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Abstract: Geometric series plays a vital role in the areas of combinatorics, science, economics,
and medicine. This paper presents numerical and computational method for computing the
summation of multiple series of binomial coefficients and the multiple summations of geometric
series in an innovative way and also the relation between the binomial expansions and geometric
series. These are the methodological advances which are useful for researchers who are working
in science, economics, engineering, computation, and management.
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1. Introduction

In the earlier days, geometric series served as a vital role in the development of differential and
integral calculus and as an introduction to Taylor series and Fourier series. The geometric series
and its summations and sums have significant applications in science, engineering, economics,
queuing theory, computation, and management. In this article, innovative binomial expansions
and geometric series [1-14] are introduced as methodological advances used in computational
science. Computational science is a rapidly growing multi-and inter-disciplinary area where
science, engineering, computation, mathematics, and collaboration use advance computing
capabilities to understand and solve the most complex real life problems.

1.1 Computation of Geometric Series and its Sum
In this section, computation of geometric series and its sum [5-7] are developed without using
the traditional computing method.

LetN={0,1, 2, 3,....,} be the set of natural umbers including zero element.
x times
In general, if x is an integer, then x™ = x"~1 4 x"~1 4 xn=1 4 xn=1 4 ... 4 x7-1
x times

= (x— Dx"Hx" = (x— 1) x4 a2 4 x"72 4 X2 4 xN72 4o g2
= (x—1Dx"1+ (x—1)x"2 + x" 2. Similarly, we can develop the algebraic expression,
e, x"=x—Dx" T4+ x—1Dx" 2+ x—Dx" 3+ x—Dx" 3+ 4+ (x— DxF + xF

n
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—(x—l)z:x + x* =>Z =>Zx ——1 ,Where k < n.
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For example,
3n =314 3771 4301 = (3-1)3"1 431 =(3-1)3""1+(3-1)3""2 4372
= 3" =(3- 1)3" 1+ (33— 1)3" 2 + (3- 1)371—3 + -+ (3—-1)3%+ 3%

k n-1 3n_1
=>3n=(3—1)23’<+3k:>23k = ) 3=
i=0

If X is any number, then we can develop the geometric series as follows:
=x-1 x"_1+x"_1 = (X 1)36"_1 + (x— 1)xn_2 + et (x — 1)xk + x¥

:x”—(x—l)Zx + xk =>Zx = o =>z P

For example,

(9.05)™ — (9.05)%
(9.05-1)

(9.05)" = (9.05 — 1)(9.05)" 1 +(9.05)" = 2(9.05)1' -

1.2 Geometric Series with exponents of Two

Let us develop the sum of geometric series [5] with exponents of 2 independently.

on — 211—1 + 211—1 — 211—1 + 211—2 + 2n—2 — e — 211—1 + 2n—2 + 2n—3 + . Zk + 2k
n

— Zk + 2k+2 + 2k+3 4ot 211—1 =" _ Zk — Zzl — 2n+1 _ Zk,
i=k

where k < n and k,n € N. In the geometric series if k =0, thenz 2t =2n+l _ 1,
i=0
Next, let us develop a geometric series using the arithmetic equation 2 = 2.

2—1+1—1+1+1—1+1+1+1— —1+1+1+1+ -|-1-|-1
2 2 21 22 22 21 22 28 2n - 2n
271_1 on _2k+1
:>ZZL_ Zn: 21 2k+1 2n:W’(ksn&k’nEN)'

1.3 Geometric Series of Multiples of Powers of Two
In this section, a new idea is introduced for the computation of sum of geometric series [5, 7] of
multiples of powers of two.

Theorem 1.1: lezl l=(n-1D2"+1.

Proof. This theorem is proved by mathematical induction.

Basis.Letn = 3.Thenle 201 =14 4412=17 = 2 x 23 + 1. Itis true.

i=1
n-1

Inductive hypothesis. Let us assume that it is true for Z i X2l = (m—-2)2"1 + 1.
i=1
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n

Inductive Step. We must show that z i X271 = (n—1)2" + 1is ture.

i=1
n-1
z ix 201 4 n2nl = (n—2)27 1 414 n2v ! = Z i x 201 = 2p2n 1 — 22771 4 1
i=1 i=1

:Zixzi_l=n2"—2”+1=(n—1)2”+1.
i=1
Hence, theorem is proved.

1.4 Traditional Binomial Coefficient
The factorial or factorial function [17-20] of a nonnegative integer n, denoted by n!, is the
product of all positive integers less than or equal to n.

. . L . n n!
A binomial coefficient is always an integer that denotes (r) = m, where n,r € N.

Here, (n + r) = M = (n+r) = [ X r!n!,where [ is an integer.
rin!

2. Binomial and Geometric Series

When the author of this article was trying to develop the multiple summations of geometric

series, a new idea was stimulated his mind for establishing a novel binomial series along with an

innovative binomial coefficient 15, 16].

Z Z Z Z ‘r—Zer & V7 (r+1)(r+2)(r+3)7-l-!~~-(r+n—1)(r+n)’

i1=0ip=iq iz=ip  Ip=ip—q

where n>1,r =2 0 and n,reN.
n

Here, Z V/x"and V;* refer to the binomial sereis and binomial coefficient respectively.
i=0

Let us compare the binomial coefficient Vy with the traditional binomial coefficient as follows:
]

Z!
Letz=x + y. Then, zC, _W Here, V' = V¥ = z(, = zC,, (x,y,z € N).

For example,
VP =V3= (5+3)C; = (5+3)Cs = 56.
| |

0!
Also, V2 = V' = nCy = nC, = =1and VY =0C, == = 1(+ 0! = 1).

n!
n! 0! 0!

2.1 Binomial Expansions equal to Multiple of 2

Let us develop some series of binomial coefficients or binomial expansions [15-16] which are
equal to the multiple of 2 or exponents of 2 or both.
n n

n
€)) z yntt=2m, (2)2 i x V= n2n L (3) Z(i + DV = (n+2)2" L,
i=0 i=0 i=0
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n n ( + _)
. r l
(4) Z(i—l)Vi“_‘= (n—2)2n-1, V;@:l—[ — = (nz1r20&nrEN)
= i=1 '

2.2 Relations between Binomial Expansions
n n

n

Relation 1: Z(i + DV + Z(i — VA = Z i x VPt =n2n L
i=0 i=0

i=0

Proof: Let us simplify the general terms in the two parts of binomial expansions (Relation 1) as
follows:

(i + 1DV + (i— 1)V = 2iV 7L This idea can be applied to Relation 1.
n n n

Z(i F OV Z(i V=2 Z VPl = (n+2)201 4+ (n— 2)2071 = 22071,
i=0 i=0 i=0

n
Then, 2 Z iVl =2n2" "l = Z iVt = n2n 1,

i=0 i=0
n

Relation 2: Z(l + 1Dyt Z(l VA= Z vt =2m,

=0
Proof: Let us 3|mpI|fy the general terms in the two parts of binomial expansions (Relation 2) as

follows:
(i+ 1DV = (i—1)VP' = 2V~ Thisidea can be applied to Relation 2.
n ¢ n ! ! n

Z(i + )Vt — Z(i — V=2 Z V= (+2)2" = (n—2)2""t =4 x 20T,
i=0 i=0 i=0

n n
Then, ZZ Vi”_i =22" = z Vl-”_i = 2"
i=0 i=0

Hence, two relations are proved.

2.3 Annamalai’s Binomial Expansion
The following binomial expansions [15-19], named as Annamalai’s binomial expansions, are

derived from the Annamalai’s (iii) binomial identity }_, V' = ypt

Z(i;l)=1+2+3+---+n+(n+1)=(n+1)2(!n+2).

i=0
@. E%ZHHH...JH >2<'n+ ) _(+ )<n3+! )(n+3)
i=0

SGE+HDE+H2DE+3) M+ DM+ 2+ 3D+ 4)
@ 31 - 41 '

&G+ + 2)([i+3)(i+4)  (n+Dn+2)n+3)n+4H0n+5)

4. 4 a 5!

i=0
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Similarly, this process continues up to r times. The r' binomial expansion is as follows:

. (i+1)(i+2)(i+3)---(i+r)_ n+1)(n+2)-(n+r)(n+r+1)
(). Z ! - r +1)!
r+1

21—[1+1 _ n+i
Le. “lle+or
=1

This Annamalai’s binomial expan3|on [15 17] IS used to create the Annamalai’s binomial series

as follows.
|
i (=0 j

n
=0 i

i=0

The following theorem is derived from the Annamalai’s binomial series [15].

n n n n n
Theorem 2.1: Z Vitixt = Z Vixt+ Z Vi_ixt+ Z Vipxt+ -+ Z Vi_xt
i=0 i=0 i=1 i=2 i=n

Proof: Let’s show that the computation of summations of the binomial series (right-hand side of
the theorem) is equal to the binomial series (left- hand side of the theorem).

ZVx +ZV _qxt +ZV _oxt et Z Vi (n-1)X" +ZV1 Xt

i=n-1
=W+ Vix+Vix24+ Vi3 + -+ Vx™m+ VWx+Vix?2+VIx3+Vixt+ -+ V]_x™)
+WVx?2+ VI3 + VIxt + VIxS + -+ Vi _px™) + o+ (V™ + VT x™) + Vi x™
=V§+ WG+ VD x+ WV + VI +VDX2 4k (V + VI + V] 4V + -+ VD
(Note that VP + VP + VP + -+ VP =P orr = 1,2,3,++, and VP = VP*' = 1)

— 6‘+1+Vr+1 Vr+1 2 Vr+1 3 Vr+1x4+._,+V1;‘;l-11xn_1+Vnr+1xn

n
— Z Vi‘r'+1xl

Hence, theorem is proved.

3. Binomial Expansion equal to the Sum of Geometric Series

Binomial expansion denotes a series of binomial coefficients. In this section, we focus on the
summation of multiple binomial expansions or summation of multiple series of binomial
coefficients.

Theorems.lzizl(g) OO Y C)rr S ( m

i=0 i=0 i=0 i=0
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This binomial theorem states that the sum of multiple summations of series of binomial
coefficients [15-19] is equal to the sum of a geometric series with exponents of 2.

Proof. Let us find the value of each binomial expansion in the binomial theorem step by step.

s () ==1=2.()=() =
serts Y1) =)+ ()= 11- 2

Step 2 Z;(f)=((2))+(f)+(2)_1+2+1— 4 =22
Step 4: ;(f) =C)+C)+()+ () =1+3+3+1=8

n

Similarly, we can continue the expressions up to "step n" such that Z (rll) =2M
i=0
Now, by adding these expressmns on both sides, |t appears as follows

Z(?)+Z(1)+Z(2)+Z + +Z =Z

i=0 i=0 i=
where Z 2t = -1 - = 2™*1 — 1 is the geometric sereis with exponents of two.
i=0
ZOZ +i +ZZ: 2 +Zg: 3)+---+Zn:(")—2”+1—1
i=0 i=0 i=0 (l) i=0 (l i=0 l .

Hence, theorem is proved.

K k+1 k+2 n
Theorem 3. 2: 2 (Il{) + Z (k -:' 1) + Z (k ':' 2) . +z (?) = pntl _ gk
=0 i=0 0 o

i= i= L
where k <n&k,n € N.

Proof. The sum of a geometric series with exponents of 2 is given below:
n

Z 2i — 2n+1 _ Zk
i=k
k+2
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k k+1 k+2 n
Therefore, z (k) + Z (k + 1) + z k + 2 + . 2 — on+l _ gk
= i= ' 0 =0

0 i=
Some results of Theorem 2.3 are glven below
n

(1)2 )=t =om (u)zn h Z(l) 2n-1(22 _ 1) = 3(2n1),

i=0

n n—1 n 1=0
(iid) + Z + z _ gntl_gn=2 — gn-2(23 _ 1) = 7(2n2),

(w)z_: ne 3 z Z +Zn: = 2"+ — 2173 = 15(2"73).

i=0
These results can be generallzed as follows:

p p+1 p+2 q-1 q
S0+ 0T T e 3 (1T Y () - -
i=0 i=0 i=0 1=0 i=0

where 0 <p <qandp,q € N.

Some results of Theorem 3.1 are glven below:
2

0 1 p-1
(a)zq+zl.+z z ZP 1 =2P —1,where1 <p € N.

i=0 i=0 i=0
p—1

(b)z Z ZZ: ?)+i(?)+ -+ (q ; 1)=2‘1—1,where1£qEN.
i=0 i=0 i=

By subtracting (a) from (b), we get
q-1

o

0

B0 30 g0 FeSe)-ee

o

=
p+1 p+2

XN RO o N O XU REES

wherep< q &p,q € N.

By adding (a) and (b), we get
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4. Conclusion

This article presented the computation and numerical techniques for computing the summation of
multiple series of binomial coefficients and the multiple summations of geometric series in an
innovative way and also introduced theorems and relations between the binomial expansions and
geometric series. These techniques and its results can be useful for researchers who are working
in science, economics, engineering, management, and medicine [22].
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