obstacles of this 

study are already interpreted. We inspire research students to increase the work with 

goal of extending model. We additionally propose using similar methods to find 

comparable and better ways for problem solving. 

6.3 Future work 

In future, we aim to increase this work through making use of different clustering 

strategies and learners on similar and increased data set to generalize results. We further 

intend to use the same strategy for the estimation of work item with respect to the factors 

affecting each work item. 

      

Chapter 7 
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