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Abstract: The growing complexity of mathematical and computational modelling demands the 

simplicity of mathematical and computational equations for solving today’s scientific problems 

and challenges. This paper presents combinatorial geometric series, innovative binomial 

coefficients, combinatorial equations, binomial expansions, calculus with combinatorial 

geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, 

binomial coefficients, discrete mathematics, and theoretical computer science for finding 

solutions to the problems in computing and engineering science. The combinatorial geometric 

series with binomial expansions and its theorems refer to the methodological advances which are 

useful for researchers who are working in computational science. Computational science is a 

rapidly growing multi-and inter-disciplinary area where science, engineering, computation, 

mathematics, and collaboration use advance computing capabilities to understand and solve the 

most complex real life problems. 
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1. Introduction 

In the earlier days, geometric series served as a vital role in the development of differential and 

integral calculus and as an introduction to Taylor series and Fourier series. In this article, 

combinatorial geometric series with binomial expansion and its relationship and theorems are 

introduced in an innovative way.  Combinatorial geometric series is derived from the multiple 

summations of a geometric series with annamalai’s binomial coefficients. Nowadays, the 

combinatorial geometric series and its binomial identities and binomial theorems [1-17] have 

significant applications in science, engineering, economics, queuing theory, computation, 

combinatorics, management, and medicine [4].  

 

1.1 Geometric Series with Powers of Two 

Let us develop the sum of geometric series [7-11] with exponents of 2 independently as follows:  

2𝑛 = 2𝑛−1 + 2𝑛−1 = 2𝑛−1 + 2𝑛−2 + 2𝑛−2 = ⋯ = 2𝑛−1 + 2𝑛−2 + 2𝑛−3 + ⋯ 2𝑘 + 2𝑘   

⟹ 2𝑘 + 2𝑘+2 + 2𝑘+3 + ⋯ + 2𝑛−2 + 2𝑛−1 = 2𝑛 − 2𝑘 ⟹ ∑ 2𝑖

𝑛

𝑖=𝑘

= 2𝑛+1 − 2𝑘 . 

In the geometric series 𝑖𝑓  𝑘 = 0, then ∑ 2𝑖

𝑛

𝑖=0

= 2𝑛+1 − 1, (𝑘, 𝑛 ∈ 𝑁),  

where 𝑁 = {0, 1, 2, 3, ⋯ } is set of natural numbers including zero element. 
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1.2 Traditional Binomial Coefficient 

The factorial function or factorial [34, 35] of a nonnegative integer n, denoted by n!, is the 

product of all positive integers less than or equal to n. For examples, 3! = 1×2× 3 = 6 and 0! = 1.  

A binomial coefficient is always an integer that denotes (
𝑛
𝑟

) =
𝑛!

𝑟! (𝑛 − 𝑟)!
, where 𝑛, 𝑟 ∈ 𝑁.  

Here, (
𝑛 + 𝑟

𝑟
) =

(𝑛 + 𝑟)

𝑟! 𝑛!
 ⟹ (𝑛 + 𝑟) = 𝑙 × 𝑟! 𝑛!, where 𝑙 is an integer.  

 

2. Binomial Expansions and Combinatorial Geometric Series    

When the author of this article was trying to develop the multiple summations of geometric 

series, a new idea was stimulated his mind for establishing a novel binomial series along with an 

innovative binomial coefficient [18-22].  

∑ ∑ ∑ ⋯

𝑛

𝑖3=𝑖2

∑ 𝑥𝑖𝑟

𝑛

𝑖𝑟=𝑖𝑟−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1=0

= ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

 &  𝑉𝑟
𝑛 =

(𝑟 + 1)(𝑟 + 2)(𝑟 + 3) ⋯ ⋯ (𝑟 + 𝑛 − 1)(𝑟 + 𝑛)

𝑛!
, 

where  𝑛 ≥ 1, 𝑟 ≥ 0  𝑎𝑛𝑑  𝑛, 𝑟 ∈ 𝑁.  

Here, ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

and  𝑉𝑟
𝑛 refer to the binomial sereis and binomial coefficient respectively. 

Let us compare the binomial coefficient 𝑉𝑥
𝑦

 with the traditional binomial coefficient as follows: 

Let 𝑧 = 𝑥 +  𝑦.  Then, (
𝑧
𝑥

) =  𝑧𝐶𝑥 =
𝑧!

𝑥! 𝑦!
.  Here,  𝑉𝑥

𝑦
= 𝑉𝑦

𝑥 ⟹  𝑧𝐶𝑥 =  𝑧𝐶𝑦, (𝑥, 𝑦, 𝑧 ∈ 𝑁). 

For example, 𝑉3
5 = 𝑉5

3 =  (5 + 3)𝐶3 =  (5 + 3)𝐶5 = 56.   

Also, 𝑉𝑛
0 = 𝑉0

𝑛 = 𝑛𝐶0 = 𝑛𝐶𝑛 =
𝑛!

𝑛! 0!
= 1  𝑎𝑛𝑑  𝑉0

0 = 0𝐶0 =
0!

0!
= 1(∵ 0! = 1). 

 
2.1 Computation of Combinatorial Geometric Series  

The combinatorial Geometric Series [18-21] is constituted by double summations of a geometric 

series as follows: 

∑ ∑ 𝑥𝑖2

𝑛

𝑖2=𝑖1

=

𝑛

𝑖1=0

∑ 𝑥𝑖2

𝑛

𝑖2=0

+ ∑ 𝑥𝑖2

𝑛

𝑖2=1

+ ∑ 𝑥𝑖2

𝑛

𝑖2=2

+ ⋯ + ∑ 𝑥𝑖2

𝑛

𝑖2=𝑛

= 1 + 2𝑥 + 3𝑥2 + ⋯ + (𝑛 + 1)𝑥𝑛, 

that is, 1 + 2𝑥 + 3𝑥2 + ⋯ + (𝑛 + 1)𝑥𝑛 = ∑(𝑖 + 1)𝑥𝑖

𝑛

𝑖=0

= ∑ 𝑉𝑖
1𝑥𝑖

𝑛

𝑖=0

. 

The triple summations of a geometric series compute the following combinatorial geometric 

series:  

∑ ∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=𝑖1

=

𝑛

𝑖1=0

∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=0

+ ∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=1

+ ∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=2

+ ⋯ + ∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=𝑛

= ∑ 𝑉𝑖
2𝑥𝑖

𝑛

𝑖=0

. 

 

Similarly, we can obtain the combinatorial geometric series which is computed by multiple 

summations of a series.   

 ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

= ∑ ∑ ∑ ⋯ ⋯ ⋯

𝑛

𝑖3=𝑖2

∑ 𝑥𝑖𝑟 .

𝑛

𝑖𝑟=𝑖𝑟−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1=0
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Note that the geometirc series ∑ 𝑥𝑖 =  ∑ 𝑉𝑖
0𝑥𝑖

𝑛

𝑖=0

  

𝑛

𝑖=0

is also a combinatorial geometric sereis.  

 

2.2 First Derivative of Geometric Series   

Differentiation is the derivative [25] of a function with respect to an independent variable. In this 

section, a geometric series is considered as the function of independent variable x. 

The function of geometric sereis is  𝑓(𝑥) = ∑ 𝑥𝑖

𝑟

𝑖=0

= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑟 =
𝑥𝑟+1 − 1

𝑥 − 1
.    

The first derivative of geometric series is built as follows: 

𝑓1(𝑥) = 1 + 2𝑥 + 3𝑥2 + 4𝑥3 ⋯ + 𝑟𝑥𝑟−1 = 𝑓1 (
𝑥𝑟+1 − 1

𝑥 − 1
) =

(𝑟𝑥 − 𝑟 − 1)𝑥𝑟 + 1

(𝑥 − 1)2
 

⟹ 𝑉0
1 + 𝑉1

1𝑥 + 𝑉2
1𝑥2 + 𝑉3

1𝑥3 ⋯ + 𝑉𝑟−1
1 𝑥𝑟−1 =

(𝑟𝑥 − 𝑟 − 1)𝑥𝑟 + 1

(𝑥 − 1)2
, (𝑥 ≠ 1). 

By substituting 𝑥 = 2 in  𝑓1(𝑥), we get the mathematical equation as follows:  

1 + 2(2) + 3(2)2 + 4(2)3 + ⋯ + 𝑟2𝑟−1 =
(𝑟 − 1)2𝑟 + 1

(2 − 1)2
= (𝑟 − 1)2𝑟 + 1. 

Similarly, we get the following equations by substituting the values of x: 

For  𝑥 = 3, 1 + 2(3) + 3(3)2 + 4(3)3 + ⋯ + 𝑟3𝑟−1 =
(2𝑟 − 1)3𝑟 + 1

(3 − 1)2
=

(2𝑟 − 1)3𝑟 + 1

22
. 

For  𝑥 = 4, 1 + 2(4) + 3(4)2 + 4(4)3 ⋯ + 𝑟4𝑟−1 =
(3𝑟 − 1)4𝑟 + 1

(4 − 1)2
=

(3𝑟 − 1)4𝑟 + 1

32
. 

For any number k that is equal to x, we get the equation  ∑ 𝑉𝑖
1𝑘𝑖

𝑟−1

𝑖=0

=  
(𝑘𝑟 − 𝑟 − 1)𝑘𝑟 + 1

(𝑘 − 1)2
.  

 

2.3 Derivative of Geometric Series without Differentiation   

Differentiation [25] is a method of finding the derivative of a function.    

The sum of the geometric series is ∑ 𝑥𝑖

𝑛

𝑖=0

=
𝑥𝑛+1 − 1

𝑥 − 1
, which is a function of 𝑥. 

The first derivative of geometric series is computed without using differentiation as follows: 

∑ 𝑥𝑖

𝑛−1

𝑖=0

+ ∑ 𝑥𝑖

𝑛−1

𝑖=1

+ ∑ 𝑥𝑖

𝑛−1

𝑖=2

+ ⋯ + ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−2

+ ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−1

=
𝑥𝑛 − 1

𝑥 − 1
+

𝑥𝑛 − 𝑥

𝑥 − 1
+

𝑥𝑛 − 𝑥2

𝑥 − 1
+ ⋯ +

𝑥𝑛 − 𝑥𝑛−2

𝑥 − 1
+

𝑥𝑛 − 𝑥𝑛−1

𝑥 − 1
. 

Here, ∑ 𝑥𝑖

𝑛−1

𝑖=0

+ ∑ 𝑥𝑖

𝑛−1

𝑖=1

+ ∑ 𝑥𝑖

𝑛−1

𝑖=2

+ ⋯ + ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−2

+ ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−1

= ∑(𝑖 + 1)𝑥𝑖

𝑛−1

𝑖=0

  and  

𝑥𝑛 − 1

𝑥 − 1
+

𝑥𝑛 − 𝑥

𝑥 − 1
+

𝑥𝑛 − 𝑥2

𝑥 − 1
+ ⋯ +

𝑥𝑛 − 𝑥𝑛−2

𝑥 − 1
+

𝑥𝑛 − 𝑥𝑛−1

𝑥 − 1
=

𝑛𝑥𝑛 − ∑ 𝑥𝑖𝑛−1
𝑖=0

𝑥 − 1
 

=
𝑛𝑥𝑛 − (

𝑥𝑛 − 1
𝑥 − 1 )

𝑥 − 1
=

(𝑛𝑥 − 𝑛 − 1)𝑥𝑛 + 1

(𝑥 − 1)2
. 
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Thus, ∑(𝑖 + 1)𝑥𝑖

𝑛−1

𝑖=0

=
(𝑛𝑥 − 𝑛 − 1)𝑥𝑛 + 1

(𝑥 − 1)2
, (𝑥 ≠ 1). 

Note that ∑(𝑖 + 1)𝑥𝑖

𝑛−1

𝑖=𝑘

=
((𝑛 − 𝑘)𝑥 − (𝑛 − 𝑘) − 1)𝑥𝑛 + 𝑥𝑘

(𝑥 − 1)2
, (𝑥 ≠ 1). 

These results denote the first derivative [5] of geometric series. 

 

2.4 Binomial Expansions equal to Multiple of 2 

Let us develop some series of binomial coefficients or binomial expansions [18-22] which are 

equal to the multiple of 2 or exponents of 2 or both. 

(1) ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛.             (2) ∑ 𝑖 × 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2𝑛−1.             (3) ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1. 

(4) ∑(i − 1)Vi
n−i

n

i=0

=  (n − 2)2n−1,    𝑉𝑟
𝑛 = ∏

(𝑟 + 𝑖)

𝑛!

𝑛

𝑖=1

, ( 𝑛 ≥ 1, 𝑟 ≥ 0 & 𝑛, 𝑟 ∈ 𝑁). 

 
2.5 Relations between Binomial Expansion and Combinatorial Geometric Series 

Relation 1: ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

+ ∑(i − 1)Vi
n−i

n

i=0

= ∑ 𝑖 × 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2𝑛−1. 

 

Proof: Let us simplify the general terms in the two parts of binomial expansions (Relation 1) as 

follows:  

(𝑖 + 1)𝑉𝑖
𝑛−𝑖 + (i − 1)Vi

n−i =  2𝑖Vi
n−i.  This idea can be applied to Relation 1.  

∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

+ ∑(i − 1)Vi
n−i

n

i=0

= 2 ∑ 𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1 + (n − 2)2n−1 = 2𝑛2n−1. 

Then, 2 ∑ 𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛2n−1 ⟹ ∑ 𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2n−1. 

Hence, Relation 1 is proved. 

 

Relation 2: ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

− ∑(i − 1)Vi
n−i

n

i=0

= ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛. 

Proof: Let us simplify the general terms in the two parts of binomial expansions (Relation 2) as 

follows:  

(𝑖 + 1)𝑉𝑖
𝑛−𝑖 − (i − 1)Vi

n−i =  2Vi
n−i.  This idea can be applied to Relation 2.  

∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

− ∑(i − 1)Vi
n−i

n

i=0

= 2 ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1 − (n − 2)2n−1 = 4 × 2n−1. 

Then, 2 ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 22n ⟹ ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2n. 

Hence, Relation 2 is proved. 
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2.6 Annamalai’s Binomial Expansion 

Let 𝑛, 𝑟 ∈ 𝑁 = {0, 1, 2, 3, ⋯ }. The Annamalai′s binomial identity [19] is given below: 
 

𝑉0
𝑟 + 𝑉1

𝑟 + 𝑉2
𝑟 + ⋯ + 𝑉𝑛

𝑟 = 𝑉𝑛
𝑟+1 ⟺   𝑉𝑛

0 + 𝑉𝑛
1 + 𝑉𝑛

2 + ⋯ + 𝑉𝑛
𝑟 = 𝑉𝑛+1

𝑟 , (∵ 𝑉𝑛
𝑟 = 𝑉𝑟

𝑛).  
 

From the binomial identity 𝑉0
𝑟 + 𝑉1

𝑟 + 𝑉2
𝑟 + ⋯ + 𝑉𝑛

𝑟 = 𝑉𝑛
𝑟+1, we can derive the following 

binomial expansions:   

(1). ∑ 𝑉𝑖
0

𝑛

𝑖=0

 = ∑ 1

𝑛

𝑖=0

= 1 + 1 + 1 + 1 + ⋯ + 1 + 1 =
(𝑛 + 1)

1!
. 

(2). ∑ 𝑉𝑖
1

𝑛

𝑖=0

= ∑
(𝑖 + 1)

1!

𝑛

𝑖=0

= 1 + 2 + 3 + ⋯ + 𝑛 + (𝑛 + 1) =
(𝑛 + 1)(𝑛 + 2)

2!
. 

(3). ∑ 𝑉𝑖
2

𝑛

𝑖=0

= ∑
(𝑖 + 1)(𝑖 + 2)

2!

𝑛

𝑖=0

= 1 + 3 + ⋯ +
(𝑛 + 1)(𝑛 + 2)

2!
=

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

3!
. 

(4). ∑ 𝑉𝑖
3

𝑛

𝑖=0

= ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)

3!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

4!
. 

(5). ∑ 𝑉𝑖
4

𝑛

𝑖=0

= ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)

4!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑛 + 5)

5!
. 

Similarly, we can continue this process up to r times. The r
th

 binomial expansion is as follows:   

(𝑟). ∑ 𝑉𝑖
𝑟

𝑛

𝑖=0

= ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3) ⋯ (𝑖 + 𝑟)

𝑟!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)(𝑛 + 𝑟 + 1)

(𝑟 + 1)!
, 

 

From the binomial identity  𝑉𝑛
0 + 𝑉𝑛

1 + 𝑉𝑛
2 + ⋯ + 𝑉𝑛

𝑟 = 𝑉𝑛+1
𝑟 , we can derive the following 

binomial expansions. 

(𝑖). ∑ 𝑉0
𝑖

𝑟

𝑖=0

= 𝑉1
𝑟 ⟹ 1 + 1 + 1 + 1 + 1 + ⋯ + 1 + 1 = 𝑟 + 1, (∵ 𝑉0

𝑟 = 1 for 𝑟 = 0, 1, 2, ⋯ ). 

(𝑖𝑖). ∑ 𝑉1
𝑖

𝑟

𝑖=0

= 𝑉2
𝑟 ⟹ 1 +

2

1!
+

2 × 3

2!
+ ⋯ +

2 × 3 × 4 × ⋯ × 𝑟

𝑟!
=

3 × 4 × 5 × ⋯ × 𝑟 × (𝑟 + 1)

𝑟!
. 

(𝑖𝑖𝑖). ∑ 𝑉2
𝑖

𝑟

𝑖=0

= 𝑉3
𝑟 ⟹ 1 +

3

1!
+

3 × 4

2!
+ ⋯ +

3 × 4 × 5 × ⋯ × 𝑟

𝑟!
=

4 × 5 × 6 × ⋯ × 𝑟 × (𝑟 + 1)

𝑟!
. 

Similarly, the binomial expansion for ∑ 𝑉𝑛
𝑖 = 𝑉𝑛+1

𝑟

𝑟

𝑖=0

 is given below:  

1 +
(𝑛 + 1)

1!
+

(𝑛 + 1)(𝑛 + 2)

2!
+

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

3!
+ ⋯ +

(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

𝑟!
  

=
(𝑛 + 2)(𝑛 + 3) ⋯ (𝑛 + 𝑟)(𝑛 + 𝑟 + 1)

𝑟!
. 

These expressions are called Annamalai’s binomial expansions. 
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2.7 Annamalai’s Binomial Identity and Theorem 

A binomial theorem [9, 10] is constituted using the Annamalai’s binomial identities [19] given 

below: 

(𝑖)   𝑉𝑛
0 = 𝑉0

𝑛 = 1 for 𝑛 = 0, 1, 2, 3, 3, ⋯  
(𝑖𝑖)   𝑉𝑟

𝑚 = 𝑉𝑚
𝑟 , (𝑚, 𝑟 ≥ 1 & 𝑚, 𝑟 ∈ 𝑁). 

(𝑖𝑖𝑖) ∑ 𝑉𝑖
𝑛

𝑟

𝑖=0

= 𝑉𝑟
𝑛+1     (𝑂𝑅)   ∑ 𝑉𝑛

𝑖

𝑟

𝑖=0

= 𝑉𝑛+1
𝑟 , (∵  𝑉𝑟

𝑚 = 𝑉𝑚
𝑟 &   𝑉𝑛

0 = 𝑉0
𝑛 = 1). 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟏: ∑ 𝑉𝑖
0

𝑟

𝑖=0

+ ∑ 𝑉𝑖
1

𝑟

𝑖=0

+ ∑ 𝑉𝑖
2

𝑟

𝑖=0

+ ∑ 𝑉𝑖
3

𝑟

𝑖=0

+ ⋯ + ∑ 𝑉𝑖
𝑛

𝑟

𝑖=0

= 𝑉𝑟+1
𝑛+1 − 1.  

 

𝑃𝑟𝑜𝑜𝑓. ∑ 𝑉𝑖
0

𝑟

𝑖=0

= 𝑉𝑟
1;    ∑ 𝑉𝑖

1

𝑟

𝑖=0

= 𝑉𝑟
2;  ∑ 𝑉𝑖

2

𝑟

𝑖=0

= 𝑉𝑟
3 ;  ⋯ ;   ∑ 𝑉𝑖

𝑛

𝑟

𝑖=0

= 𝑉𝑟
𝑛+1. 

By adding these expressions on the both sides, we get 

∑ 𝑉𝑖
0

𝑟

𝑖=0

+ ∑ 𝑉𝑖
1

𝑟

𝑖=0

+ ∑ 𝑉𝑖
2

𝑟

𝑖=0

+ ∑ 𝑉𝑖
3

𝑟

𝑖=0

+ ⋯ + ∑ 𝑉𝑖
𝑛

𝑟

𝑖=0

= ∑ 𝑉𝑟
𝑖

𝑛+1

𝑖=1

 

Here, ∑ 𝑉𝑟
𝑖

𝑛+1

𝑖=1

= 𝑉𝑟
0 + ∑ 𝑉𝑟

𝑖

𝑛+1

𝑖=1

− 𝑉𝑟
0 = ∑ 𝑉𝑟

𝑖

𝑛+1

𝑖=0

− 1 = 𝑉𝑟+1
𝑛+1 − 1, (∵ 𝑉𝑟

0 = 1). 

∴ ∑ 𝑉𝑖
0

𝑟

𝑖=0

+ ∑ 𝑉𝑖
1

𝑟

𝑖=0

+ ∑ 𝑉𝑖
2

𝑟

𝑖=0

+ ∑ 𝑉𝑖
3

𝑟

𝑖=0

+ ⋯ + ∑ 𝑉𝑖
𝑛

𝑟

𝑖=0

= 𝑉𝑟+1
𝑛+𝑟 − 1. 

Hence, theorem is proved. 

 

Note that ∑ 𝑉0
𝑖

𝑟

𝑖=0

+ ∑ 𝑉1
𝑖

𝑟

𝑖=0

+ ∑ 𝑉2
𝑖

𝑟

𝑖=0

+ ∑ 𝑉3
𝑖

𝑟

𝑖=0

+ ⋯ + ∑ 𝑉𝑛
𝑖

𝑟

𝑖=0

= 𝑉𝑛+1
𝑟+1 − 1. 

 

2.8 Combinatorial Geometric Series and Theorem 

This Annamalai’s binomial expansion is applied into the following binomial series:  

∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

= ∑ ∏
𝑖 + 𝑗

𝑟!

𝑟

𝑗=1

𝑥𝑖

𝑛

𝑖=0

. 

 

The following theorem is derived from the Annamalai’s binomial series [19]. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟐: ∑ 𝑉𝑖
𝑟+1𝑥𝑖 =

𝑛

𝑖=0

∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

+ ∑ 𝑉𝑖−1
𝑟 𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝑉𝑖−2
𝑟 𝑥𝑖

𝑛

𝑖=2

+ ⋯ + ∑ 𝑉𝑖−𝑛
𝑟 𝑥𝑖

𝑛

𝑖=𝑛

.  

Proof: Let’s show that the computation of summations of the binomial series (right-hand side of 

the theorem) is equal to the binomial series (left- hand side of the theorem).    

∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

+ ∑ 𝑉𝑖−1
𝑟 𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝑉𝑖−2
𝑟 𝑥𝑖

𝑛

𝑖=2

+ ⋯ + ∑ 𝑉𝑖−(𝑛−1)
𝑟 𝑥𝑖

𝑛

𝑖=𝑛−1

+ ∑ 𝑉𝑖−𝑛
𝑟 𝑥𝑖

𝑛

𝑖=𝑛
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 = (𝑉0
𝑟 + 𝑉1

𝑟𝑥 + 𝑉2
𝑟𝑥2 + 𝑉3

𝑟𝑥3 + ⋯ + 𝑉𝑛
𝑟𝑥𝑛) +  (𝑉0

𝑟𝑥 + 𝑉1
𝑟𝑥2 + 𝑉2

𝑟𝑥3 + 𝑉3
𝑟𝑥4 + ⋯ + 𝑉𝑛−1

𝑟 𝑥𝑛) 

          +(𝑉0
𝑟𝑥2 + 𝑉1

𝑟𝑥3 + 𝑉2
𝑟𝑥4 + 𝑉3

𝑟𝑥5 + ⋯ + 𝑉𝑛−2
𝑟 𝑥𝑛) + ⋯ + (𝑉0

𝑟𝑥𝑛−1 + 𝑉1
𝑟𝑥𝑛) + 𝑉0

𝑟𝑥𝑛 

      = 𝑉0
𝑟 + (𝑉0

𝑟 + 𝑉1
𝑟)𝑥 + (𝑉0

𝑟 + 𝑉1
𝑟 + 𝑉2

𝑟)𝑥2 + ⋯ + (𝑉0
𝑟 + 𝑉1

𝑟 + 𝑉2
𝑟 + 𝑉3

𝑟 + ⋯ + 𝑉𝑛
𝑟)𝑥𝑛   

    (Note that   𝑉0
𝑝 + 𝑉1

𝑝 + 𝑉2
𝑝 + ⋯ + 𝑉𝑟

𝑝 = 𝑉𝑟
𝑝+1for 𝑟 = 0, 1, 2, 3, ⋯ , and 𝑉0

𝑝 = 𝑉0
𝑝+1 = 1) 

     = 𝑉0
𝑟+1 + 𝑉1

𝑟+1𝑥 + 𝑉2
𝑟+1𝑥2 + 𝑉3

𝑟+1𝑥3 + 𝑉4
𝑟+1𝑥4 + ⋯ + 𝑉𝑛−1

𝑟+1𝑥𝑛1 + 𝑉𝑛
𝑟+1𝑥𝑛 = ∑ 𝑉𝑖

𝑟+1𝑥𝑖

𝑛

𝑖=0

. 

Hence, theorem is proved. 
 
3. Binomial Expansion equal to the Sum of Geometric Series   

Binomial expansion denotes a series of binomial coefficients. In this section, we focus on the 

summation of multiple binomial expansions or summation of multiple series of binomial 

coefficients.      

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏: ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 1. 

This binomial theorem states that the sum of multiple summations of series of binomial 

coefficients [18-22] is equal to the sum of a geometric series with exponents of 2. 

Proof. Let us find the value of each binomial expansion in the binomial theorem step by step.  

𝑆𝑡𝑒𝑝 0:   (
0
0

) =
0!

0!
= 1 ⟹ ∑ (

0
𝑖

)

0

𝑖=0

= (
0
0

) = 20.    

𝑆𝑡𝑒𝑝 1:   ∑ (
1
𝑖

)

1

𝑖=0

= (
1
0

) + (
1
1

) = 1 + 1 =  21. 

𝑆𝑡𝑒𝑝 2:  ∑ (
2
𝑖

)

2

𝑖=0

= (
2
0

) + (
2
1

) + (
2
2

) = 1 + 2 + 1 =  4 = 22.        

𝑆𝑡𝑒𝑝 3:  ∑ (
3
𝑖

)

3

𝑖=0

 = (
3
0

) + (
3
1

) + (
3
2

) + (
3
3

) = 1 + 3 + 3 + 1 = 8. 

Similarly, we can continue the expressions up to "step n " such that ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛. 

Now, by adding these expressions on both sides, it appears as follows:  

∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= ∑ 2𝑖

𝑛

𝑖=0

,  

where ∑ 2𝑖

𝑛

𝑖=0

=  
2𝑛+1 − 1

2 − 1
= 2𝑛+1 − 1 is the geometric sereis with exponents of two. 

∴  ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 1. 

Hence, theorem is proved.   
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Some results of Theorem 3.1 are given below: 

(𝑎) ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

= 2𝑝 − 1, where 1 ≤ 𝑝 ∈ 𝑁. 

(𝑏) ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑞 − 1

𝑖
)

𝑝−1

𝑖=0

= 2𝑞 − 1, where 1 ≤ 𝑞 ∈ 𝑁. 

 

By subtracting (a) from (b), we get 

(∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ⋯ + ∑ (
𝑞 − 1

𝑖
)

𝑞−1

𝑖=0

) − (∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

) = 2𝑞 − 2𝑝, 

𝑖. 𝑒. , ∑ (
𝑝
𝑖

)

𝑝

𝑖=0

+ ∑ (
𝑝 + 1

𝑖
)

𝑝+1

𝑖=0

+ ∑ (
𝑝 + 2

𝑖
)

𝑝+2

𝑖=0

+ ⋯ + ∑ (
𝑞 − 2

𝑖
)

𝑞−2

𝑖=0

+ ∑ (
𝑞 − 1

𝑖
)

𝑞−1

𝑖=0

= 2𝑞 − 2𝑝, 

where p < 𝑞 & 𝑝, 𝑞 ∈ 𝑁. 
 

By adding (a) and (b), we get 

(∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

) + (∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ⋯ + ∑ (
𝑞 − 1

𝑖
)

𝑞−1

𝑖=0

) = 2𝑝 + 2𝑞 − 2, 

𝐼𝑓 𝑝 = 𝑞, 𝑡ℎ𝑒𝑛  2 (∑ (
0

𝑖
)

0

𝑖=0

+ ∑ (
1

𝑖
)

1

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

) = 22𝑝 − 2 = 2(2𝑝 − 1),   

𝑖. 𝑒., ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

= 2𝑝 − 1, where 1 ≤ 𝑞 ∈ 𝑁. 

 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟐: ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

+ ∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

+ ∑ (
𝑘 + 2

𝑖
)

𝑘+2

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

=  2𝑛+1 − 2𝑘, 

where 𝑘 ≤ 𝑛 & 𝑘, 𝑛 ∈ 𝑁. 
 

Proof.  The sum of a geometric series with exponents of 2 is given below:  

∑ 2𝑖

𝑛

𝑖=𝑘

= 2𝑛+1 − 2𝑘.   

Then, ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

+ ∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

+ ∑ (
𝑘 + 2

𝑖
)

𝑘+2

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= ∑ 2𝑖

𝑛

𝑖=𝑘

. 

∴   ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

+ ∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

+ ∑ (
𝑘 + 2

𝑖
)

𝑘+2

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑘. 

Hence, theorem is proved. 
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Some results of Theorem 3.2 are given below: 

(i) ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛 = 2𝑛.     (𝑖𝑖) ∑ (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=0

+ ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛−1(22 − 1) = 3(2𝑛−1). 

(𝑖𝑖𝑖) ∑ (
𝑛 − 2

𝑖
)

𝑛−2

𝑖=0

+ ∑ (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=0

+ ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛−2 =  2𝑛−2(23 − 1) = 7(2𝑛−2). 

(𝑖𝑣) ∑ (
𝑛 − 3

𝑖
)

𝑛−3

𝑖=0

+ ∑ (
𝑛 − 2

𝑖
)

𝑛−2

𝑖=0

+ ∑ (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=0

+ ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛−3 = 15(2𝑛−3). 

These results can be generalized as follows:  

∑ (
𝑝
𝑖

)

𝑝

𝑖=0

+ ∑ (
𝑝 + 1

𝑖
)

𝑝+1

𝑖=0

+ ∑ (
𝑝 + 2

𝑖
)

𝑝+2

𝑖=0

+ ⋯ + ∑ (
𝑞 − 1

𝑖
)

𝑞−1

𝑖=0

+ ∑ (
𝑞
𝑖

)

𝑞

𝑖=0

= 2𝑝(2𝑞−𝑝+1 − 1), 

where  0 ≤ 𝑝 ≤ 𝑞 𝑎𝑛𝑑 𝑝, 𝑞 ∈  𝑁. 
 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟑: ∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ⋯ + ∑ 𝑖 (
𝑛
𝑖

) =

𝑛

𝑖=1

3

𝑖=1

(𝑛 − 1)2𝑛 + 1. 

 

Proof. Let us find the value of each binomial expansion in the binomial theorem step by step. 

𝑆𝑡𝑒𝑝 1:   1 (
1
1

) = (
1
1

) =
1!

1! 0!
= 1 ⟹ ∑ 𝑖 (

1
𝑖

)

1

𝑖=1

= 1 = 1 × 20, (0! = 1). 

𝑆𝑡𝑒𝑝 2:   ∑ 𝑖 (
2
𝑖

)

2

𝑖=1

= 1 (
2
1

) + 2 (
2
2

) = 2 + 2 = 4 = 2 × 21. 

𝑆𝑡𝑒𝑝 3:   ∑ 𝑖 (
2
𝑖

)

3

𝑖=1

= 1 (
3
1

) + 2 (
3
2

) + 3 (
3
3

) = 3 + 6 + 3 = 12 = 2 × 21. 

𝑆𝑡𝑒𝑝 4:   ∑ 𝑖 (
2
𝑖

)

4

𝑖=1

= 1 (
4
1

) + 2 (
4
2

) + 3 (
4
3

) + 4 (
4
4

) = 4 + 12 + 12 + 4 = 4 × 23. 

Similarly, we can continue the expressions up to "step n " such that ∑ 𝑖 (
𝑛
𝑖

)

𝑛

𝑖=1

= 𝑛2𝑛−1. 

Now, by adding these expressions on both sides, it appears as follows:  

∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ∑ 𝑖 (
2
𝑖

)

4

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛
𝑖

) =

𝑛

𝑖=1

3

𝑖=1

∑ 𝑖 × 2𝑖−1

𝑛

𝑖=1

. 

where ∑ 𝑖 × 2𝑖

𝑛

𝑖=1

= (𝑛 − 1)2𝑛 + 1 . 

∴ ∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ∑ 𝑖 (
2
𝑖

)

4

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛
𝑖

) =

𝑛

𝑖=1

3

𝑖=1

(𝑛 − 1)2𝑛 + 1. 

Hence, theorem is proved. 
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Some results of Theorem 3.3 are given below: 

{∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ⋯ + ∑ 𝑖 (
𝑘
𝑖

)

𝑘

𝑖=1

+ ∑ 𝑖 (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛 + 1

𝑖
)

𝑛+1

𝑖=1

3

𝑖=1

}

− {∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ⋯ + ∑ 𝑖 (
𝑘
𝑖

)

𝑘

𝑖=1

3

𝑖=1

} = 𝑛2𝑛+1 − 𝑘2𝑘+1 

 

⟹ ∑ 𝑖 (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=1

+ ∑ 𝑖 (
𝑘 + 2

𝑖
)

𝑘+2

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛
𝑖

)

𝑛

𝑖=1

+ ∑ 𝑖 (
𝑛 + 1

𝑖
)

𝑛+1

𝑖=1

= 2(𝑛2𝑛 − 𝑘2𝑘) and  

∑ 𝑖 (
𝑘
𝑖

)

𝑘

𝑖=1

+ ∑ 𝑖 (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=1

+ ∑ 𝑖 (
𝑛
𝑖

)

𝑛

𝑖=1

= 2{(𝑛 − 1)2𝑛−1 − (𝑘 − 1)2𝑘−1}, 

where 𝑘 < 𝑛  & 𝑘, 𝑛 ∈ 𝑁.   
 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟒: (𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖 

𝑛−1

𝑖=0

𝑑𝑥 + 𝐶 = (𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∑ 𝑉𝑖
𝑝𝑥𝑖   ,

𝑛

𝑖=0

 

where C is the constant of Integration and C =1 because 1 is the first term of geometric series. 

 

Proof. Let us prove the theorem on integral calculus using the following binomial expansions.  

∑ 𝑉𝑖
𝑝𝑥𝑖

𝑛

𝑖=0

= 1 +
(𝑝 + 1)

1!
𝑥 +

(𝑝 + 1)(𝑝 + 2)

2!
𝑥2 + ⋯ +

(𝑛 + 1)(𝑛 + 2) … (𝑛 + 𝑝)

𝑝!
𝑥𝑛 . 

∑ 𝑉𝑖
𝑝+1𝑥𝑖

𝑛−1

𝑖=0

= 1 +
(𝑝 + 2)

1!
𝑥 +

(𝑝 + 2)(𝑝 + 3)

2!
𝑥2 + ⋯ +

𝑛(𝑛 + 1)(𝑛 + 2) … (𝑛 + 𝑝)

(𝑝 + 1)!
𝑥𝑛−1. 

 

Let’s prove that the integration (left-hand side of the theorem) is equal to the binomial series 

(right- hand side of the theorem).    

 

∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 = 𝑥 +
(𝑝 + 2)

1!

𝑥2

2
+

(𝑝 + 2)(𝑝 + 3)

2!

𝑥3

3
+ ⋯ +

𝑛(𝑛 + 1) … (𝑛 + 𝑝)

(𝑝 + 1)!

𝑥𝑛

𝑛
+ 𝐶. 

(𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 = 1 +
(𝑝 + 1)

1!
𝑥 +

(𝑝 + 1)(𝑝 + 2)

2!
𝑥2 +

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

3!
𝑥3

+ ⋯ +
(𝑛 + 1)(𝑛 + 2) … (𝑛 + 𝑝)

𝑝!
𝑥𝑛, where 𝐶 = 1.  

(𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 𝐶 = (𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∑ 𝑉𝑖
𝑝𝑥𝑖  .

𝑛

𝑖=0

 

Hence, theorem is proved.  
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Some results of Theorem 3.4 are given below: 

Let 𝑝 = 0. Then  (𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖 

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∫ ∑ 𝑉𝑖
1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∑ 𝑥𝑖  

𝑛

𝑖=0

=
𝑥𝑛+1 − 1

𝑥 − 1
. 

Let 𝑝 = 1. Then  2 ∫ ∑ 𝑉𝑖
2𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∑ 𝑉𝑖
1𝑥𝑖  

𝑛

𝑖=0

⟹ ∑ 𝑉𝑖
1𝑥𝑖 =  

(𝑟𝑥 − 𝑟 − 1)𝑥𝑟 + 1

(𝑥 − 1)2
,

𝑛−1

𝑖=0

 

which is the first derivative of geometric series. More details about the first derivative of 

geometric series are given in Section 2.1. 

 

In general, the integration of summation of geometric series is constituted as follows:   

(𝑝 + 1) ∫ ∑ 𝑉𝑖−𝑘
𝑝+1𝑥𝑖  

𝑛−1

𝑖=𝑘

𝑑𝑥 + 𝐶 = ∑ 𝑉𝑖−(𝑘+1)
𝑝 𝑥𝑖 + 𝑉𝑖−𝑘

𝑝 𝑥𝑖 = ∑ 𝑉𝑖−𝑘
𝑝 𝑥𝑖 

𝑛

𝑖=𝑘

 ,

𝑛

𝑖=𝑘+1

 

where the integral constant 𝑖𝑠  𝐶 = 𝑉𝑖−𝑘
𝑝 𝑥𝑖  because it is the first term of the series.  

 

4. Conclusion  

In this article, the n
th

 derivative [22-33] of geometric series has been introduced and its 

applications used in combinatorics including binomial expansions. Also, computation of the 

summation of series of binomial expansions and geometric series were derived in an innovative 

way. Theorems and relations between the binomial expansions and geometric series have been 

developed for researchers, who are working in science, economics, engineering, and 

management,  
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