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Abstract: Geometric series plays a vital role in the areas of combinatorics, science, economics, 

and medicine. This paper presents numerical and computational method for computing the 

summation of multiple series of binomial coefficients and the multiple summations of geometric 

series in an innovative way and also the relation between the binomial expansions and geometric 

series. These are the methodological advances which are useful for researchers who are working 

in science, economics, engineering, computation, and management.  
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1. Introduction 

In the earlier days, geometric series served as a vital role in the development of differential and 

integral calculus and as an introduction to Taylor series and Fourier series. The geometric series 

and its summations and sums have significant applications in science, engineering, economics, 

queuing theory, computation, and management. In this article, innovative binomial expansions 

and geometric series [1-14] are introduced as methodological advances used in computational 

science. Computational science is a rapidly growing multi-and inter-disciplinary area where 

science, engineering, computation, mathematics, and collaboration use advance computing 

capabilities to understand and solve the most complex real life problems. 

 

1.1 Computation of Geometric Series and its Sum 

In this section, computation of geometric series and its sum [5-7] are developed without using 

the traditional computing method.  

 

Let N = {0, 1, 2, 3, . . . .,} be the set of natural umbers including zero element.  

In general, if 𝑥 𝑖s an integer, then 𝑥𝑛 = 𝑥𝑛−1 + 𝑥𝑛−1 + 𝑥𝑛−1 + 𝑥𝑛−1 +⋯+ 𝑥𝑛−1⏞                          
𝑥 𝑡𝑖𝑚𝑒𝑠

  

  =  (x −  1)𝑥𝑛−1+𝑥𝑛−1 = (𝑥 − 1) 𝑥𝑛−1 + 𝑥𝑛−2 + 𝑥𝑛−2 + 𝑥𝑛−2 + 𝑥𝑛−2 +⋯+ 𝑥𝑛−2⏞                          
𝑥 𝑡𝑖𝑚𝑒𝑠

  
 
  = (x − 1)𝑥𝑛−1 + (x − 1)𝑥𝑛−2 + 𝑥𝑛−2.  Similarly, we can develop the algebraic expression, 
 
𝑖. 𝑒. , 𝑥𝑛 = (x − 1)𝑥𝑛−1 + (x − 1)𝑥𝑛−2 + (x − 1)𝑥𝑛−3 + (x − 1)𝑥𝑛−3 +⋯+ (x − 1)𝑥𝑘 + 𝑥𝑘  
 

𝑥𝑛 = (𝑥 − 1)∑𝑥𝑖
𝑛−1

𝑖=𝑘

+ 𝑥𝑘 ⟹∑𝑥𝑖
𝑛

𝑖=𝑘

=
𝑥𝑛+1 − 𝑥𝑘

𝑥 − 1
⟹∑𝑥𝑖

𝑛

𝑖=0

=
𝑥𝑛+1 − 1

𝑥 − 1
,𝑤ℎ𝑒𝑟𝑒 𝑘 ≤ 𝑛. 
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For example,  

3𝑛 = 3𝑛−1 + 3𝑛−1 + 3𝑛−1 = (3 − 1)3𝑛−1 + 3𝑛−1 = (3 − 1)3𝑛−1 + (3 − 1)3𝑛−2 + 3𝑛−2 

⟹ 3𝑛 = (3 − 1)3𝑛−1 + (3 − 1)3𝑛−2 + (3 − 1)3𝑛−3 +⋯+ (3 − 1)3𝑘 + 3𝑘 

⟹ 3𝑛 = (3 − 1)∑3𝑘
𝑛−1

𝑖=𝑘

+ 3𝑘 ⟹∑3𝑘
𝑛−1

𝑖=𝑘

=
3𝑛 − 3𝑘

3 − 1
⟹∑3𝑘

𝑛−1

𝑖=0

=
3𝑛 − 1

2
. 

 

If x is any number, then we can develop the geometric series as follows: 

𝑥𝑛 = (x −  1) 𝑥𝑛−1+𝑥𝑛−1 ⟹ (x − 1)𝑥𝑛−1 + (x − 1)𝑥𝑛−2 +⋯+ (x − 1)𝑥𝑘 + 𝑥𝑘 

⟹ 𝑥𝑛 = (𝑥 − 1)∑𝑥𝑖
𝑛−1

𝑖=𝑘

+ 𝑥𝑘 ⟹∑𝑥𝑖
𝑛−1

𝑖=𝑘

=
𝑥𝑛 − 𝑥𝑘

𝑥 − 1
⟹∑𝑥𝑖

𝑛−1

𝑖=0

=
𝑥𝑛 − 1

𝑥 − 1
. 

For example, 

(9.05)𝑛 = (9.05 − 1)(9.05)𝑛−1+(9.05)𝑛−1 ⟹∑(9.05)𝑖
𝑛−1

𝑖=𝑘

=
(9.05)𝑛 − (9.05)𝑘

(9.05 − 1)
. 

1.2 Geometric Series with exponents of Two  

Let us develop the sum of geometric series [5] with exponents of 2 independently.  

2𝑛 = 2𝑛−1 + 2𝑛−1 = 2𝑛−1 + 2𝑛−2 + 2𝑛−2 = ⋯ = 2𝑛−1 + 2𝑛−2 + 2𝑛−3 +⋯2𝑘 + 2𝑘   

⟹ 2𝑘 + 2𝑘+2 + 2𝑘+3 +⋯+ 2𝑛−1 = 2𝑛 − 2𝑘 ⟹∑2𝑖
𝑛

𝑖=𝑘

= 2𝑛+1 − 2𝑘,  

where 𝑘 ≤ 𝑛  𝑎𝑛𝑑  𝑘, 𝑛 ∈ 𝑁.  In the geometric series 𝑖𝑓  𝑘 = 0, then∑2𝑖
𝑛

𝑖=0

= 2𝑛+1 − 1.   

Next, let us develop a geometric series using the arithmetic equation 2 = 2. 

2 = 1 + 1 = 1 +
1

2
+
1

2
= 1 +

1

21
+
1

22
+
1

22
= ⋯ = 1 +

1

21
+
1

22
+
1

23
+⋯+

1

2𝑛
+
1

2𝑛
 

⟹∑
1

2𝑖

𝑛

𝑖=0

= 1 −
1

2𝑛
=
2𝑛 − 1

2𝑛
  and  ∑

1

2𝑖

𝑛

𝑖=𝑘

=
1

2𝑘+1
−
1

2𝑛
=
2𝑛 − 2𝑘+1

2𝑛+𝑘+1
 , (𝑘 ≤ 𝑛 & 𝑘, 𝑛 ∈ 𝑁). 

 

1.3 Geometric Series of Multiples of Powers of Two 

In this section, a new idea is introduced for the computation of sum of geometric series [5, 7] of 

multiples of powers of two.  

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏. 𝟏: ∑𝑖 × 2𝑖−1 = (𝑛 − 1)2𝑛
𝑛

𝑖=1

+ 1. 

Proof. This theorem is proved by mathematical induction. 

Basis. Let 𝑛 = 3. Then∑𝑖 × 2𝑖−1 = 1 + 4 + 12 = 17 = 2 × 23
3

𝑖=1

+ 1.  It is true.  

Inductive hypothesis. Let us assume that it is true for ∑ 𝑖 × 2𝑖−1 = (𝑛 − 2)2𝑛−1
𝑛−1

𝑖=1

+ 1.   
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 Inductive Step.We must show that ∑𝑖 × 2𝑖−1 = (𝑛 − 1)2𝑛
𝑛

𝑖=1

+ 1 is ture. 

∑𝑖 × 2𝑖−1 + 𝑛2𝑛−1 = (𝑛 − 2)2𝑛−1
𝑛−1

𝑖=1

+ 1 +  𝑛2𝑛−1 ⟹∑𝑖 × 2𝑖−1 = 2𝑛2𝑛−1
𝑛

𝑖=1

− 22𝑛−1 + 1 

                                   ⟹∑𝑖 × 2𝑖−1 = 𝑛2𝑛
𝑛

𝑖=1

− 2𝑛 + 1 = (𝑛 − 1)2𝑛 + 1. 

Hence, theorem is proved. 

 

1.4 Traditional Binomial Coefficient 

The factorial or factorial function [17-20] of a nonnegative integer n, denoted by n!, is the 

product of all positive integers less than or equal to n.  

A binomial coefficient is always an integer that denotes (
𝑛
𝑟
) =

𝑛!

𝑟! (𝑛 − 𝑟)!
, where 𝑛, 𝑟 ∈ 𝑁.  

Here, (
𝑛 + 𝑟
𝑟
) =

(𝑛 + 𝑟)

𝑟! 𝑛!
 ⟹ (𝑛 + 𝑟) = 𝑙 × 𝑟! 𝑛!,where 𝑙 is an integer.  

 

2. Binomial and Geometric Series  

When the author of this article was trying to develop the multiple summations of geometric 

series, a new idea was stimulated his mind for establishing a novel binomial series along with an 

innovative binomial coefficient 15, 16].  

∑ ∑ ∑ ⋯

𝑛

𝑖3=𝑖2

∑ 𝑥𝑖𝑟

𝑛

𝑖𝑟=𝑖𝑟−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1=0

=∑𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

 &  𝑉𝑟
𝑛 =

(𝑟 + 1)(𝑟 + 2)(𝑟 + 3)⋯⋯(𝑟 + 𝑛 − 1)(𝑟 + 𝑛)

𝑛!
, 

where  𝑛 ≥ 1, 𝑟 ≥ 0  𝑎𝑛𝑑  𝑛, 𝑟 ∈ 𝑁.  

Here,∑𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

and  𝑉𝑟
𝑛 refer to the binomial sereis and binomial coefficient respectively. 

 

Let us compare the binomial coefficient 𝑉𝑥
𝑦

 with the traditional binomial coefficient as follows: 

Let 𝑧 = 𝑥 +  𝑦.  Then,  𝑧𝐶𝑥 =
𝑧!

𝑥! 𝑦!
.  Here,  𝑉𝑥

𝑦
= 𝑉𝑦

𝑥 ⟹  𝑧𝐶𝑥 =  𝑧𝐶𝑦, (𝑥, 𝑦, 𝑧 ∈ 𝑁). 

For example,  
                             𝑉3

5 = 𝑉5
3 =  (5 + 3)𝐶3 =  (5 + 3)𝐶5 = 56.   

Also, 𝑉𝑛
0 = 𝑉0

𝑛 = 𝑛𝐶0 = 𝑛𝐶𝑛 =
𝑛!

𝑛! 0!
= 1  𝑎𝑛𝑑  𝑉0

0 = 0𝐶0 =
0!

0!
= 1(∵ 0! = 1). 

 
2.1 Binomial Expansions equal to Multiple of 2 

Let us develop some series of binomial coefficients or binomial expansions [15-16] which are 

equal to the multiple of 2 or exponents of 2 or both. 

(1) ∑𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛.             (2)∑𝑖 × 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2𝑛−1.             (3) ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1. 
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(4) ∑(i − 1)Vi
n−i

n

i=0

= (n − 2)2n−1,    𝑉𝑟
𝑛 =∏

(𝑟 + 𝑖)

𝑛!

𝑛

𝑖=1

, ( 𝑛 ≥ 1, 𝑟 ≥ 0 & 𝑛, 𝑟 ∈ 𝑁). 

                
2.2 Relations between Binomial Expansions 

Relation 1: ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

+∑(i − 1)Vi
n−i

n

i=0

=∑𝑖 × 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2𝑛−1. 

 

Proof: Let us simplify the general terms in the two parts of binomial expansions (Relation 1) as 

follows:  

(𝑖 + 1)𝑉𝑖
𝑛−𝑖 + (i − 1)Vi

n−i =  2𝑖Vi
n−i.  This idea can be applied to Relation 1.  

∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

+∑(i − 1)Vi
n−i

n

i=0

= 2∑𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1 + (n − 2)2n−1 = 2𝑛2n−1. 

Then, 2∑𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛2n−1 ⟹∑𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2n−1. 

 

Relation 2: ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

−∑(i − 1)Vi
n−i

n

i=0

=∑𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛. 

Proof: Let us simplify the general terms in the two parts of binomial expansions (Relation 2) as 

follows:  

(𝑖 + 1)𝑉𝑖
𝑛−𝑖 − (i − 1)Vi

n−i =  2Vi
n−i.  This idea can be applied to Relation 2.  

∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

−∑(i − 1)Vi
n−i

n

i=0

= 2∑𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1 − (n − 2)2n−1 = 4 × 2n−1. 

Then, 2∑𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 22n ⟹∑𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2n. 

Hence, two relations are proved. 

 

2.3 Annamalai’s Binomial Expansion 

The following binomial expansions [15-19], named as Annamalai’s binomial expansions, are 

derived from the Annamalai’s (iii) binomial identity ∑ 𝑉𝑖
𝑝𝑟

𝑖=0 = 𝑉𝑟
𝑝+1. 

(1).       ∑
(𝑖 + 1)

1!

𝑛

𝑖=0

= 1 + 2 + 3 +⋯+ 𝑛 + (𝑛 + 1) =
(𝑛 + 1)(𝑛 + 2)

2!
. 

(2).     ∑
(𝑖 + 1)(𝑖 + 2)

2!

𝑛

𝑖=0

= 1 + 3 + 6 +⋯+
(𝑛 + 1)(𝑛 + 2)

2!
=
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

3!
. 

(3).     ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)

3!

𝑛

𝑖=0

= 
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

4!
. 

(4).      ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)

4!

𝑛

𝑖=0

= 
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑛 + 5)

5!
. 
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Similarly, this process continues up to r times. The r
th

 binomial expansion is as follows:   

(𝑟).      ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)⋯ (𝑖 + 𝑟)

𝑟!

𝑛

𝑖=0

= 
(𝑛 + 1)(𝑛 + 2)⋯ (𝑛 + 𝑟)(𝑛 + 𝑟 + 1)

(𝑟 + 1)!
 

𝑖. 𝑒. ,∑  ∏
𝑖 + 𝑗

𝑟!

𝑟

𝑗=1

𝑛

𝑖=0

  =   ∏
𝑛 + 𝑖

(𝑟 + 1)!

𝑟+1

𝑖=1

. 

This Annamalai’s binomial expansion [15-17] is used to create the Annamalai’s binomial series 

as follows.  

∑𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

=∑∏
𝑖 + 𝑗

𝑟!

𝑟

𝑗=1

𝑥𝑖
𝑛

𝑖=0

. 

 

The following theorem is derived from the Annamalai’s binomial series [15]. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟏: ∑𝑉𝑖
𝑟+1𝑥𝑖 =

𝑛

𝑖=0

∑𝑉𝑖
𝑟
𝑥𝑖

𝑛

𝑖=0

+∑𝑉𝑖−1
𝑟
𝑥𝑖

𝑛

𝑖=1

+∑𝑉𝑖−2
𝑟
𝑥𝑖

𝑛

𝑖=2

+⋯+∑𝑉𝑖−𝑛
𝑟
𝑥𝑖

𝑛

𝑖=𝑛

.  

Proof: Let’s show that the computation of summations of the binomial series (right-hand side of 

the theorem) is equal to the binomial series (left- hand side of the theorem).    
 

∑𝑉𝑖
𝑟
𝑥𝑖

𝑛

𝑖=0

+∑𝑉𝑖−1
𝑟
𝑥𝑖

𝑛

𝑖=1

+∑𝑉𝑖−2
𝑟
𝑥𝑖

𝑛

𝑖=2

+⋯+ ∑ 𝑉𝑖−(𝑛−1)
𝑟

𝑥𝑖
𝑛

𝑖=𝑛−1

+∑𝑉𝑖−𝑛
𝑟
𝑥𝑖

𝑛

𝑖=𝑛

 

      = (𝑉0
𝑟 + 𝑉1

𝑟𝑥 + 𝑉2
𝑟𝑥2 + 𝑉3

𝑟𝑥3 +⋯+ 𝑉𝑛
𝑟𝑥𝑛) + (𝑉0

𝑟𝑥 + 𝑉1
𝑟𝑥2 + 𝑉2

𝑟𝑥3 + 𝑉3
𝑟𝑥4 +⋯+ 𝑉𝑛−1

𝑟 𝑥𝑛) 

          +(𝑉0
𝑟𝑥2 + 𝑉1

𝑟𝑥3 + 𝑉2
𝑟𝑥4 + 𝑉3

𝑟𝑥5 +⋯+ 𝑉𝑛−2
𝑟 𝑥𝑛) + ⋯+ (𝑉0

𝑟𝑥𝑛−1 + 𝑉1
𝑟𝑥𝑛) + 𝑉0

𝑟𝑥𝑛 

      = 𝑉0
𝑟 + (𝑉0

𝑟 + 𝑉1
𝑟)𝑥 + (𝑉0

𝑟 + 𝑉1
𝑟 + 𝑉2

𝑟)𝑥2 +⋯+ (𝑉0
𝑟 + 𝑉1

𝑟 + 𝑉2
𝑟 + 𝑉3

𝑟 +⋯+ 𝑉𝑛
𝑟)𝑥𝑛   

    (Note that   𝑉0
𝑝 + 𝑉1

𝑝 + 𝑉2
𝑝 +⋯+ 𝑉𝑟

𝑝 = 𝑉𝑟
𝑝+1for 𝑟 = 1, 2, 3,⋯ , and 𝑉0

𝑝 = 𝑉0
𝑝+1 = 1) 

 

     = 𝑉0
𝑟+1 + 𝑉1

𝑟+1𝑥 + 𝑉2
𝑟+1𝑥2 + 𝑉3

𝑟+1𝑥3 + 𝑉4
𝑟+1𝑥4 +⋯+ 𝑉𝑛−1

𝑟+1𝑥𝑛_1 + 𝑉𝑛
𝑟+1𝑥𝑛 

   = ∑𝑉𝑖
𝑟+1𝑥𝑖

𝑛

𝑖=0

 

Hence, theorem is proved.  
 

3. Binomial Expansion equal to the Sum of Geometric Series   

Binomial expansion denotes a series of binomial coefficients. In this section, we focus on the 

summation of multiple binomial expansions or summation of multiple series of binomial 

coefficients.      

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏:∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+∑(
2
𝑖
)

2

𝑖=0

+∑(
3
𝑖
)

3

𝑖=0

+⋯+∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛+1 − 1. 
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This binomial theorem states that the sum of multiple summations of series of binomial 

coefficients [15-19] is equal to the sum of a geometric series with exponents of 2. 

 

Proof. Let us find the value of each binomial expansion in the binomial theorem step by step.  

 

𝑆𝑡𝑒𝑝 0:   (
0
0
) =

0!

0!
= 1 ⟹∑(

0
𝑖
)

0

𝑖=0

= (
0
0
) = 20.    

𝑆𝑡𝑒𝑝 1:   ∑(
1
𝑖
)

1

𝑖=0

= (
1
0
) + (

1
1
) = 1 + 1 =  21. 

𝑆𝑡𝑒𝑝 2:  ∑(
2
𝑖
)

2

𝑖=0

= (
2
0
) + (

2
1
) + (

2
2
) = 1 + 2 + 1 =  4 = 22.        

𝑆𝑡𝑒𝑝 4:  ∑(
3
𝑖
)

3

𝑖=0

 = (
3
0
) + (

3
1
) + (

3
2
) + (

3
3
) = 1 + 3 + 3 + 1 = 8. 

Similarly, we can continue the expressions up to "step n " such that ∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛. 

Now, by adding these expressions on both sides, it appears as follows:  

∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+∑(
2
𝑖
)

2

𝑖=0

+∑(
3
𝑖
)

3

𝑖=0

+⋯+∑(
𝑛
𝑖
)

𝑛

𝑖=0

=∑2𝑖
𝑛

𝑖=0

,  

where ∑2𝑖
𝑛

𝑖=0

= 
2𝑛+1 − 1

2 − 1
= 2𝑛+1 − 1 is the geometric sereis with exponents of two. 

∴  ∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+∑(
2
𝑖
)

2

𝑖=0

+∑(
3
𝑖
)

3

𝑖=0

+⋯+∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛+1 − 1. 

 

Hence, theorem is proved.   

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟐: ∑(
𝑘
𝑖
)

𝑘

𝑖=0

+∑(
𝑘 + 1
𝑖
)

𝑘+1

𝑖=0

+∑(
𝑘 + 2
𝑖
)

𝑘+2

𝑖=0

+⋯+∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑘, 

where 𝑘 ≤ 𝑛 & 𝑘, 𝑛 ∈ 𝑁. 
 

Proof.  The sum of a geometric series with exponents of 2 is given below:  

∑2𝑖
𝑛

𝑖=𝑘

= 2𝑛+1 − 2𝑘.   

Then,∑(
𝑘
𝑖
)

𝑘

𝑖=0

+∑(
𝑘 + 1
𝑖
)

𝑘+1

𝑖=0

+∑(
𝑘 + 2
𝑖
)

𝑘+2

𝑖=0

+⋯+∑(
𝑛
𝑖
)

𝑛

𝑖=0

=∑2𝑖
𝑛

𝑖=𝑘

. 
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Therefore, ∑(
𝑘
𝑖
)

𝑘

𝑖=0

+∑(
𝑘 + 1
𝑖
)

𝑘+1

𝑖=0

+∑(
𝑘 + 2
𝑖
)

𝑘+2

𝑖=0

+⋯+∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑘 . 

Some results of Theorem 2.3 are given below: 

(i) ∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛 = 2𝑛.     (𝑖𝑖)∑ (
𝑛 − 1
𝑖
)

𝑛−1

𝑖=0

+∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛−1(22 − 1) = 3(2𝑛−1). 

(𝑖𝑖𝑖)∑ (
𝑛 − 2
𝑖
)

𝑛−2

𝑖=0

+∑(
𝑛 − 1
𝑖
)

𝑛−1

𝑖=0

+∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛−2 = 2𝑛−2(23 − 1) = 7(2𝑛−2). 

(𝑖𝑣)∑(
𝑛 − 3
𝑖
)

𝑛−3

𝑖=0

+∑(
𝑛 − 2
𝑖
)

𝑛−2

𝑖=0

+∑(
𝑛 − 1
𝑖
)

𝑛−1

𝑖=0

+∑(
𝑛
𝑖
)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛−3 = 15(2𝑛−3). 

These results can be generalized as follows:  

∑(
𝑝
𝑖
)

𝑝

𝑖=0

+∑(
𝑝 + 1
𝑖
)

𝑝+1

𝑖=0

+∑(
𝑝 + 2
𝑖
)

𝑝+2

𝑖=0

+⋯+∑(
𝑞 − 1
𝑖
)

𝑞−1

𝑖=0

+∑(
𝑞
𝑖
)

𝑞

𝑖=0

= 2𝑝(2𝑞−𝑝+1 − 1), 

where  0 ≤ 𝑝 ≤ 𝑞 𝑎𝑛𝑑 𝑝, 𝑞 ∈  𝑁. 
 

Some results of Theorem 3.1 are given below: 

(𝑎)∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+∑(
2
𝑖
)

2

𝑖=0

+∑(
3
𝑖
)

3

𝑖=0

+⋯+∑(
𝑝 − 1
𝑖
)

𝑝−1

𝑖=0

= 2𝑝 − 1,where 1 ≤ 𝑝 ∈ 𝑁. 

(𝑏)∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+∑(
2
𝑖
)

2

𝑖=0

+∑(
3
𝑖
)

3

𝑖=0

+⋯+∑(
𝑞 − 1
𝑖
)

𝑝−1

𝑖=0

= 2𝑞 − 1,where 1 ≤ 𝑞 ∈ 𝑁. 

 

By subtracting (a) from (b), we get 

(∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+⋯+∑(
𝑞 − 1
𝑖
)

𝑞−1

𝑖=0

) − (∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+⋯+∑(
𝑝 − 1
𝑖
)

𝑝−1

𝑖=0

) = 2𝑞 − 2𝑝, 

𝑖. 𝑒. ,∑(
𝑝
𝑖
)

𝑝

𝑖=0

+∑(
𝑝 + 1
𝑖
)

𝑝+1

𝑖=0

+∑(
𝑝 + 2
𝑖
)

𝑝+2

𝑖=0

+⋯+∑(
𝑞 − 2
𝑖
)

𝑞−2

𝑖=0

+∑(
𝑞 − 1
𝑖
)

𝑞−1

𝑖=0

= 2𝑞 − 2𝑝, 

where p < 𝑞 & 𝑝, 𝑞 ∈ 𝑁. 
 

By adding (a) and (b), we get 

(∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+⋯+∑(
𝑝 − 1
𝑖
)

𝑝−1

𝑖=0

)+ (∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+⋯+∑(
𝑞 − 1
𝑖
)

𝑞−1

𝑖=0

) = 2𝑝 + 2𝑞 − 2, 

𝐼𝑓 𝑝 = 𝑞, 𝑡ℎ𝑒𝑛  2(∑(
0

𝑖
)

0

𝑖=0

+∑(
1

𝑖
)

1

𝑖=0

+⋯+∑(
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

) = 22𝑝 − 2 = 2(2𝑝 − 1),   

𝑖. 𝑒., ∑(
0
𝑖
)

0

𝑖=0

+∑(
1
𝑖
)

1

𝑖=0

+∑(
2
𝑖
)

2

𝑖=0

+∑(
3
𝑖
)

3

𝑖=0

+⋯+∑(
𝑝 − 1
𝑖
)

𝑝−1

𝑖=0

= 2𝑝 − 1,where 1 ≤ 𝑞 ∈ 𝑁. 
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4. Conclusion  

This article presented the computation and numerical techniques for computing the summation of 

multiple series of binomial coefficients and the multiple summations of geometric series in an 

innovative way and also introduced theorems and relations between the binomial expansions and 

geometric series. These techniques and its results can be useful for researchers who are working 

in science, economics, engineering, management, and medicine [22].       
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