Algorithmic and Numerical Techniques for Computation of Binomial and Geometric Series

Chinnaraji Annamalai
School of Management, Indian Institute of Technology, Kharagpur, India
Email: anna@iitkgp.ac.in
https://orcid.org/0000-0002-0992-2584

Abstract: Geometric series plays a vital role in the areas of combinatorics, science, economics, and medicine. This paper presents algorithmic and numerical techniques for computing the summation of multiple series of binomial coefficients and the multiple summations of geometric series in an innovative way and also the relation between the binomial expansions and geometric series. These are the methodological advances which are useful for researchers who are working in science, economics, engineering, computation, and management.

MSC Classification codes: 05A10, 40A05 (65B10)

Keywords: binomial coefficient, computation, algorithmic technique, geometric series

1. Introduction

In the earlier days, geometric series served as a vital role in the development of differential and integral calculus and as an introduction to Taylor series and Fourier series. The geometric series and its summations and sums have significant applications in science, engineering, economics, queuing theory, computation, and management. In this article, innovative binomial expansions and geometric series [1-14] are introduced as methodological advances used in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real life problems.

1.1 Computation of Geometric Series and its Sum

In this section, computation of geometric series and its sum [5-7] are developed without using the traditional computing method.

Let $N = \{0, 1, 2, 3, \ldots,\}$ be the set of natural umbers including zero element.

In general, if
$$x$$
 is an integer, then $x^n = \overbrace{x^{n-1} + x^{n-1} + x^{n-1} + x^{n-1} + x^{n-1} + \cdots + x^{n-1}}_{x \text{ times}}$

$$= (x - 1)x^{n-1} + x^{n-1} = (x - 1)x^{n-1} + \overbrace{x^{n-2} + x^{n-2} + x^{n-2} + x^{n-2} + \cdots + x^{n-2}}_{x \text{ times}}$$

$$= (x - 1)x^{n-1} + (x - 1)x^{n-2} + x^{n-2}. \text{ Similarly, we can develop the algebraic expression,}$$

$$i.e., x^n = (x - 1)x^{n-1} + (x - 1)x^{n-2} + (x - 1)x^{n-3} + (x - 1)x^{n-3} + \cdots + (x - 1)x^k + x^k$$

$$x^n = (x - 1)\sum_{i=k}^{n-1} x^i + x^k \Rightarrow \sum_{i=k}^n x^i = \frac{x^{n+1} - x^k}{x - 1} \Rightarrow \sum_{i=0}^n x^i = \frac{x^{n+1} - 1}{x - 1}, \text{ where } k \leq n.$$

For example,

$$3^{n} = 3^{n-1} + 3^{n-1} + 3^{n-1} = (3-1)3^{n-1} + 3^{n-1} = (3-1)3^{n-1} + (3-1)3^{n-2} + 3^{n-2}$$

$$\Rightarrow 3^{n} = (3-1)3^{n-1} + (3-1)3^{n-2} + (3-1)3^{n-3} + \dots + (3-1)3^{k} + 3^{k}$$

$$\Rightarrow 3^{n} = (3-1)\sum_{i=k}^{n-1} 3^{k} + 3^{k} \Rightarrow \sum_{i=k}^{n-1} 3^{k} = \frac{3^{n} - 3^{k}}{3-1} \Rightarrow \sum_{i=0}^{n-1} 3^{k} = \frac{3^{n} - 1}{2}.$$

If x is any number, then we can develop the geometric series as follows:

$$x^{n} = (x - 1) x^{n-1} + x^{n-1} \Longrightarrow (x - 1) x^{n-1} + (x - 1) x^{n-2} + \dots + (x - 1) x^{k} + x^{k}$$

$$\Rightarrow x^{n} = (x-1) \sum_{i=k}^{n-1} x^{i} + x^{k} \Rightarrow \sum_{i=k}^{n-1} x^{i} = \frac{x^{n} - x^{k}}{x-1} \Rightarrow \sum_{i=0}^{n-1} x^{i} = \frac{x^{n} - 1}{x-1}.$$

For example,

$$(9.05)^n = (9.05 - 1)(9.05)^{n-1} + (9.05)^{n-1} \Longrightarrow \sum_{i=k}^{n-1} (9.05)^i = \frac{(9.05)^n - (9.05)^k}{(9.05 - 1)}.$$

1.2 Geometric Series with exponents of 2

Let us develop the sum of geometric series [5] with exponents of 2 independently.

$$2^{n} = 2^{n-1} + 2^{n-1} = 2^{n-1} + 2^{n-2} + 2^{n-2} = \dots = 2^{n-1} + 2^{n-2} + 2^{n-3} + \dots + 2^{n-3} + \dots + 2^{n-2} + 2^{n-3} + \dots + 2^$$

$$\Rightarrow 2^k + 2^{k+2} + 2^{k+3} + \dots + 2^{n-1} = 2^n - 2^k \Rightarrow \sum_{i=k}^n 2^i = 2^{n+1} - 2^k,$$

where $k \le n$ and $k, n \in \mathbb{N}$. In the geometric series if k = 0, then $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$.

Next, let us develop a geometric series using the arithmetic equation 2 = 2.

$$2 = 1 + 1 = 1 + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{2}} = \dots = 1 + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}} + \frac{1}{2^{n}}$$

$$\Rightarrow \sum_{i=0}^{n} \frac{1}{2^{i}} = 1 - \frac{1}{2^{n}} = \frac{2^{n} - 1}{2^{n}} \text{ and } \sum_{i=k}^{n} \frac{1}{2^{i}} = \frac{1}{2^{k+1}} - \frac{1}{2^{n}} = \frac{2^{n} - 2^{k+1}}{2^{n+k+1}}, (k \le n \& k, n \in N).$$

1.3 Traditional Binomial Coefficient

The factorial or factorial function [17-20] of a nonnegative integer n, denoted by n!, is the product of all positive integers less than or equal to n.

A binomial coefficient is always an integer that denotes $\binom{n}{r} = \frac{n!}{r!(n-r)!}$, where $n, r \in \mathbb{N}$.

Here,
$$\binom{n+r}{r} = \frac{(n+r)}{r! \, n!} \implies (n+r) = l \times r! \, n!$$
, where l is an integer.

2. Binomial and Geometric Series

When the author of this article was trying to develop the multiple summations of geometric series, a new idea was stimulated his mind for establishing a novel binomial series along with an innovative binomial coefficient 15, 16].

$$\sum_{i_1=0}^n \sum_{i_2=i_1}^n \sum_{i_3=i_2}^n \cdots \sum_{i_r=i_{r-1}}^n x^{i_r} = \sum_{i=0}^n V_i^r x^i \& V_r^n = \frac{(r+1)(r+2)(r+3)\cdots\cdots(r+n-1)(r+n)}{n!},$$

where $n \ge 1, r \ge 0$ and $n, r \in N$.

Here, $\sum_{i=0}^{n} V_i^r x^i$ and V_r^n refer to the binomial series and binomial coefficient respectively.

Let us compare the binomial coefficient $V_x^{\mathcal{Y}}$ with the traditional binomial coefficient as follows:

Let
$$z = x + y$$
. Then, $zC_x = \frac{z!}{x! \, y!}$. Here, $V_x^y = V_y^x \Longrightarrow zC_x = zC_y$, $(x, y, z \in N)$.

For example,

$$V_3^5 = V_5^3 = (5+3)C_3 = (5+3)C_5 = 56.$$
 $n!$
 $0!$

Also,
$$V_n^0 = V_0^n = nC_0 = nC_n = \frac{n!}{n! \ 0!} = 1$$
 and $V_0^0 = 0C_0 = \frac{0!}{0!} = 1 \ (\because 0! = 1).$

2.1 Binomial Expansions equal to Multiple of 2

Let us develop some series of binomial coefficients or binomial expansions [15-16] which are equal to the multiple of 2 or exponents of 2 or both.

(1)
$$\sum_{i=0}^{n} V_i^{n-i} = 2^n$$
. (2) $\sum_{i=0}^{n} i \times V_i^{n-i} = n2^{n-1}$. (3) $\sum_{i=0}^{n} (i+1)V_i^{n-i} = (n+2)2^{n-1}$.

$$(4) \sum_{i=0}^{n} (i-1)V_i^{n-i} = (n-2)2^{n-1}, \quad V_r^n = \prod_{i=1}^{n} \frac{(r+i)}{n!}, (n \ge 1, r \ge 0 \& n, r \in N).$$

2.2 Relations between Binomial Expansions

Relation 1:
$$\sum_{i=0}^{n} (i+1)V_i^{n-i} + \sum_{i=0}^{n} (i-1)V_i^{n-i} = \sum_{i=0}^{n} i \times V_i^{n-i} = n2^{n-1}.$$

Proof: Let us simplify the general terms in the two parts of binomial expansions (Relation 1) as follows:

 $(i+1)V_i^{n-i} + (i-1)V_i^{n-i} = 2iV_i^{n-i}$. This idea can be applied to Relation 1.

$$\sum_{i=0}^{n} (i+1)V_i^{n-i} + \sum_{i=0}^{n} (i-1)V_i^{n-i} = 2\sum_{i=0}^{n} iV_i^{n-i} = (n+2)2^{n-1} + (n-2)2^{n-1} = 2n2^{n-1}.$$
Then $2\sum_{i=0}^{n} iV_i^{n-i} = 2n2^{n-1} \rightarrow \sum_{i=0}^{n} iV_i^{n-i} = n2^{n-1}$

Then,
$$2\sum_{i=0}^{n} iV_i^{n-i} = 2n2^{n-1} \Longrightarrow \sum_{i=0}^{n} iV_i^{n-i} = n2^{n-1}$$
.

Relation 2:
$$\sum_{i=0}^{n} (i+1)V_i^{n-i} - \sum_{i=0}^{n} (i-1)V_i^{n-i} = \sum_{i=0}^{n} V_i^{n-i} = 2^n.$$

Proof: Let us simplify the general terms in the two parts of binomial expansions (Relation 2) as follows:

 $(i+1)V_i^{n-i} - (i-1)V_i^{n-i} = 2V_i^{n-i}$. This idea can be applied to Relation 2.

$$\sum_{i=0}^{n} (i+1)V_i^{n-i} - \sum_{i=0}^{n} (i-1)V_i^{n-i} = 2\sum_{i=0}^{n} V_i^{n-i} = (n+2)2^{n-1} - (n-2)2^{n-1} = 4 \times 2^{n-1}.$$

Then,
$$2\sum_{i=0}^{n} V_i^{n-i} = 22^n \Longrightarrow \sum_{i=0}^{n} V_i^{n-i} = 2^n$$
.

Hence, two relations are proved.

2.3 Annamalai's Binomial Expansion

The following binomial expansions [15-18], named as Annamalai's binomial expansions, are derived from the Annamalai's (iii) binomial identity $\sum_{i=0}^{r} V_i^p = V_r^{p+1}$.

(1).
$$\sum_{i=0}^{n} \frac{(i+1)}{1!} = 1 + 2 + 3 + \dots + n + (n+1) = \frac{(n+1)(n+2)}{2!}.$$

(2).
$$\sum_{i=0}^{n} \frac{(i+1)(i+2)}{2!} = 1+3+6+\dots+\frac{(n+1)(n+2)}{2!} = \frac{(n+1)(n+2)(n+3)}{3!}.$$

(3).
$$\sum_{i=0}^{n} \frac{(i+1)(i+2)(i+3)}{3!} = \frac{(n+1)(n+2)(n+3)(n+4)}{4!}.$$

(4).
$$\sum_{i=0}^{n} \frac{(i+1)(i+2)(i+3)(i+4)}{4!} = \frac{(n+1)(n+2)(n+3)(n+4)(n+5)}{5!}.$$

Similarly, this process continues up to r times. The rth binomial expansion is as follows:

(r).
$$\sum_{i=0}^{n} \frac{(i+1)(i+2)(i+3)\cdots(i+r)}{r!} = \frac{(n+1)(n+2)\cdots(n+r)(n+r+1)}{(r+1)!}$$

$$i.e., \sum_{i=0}^{n} \prod_{j=1}^{r} \frac{i+j}{r!} = \prod_{i=1}^{r+1} \frac{n+i}{(r+1)!}$$

This Annamalai's binomial expansion [15-17] is used to create the Annamalai's binomial series as follows.

$$\sum_{i=0}^{n} V_i^r x^i = \sum_{i=0}^{n} \prod_{j=1}^{r} \frac{i+j}{r!} x^i.$$

3. Binomial Expansion equal to the Sum of Geometric Series

Binomial expansion denotes a series of binomial coefficients. In this section, we focus on the summation of multiple binomial expansions or summation of multiple series of binomial coefficients.

Theorem 3. 1:
$$\sum_{i=0}^{0} {0 \choose i} + \sum_{i=0}^{1} {1 \choose i} + \sum_{i=0}^{2} {2 \choose i} + \sum_{i=0}^{3} {3 \choose i} + \dots + \sum_{i=0}^{n} {n \choose i} = 2^{n+1} - 1.$$

This binomial theorem states that the sum of multiple summations of series of binomial coefficients [15-18] is equal to the sum of a geometric series with exponents of 2.

Proof. Let us find the value of each binomial expansion in the binomial theorem step by step.

Step 0:
$$\binom{0}{0} = \frac{0!}{0!} = 1 \Rightarrow \sum_{i=0}^{0} \binom{0}{i} = \binom{0}{0} = 2^{0}.$$

Step 1: $\sum_{i=0}^{1} \binom{1}{i} = \binom{1}{0} + \binom{1}{1} = 1 + 1 = 2^{1}.$

Step 2: $\sum_{i=0}^{2} \binom{2}{i} = \binom{2}{0} + \binom{2}{1} + \binom{2}{2} = 1 + 2 + 1 = 4 = 2^{2}.$

Step 4: $\sum_{i=0}^{3} \binom{3}{i} = \binom{3}{0} + \binom{3}{1} + \binom{3}{2} + \binom{3}{3} = 1 + 3 + 3 + 1 = 8.$

Similarly, we can continue the expressions up to "step n" such that $\sum_{i=0}^{n} {n \choose i} = 2^n$.

Now, by adding these expressions on both sides, it appears as follows:

$$\sum_{i=0}^{0} \binom{0}{i} + \sum_{i=0}^{1} \binom{1}{i} + \sum_{i=0}^{2} \binom{2}{i} + \sum_{i=0}^{3} \binom{3}{i} + \dots + \sum_{i=0}^{n} \binom{n}{i} = \sum_{i=0}^{n} 2^{i},$$
 where
$$\sum_{i=0}^{n} 2^{i} = \frac{2^{n+1} - 1}{2 - 1} = 2^{n+1} - 1 \text{ is the geometric sereis with exponents of two.}$$

$$\therefore \sum_{i=0}^{0} \binom{0}{i} + \sum_{i=0}^{1} \binom{1}{i} + \sum_{i=0}^{2} \binom{2}{i} + \sum_{i=0}^{3} \binom{3}{i} + \dots + \sum_{i=0}^{n} \binom{n}{i} = 2^{n+1} - 1.$$

Hence, theorem is proved.

Theorem 3. 2:
$$\sum_{i=0}^{k} {k \choose i} + \sum_{i=0}^{k+1} {k+1 \choose i} + \sum_{i=0}^{k+2} {k+2 \choose i} + \dots + \sum_{i=0}^{n} {n \choose i} = 2^{n+1} - 2^k$$
, where $k \le n \ \& \ k, n \in \mathbb{N}$.

Proof. The sum of a geometric series with exponents of 2 is given below:

$$\sum_{i=k}^{n} 2^{i} = 2^{n+1} - 2^{k}.$$
Then,
$$\sum_{i=0}^{k} {k \choose i} + \sum_{i=0}^{k+1} {k+1 \choose i} + \sum_{i=0}^{k+2} {k+2 \choose i} + \dots + \sum_{i=0}^{n} {n \choose i} = \sum_{i=k}^{n} 2^{i}.$$
Therefore,
$$\sum_{i=0}^{k} {k \choose i} + \sum_{i=0}^{k+1} {k+1 \choose i} + \sum_{i=0}^{k+2} {k+2 \choose i} + \dots + \sum_{i=0}^{n} {n \choose i} = 2^{n+1} - 2^{k}.$$

Some results of Theorem 2.3 are given below:

(i)
$$\sum_{i=0}^{n} {n \choose i} = 2^{n+1} - 2^n = 2^n$$
. (ii) $\sum_{i=0}^{n-1} {n-1 \choose i} + \sum_{i=0}^{n} {n \choose i} = 2^{n-1}(2^2 - 1) = 3(2^{n-1})$.

$$(iii) \sum_{i=0}^{n-2} {n-2 \choose i} + \sum_{i=0}^{n-1} {n-1 \choose i} + \sum_{i=0}^{n} {n \choose i} = 2^{n+1} - 2^{n-2} = 2^{n-2}(2^3 - 1) = 7(2^{n-2}).$$

$$(iv) \sum_{i=0}^{n-3} {n-3 \choose i} + \sum_{i=0}^{n-1} {n-2 \choose i} + \sum_{i=0}^{n} {n-1 \choose i} + \sum_{i=0}^{n} {n \choose i} = 2^{n+1} - 2^{n-3} = 15(2^{n-3}).$$

These results can be generalized as follows:
$$\sum_{i=0}^{p} \binom{p}{i} + \sum_{i=0}^{p+1} \binom{p+1}{i} + \sum_{i=0}^{p+2} \binom{p+2}{i} + \dots + \sum_{i=0}^{q-1} \binom{q-1}{i} + \sum_{i=0}^{q} \binom{q}{i} = 2^p (2^{q-p+1} - 1),$$
 where $0 \le p \le q$ and $p, q \in N$.

Some results of Theorem 3.1 are given below:

$$(a) \sum_{i=0}^{0} {0 \choose i} + \sum_{i=0}^{1} {1 \choose i} + \sum_{i=0}^{2} {2 \choose i} + \sum_{i=0}^{3} {3 \choose i} + \dots + \sum_{i=0}^{p-1} {p-1 \choose i} = 2^{p} - 1, \text{ where } 1 \le p \in \mathbb{N}.$$

$$(b) \sum_{i=0}^{0} {0 \choose i} + \sum_{i=0}^{1} {1 \choose i} + \sum_{i=0}^{2} {2 \choose i} + \sum_{i=0}^{3} {3 \choose i} + \dots + \sum_{i=0}^{p-1} {q-1 \choose i} = 2^{q} - 1, \text{ where } 1 \le q \in \mathbb{N}.$$

By subtracting (a) from (b), we get

$$\begin{split} &\left(\sum_{i=0}^{0}\binom{0}{i} + \sum_{i=0}^{1}\binom{1}{i} + \dots + \sum_{i=0}^{q-1}\binom{q-1}{i}\right) - \left(\sum_{i=0}^{0}\binom{0}{i} + \sum_{i=0}^{1}\binom{1}{i} + \dots + \sum_{i=0}^{p-1}\binom{p-1}{i}\right) = 2^q - 2^p, \\ &i.e., \sum_{i=0}^{p}\binom{p}{i} + \sum_{i=0}^{p+1}\binom{p+1}{i} + \sum_{i=0}^{p+2}\binom{p+2}{i} + \dots + \sum_{i=0}^{q-2}\binom{q-2}{i} + \sum_{i=0}^{q-1}\binom{q-1}{i} = 2^q - 2^p, \\ &\text{where } p < q \ \& \ p, q \ \in N. \end{split}$$

By adding (a) and (b), we get

$$\left(\sum_{i=0}^{0} \binom{0}{i} + \sum_{i=0}^{1} \binom{1}{i} + \dots + \sum_{i=0}^{p-1} \binom{p-1}{i}\right) + \left(\sum_{i=0}^{0} \binom{0}{i} + \sum_{i=0}^{1} \binom{1}{i} + \dots + \sum_{i=0}^{q-1} \binom{q-1}{i}\right) = 2^{p} + 2^{q} - 2,$$

$$If \ p = q, \qquad then \ 2\left(\sum_{i=0}^{0} \binom{0}{i} + \sum_{i=0}^{1} \binom{1}{i} + \dots + \sum_{i=0}^{p-1} \binom{p-1}{i}\right) = 22^{p} - 2 = 2(2^{p} - 1),$$

$$i.e., \qquad \sum_{i=0}^{0} \binom{0}{i} + \sum_{i=0}^{1} \binom{1}{i} + \sum_{i=0}^{2} \binom{2}{i} + \sum_{i=0}^{3} \binom{3}{i} + \dots + \sum_{i=0}^{p-1} \binom{p-1}{i} = 2^{p} - 1, \text{ where } 1 \le q \in N.$$

4. Conclusion

This article presented the algorithmic and numerical techniques for computing the summation of multiple series of binomial coefficients and the multiple summations of geometric series in an innovative way and also introduced theorems and relations between the binomial expansions and geometric series. These techniques and its results can be useful for researchers who are working in science, economics, engineering, management, and medicine [21].

References

- [1] Annamalai, C. (2022) Sum of the Summations of Binomial Expansions with Geometric Series. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-pnx53-v2.
- [2] Annamalai, C. (2022) Computation and combinatorial Techniques for Binomial Coefficients and Geometric Series. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-pnx53-v4
- [3] Annamalai, C. (2022) Computing Method for Binomial Expansions and Geometric Series. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-pnx53-v3.
- [4] Annamalai, C. (2022) Computational Method for Summation of Binomial Expansions equal to Sum of Geometric Series with Exponents of 2. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-pnx53-v5.
- [5] Annamalai, C. (2009) A novel computational technique for the geometric progression of powers of two. *Journal of Scientific and Mathematical Research*, Vol.3, pp 16-17. https://doi.org/10.5281/zenodo.6642923.
- [6] Annamalai, C. (2019) Extension of ACM for Computing the Geometric Progression. *Journal of Advances in Mathematics and Computer Science*, Vol. 31(5), pp 1-3. https://doi.org/10.9734/JAMCS/2019/v31i530125.
- [7] Annamalai, C. (2015) A Novel Approach to ACM-Geometric Progression. *Journal of Basic and Applied Research International*, Vol.2(1), pp 39-40. https://www.ikppress.org/index.php/JOBARI/article/view/2946.
- [8] Annamalai, C. (2022) Computing Method for Sum of Geometric Series and Binomial Expansions. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-pnx53-v2.
- [9] Annamalai, C. (2022) Computation Method for Summation of Binomial Expansions equal to Sum of Geometric Series with Exponents of Two. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-pnx53-v6.
- [10] Annamalai, C. (2017) Computational Modelling for the Formation of Geometric Series using Annamalai Computing Method. *Jñānābha*. Vol.47(2), pp 327-330. https://zbmath.org/?q=an%3A1391.65005.
- [11] Annamalai, C. (2022) Summations of Single Terms and Successive Terms of Geometric Series. *SSRN*4085922. http://dx.doi.org/10.2139/ssrn.4085922.
- [12] Annamalai, C. (2022) Sum of Geometric Series with Negative Exponents. *SSRN*4088497. http://dx.doi.org/10.2139/ssrn.4088497.

- [13] Annamalai, C. (2019) Computation of Series of Series using Annamalai's Computing Model. *OCTOGON MATHEMATICAL MAGAZINE*, Vol. 27(1), pp 1-3. http://dx.doi.org/10.2139/ssrn.4088497.
- [14] Annamalai, C. (2009) Computation of Geometric Series in Different Ways. *OSF Preprints*. https://doi.org/10.31219/osf.io/kx7d8.
- [15] Annamalai, C. (2009) Annamalai's Binomial Identity and Theorem. *SSRN*4097907. http://dx.doi.org/10.2139/ssrn.4097907.
- [16] Annamalai, C. (2009) My New Idea for Optimized Combinatorial Techniques. SSRN4078523. http://dx.doi.org/10.2139/ssrn.4078523.
- [17] Annamalai, C. (2022) Numerical Computational Method for Computation of Binomial Expansions and Geometric Series. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-pnx53-v7.
- [18] Annamalai, C. (2009) A Binomial Expansion equal to Multiple of 2 with Non-Negative Exponents. SSRN4116671. http://dx.doi.org/10.2139/ssrn.4116671.
- [19] Annamalai, C. (2009) Factorials and Integers for Applications in Computing and Cryptography. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-b6mks
- [20] Annamalai, C. (2009) Factorials, Integers and Mathematical and Binomial Techniques for Machine Learning and Cybersecurity. *Cambridge Open Engage*. https://www.doi.org/10.33774/coe-2022-b6mks-v2.
- [21] Annamalai, C. (2010) Application of Exponential Decay and Geometric Series in Effective Medicine. *Advances in Bioscience and Biotechnology*, Vol. 1(1), pp 51-54. https://doi.org/10.4236/abb.2010.11008.