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1. Introduction 

When the author of this article was trying to develop the multiple summations of geometric 

series, a new idea stimulated his mind to create a combinatorial geometric series [1-9]. The 

combinatorial geometric series is a geometric series whose coefficient of each term of the 

geometric series denotes the binomial coefficient 𝑉𝑛
𝑟 . In this article, binomial identities and 

multinomial theorem is provided using the binomial coefficients for combinatorial geometric 

series.  

 

2. Combinatorial Geometric Series  
The combinatorial geometric series [1-9] is derived from the multiple summations of geometric 

series[10-19]. The coefficient of each term in the combinatorial refers to the binomial coefficient 

𝑉𝑛
𝑟 .    

∑ ∑ ∑ ⋯

𝑛

𝑖3=𝑖2

∑ 𝑥𝑖𝑟

𝑛

𝑖𝑟=𝑖𝑟−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1=0

= ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

 &  𝑉𝑛
𝑟 =

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) ⋯ (𝑛 + 𝑟 − 1)(𝑛 + 𝑟)

𝑟!
, 

where  𝑛 ≥ 0, 𝑟 ≥ 1  𝑎𝑛𝑑  𝑛, 𝑟 ∈ 𝑁 = {0, 1, 2, 3, ⋯ }.  

Here, ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

refers to the combinatorial geometric series and   

𝑉𝑛
𝑟 𝑖𝑠 the binomial coefficient for combinatorial geometric series. 

 
𝐋𝐞𝐦𝐦𝐚 𝟐. 𝟏: 𝑉𝑛−1

𝑟+1 + 𝑉𝑛
𝑟 = 𝑉𝑛

𝑟+1. 
 

Proof. Let us prove this lemma using the combinatorial geometric series. 

By substituting 𝑥 = 1 in the combinatorial geometric series ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

, we get  

∑ 𝑉𝑖
𝑟(1)𝑖

𝑛

𝑖=0

= ∑ 𝑉𝑖
𝑟 = 𝑉0

𝑟 + 𝑉1
𝑟 + 𝑉2

𝑛 + 𝑉3
𝑟 + ⋯ + 𝑉𝑛−1

𝑟 + 𝑉𝑛
𝑟 =

𝑛

𝑖=0

𝑉𝑛
𝑟+1. 

This is one of the binomial identities based on the combinatorial geometric series. 
From the above binomial identity, we get the following result: 
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𝑉𝑛−1
𝑟+1 + 𝑉𝑛

𝑟 = 𝑉𝑛
𝑟+1, (∵ ∑ 𝑉𝑖

𝑟

𝑛−1

𝑖=0

= 𝑉𝑛−1
𝑟+1). 

Let us prove the binomial equation 𝑉𝑛−1
𝑟+1 + 𝑉𝑛

𝑟 = 𝑉𝑛
𝑟+1. ) 

 

𝑉𝑛−1
𝑟+1 + 𝑉𝑛

𝑟 =
𝑛(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

(𝑟 + 1)!
+

(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

𝑟!

=
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

𝑟!
(

𝑛

𝑟 + 1
+ 1) =

=
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

𝑟!
(

𝑛 + 𝑟 + 1

𝑟 + 1
). 

𝑉𝑛−1
𝑟+1 + 𝑉𝑛

𝑟 =
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)(𝑛 + 𝑟 + 1)

(𝑟 + 1)!
= 𝑉𝑛

𝑟+1.  

Hence, the lemma is proved. 
 
3. Theorem on Binomial Series  

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏: 𝑉0
𝑛 ∑ 2𝑖

𝑛−1

𝑖=0

+ 𝑉1
𝑛−1 ∑ 2𝑖

𝑛−2

𝑖=0

+ 𝑉2
𝑛−2 ∑ 2𝑖

𝑛−3

𝑖=0

+ ⋯ + 3𝑉𝑛−2
2 + 𝑉𝑛−1

1 = 3𝑛 − 2𝑛. 

Proof. Let us prove this theorem using the following binomial series and its results. 

If 𝑥 = 1 and 𝑦 = 1 in ∑ 𝑉𝑖
𝑛−𝑖𝑥𝑖𝑦𝑛−1 =

𝑛

𝑖=0

(𝑥 + 𝑦)𝑛, then ∑ 𝑉𝑖
𝑛−𝑖 =

𝑛

𝑖=0

2𝑛.              (1) 

Also, if 𝑥 = 1 and 𝑦 = 2 in the binomial series, then ∑ 𝑉𝑖
𝑛−𝑖2𝑛−𝑖 =

𝑛

𝑖=0

3𝑛.          (2) 

From (1)and (2), we get ∑ 𝑉𝑖
𝑛−𝑖(2𝑛−𝑖 − 1) =

𝑛

𝑖=0

3𝑛 − 2𝑛, 𝑖. 𝑒. 𝑉0
𝑛(2𝑛 − 1) + 𝑉1

𝑛−1(2𝑛−1 − 1) + 

𝑉2
𝑛−2(2𝑛−2 − 1) + 𝑉2

𝑛−2(2𝑛−2 − 1) + 𝑉3
𝑛−3(2𝑛−3 − 1) + ⋯ + 𝑉𝑛−3

3 (23 − 1) + 𝑉𝑛−2
2 (22 − 1) + 

𝑉𝑛−1
1 (21 − 1) = 3𝑛 − 2𝑛 . 

 

From this expression, we conclude that  

𝑉0
𝑛 ∑ 2𝑖

𝑛−1

𝑖=0

+ 𝑉1
𝑛−1 ∑ 2𝑖

𝑛−2

𝑖=0

+ 𝑉2
𝑛−2 ∑ 2𝑖

𝑛−3

𝑖=0

+ ⋯ + 7𝑉𝑛−3
3 + 3𝑉𝑛−2

2 + 𝑉𝑛−1
1 = 3𝑛 − 2𝑛, 

where ∑ 2𝑖

𝑛

𝑖=0

= 2𝑛+1 − 1. 

Hence, theorem is proved. 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟑. 𝟏: 𝑉1
𝑛−1 + 3𝑉2

𝑛−2 + ⋯ + 𝑉𝑛−2
2 ∑ 2𝑖

𝑛−3

𝑖=0

+ 𝑉𝑛−1
1 ∑ 2𝑖

𝑛−2

𝑖=0

+ 𝑉𝑛
0 ∑ 2𝑖

𝑛−1

𝑖=0

= 3𝑛 − 2𝑛. 

Proof. Let us prove this corollary using the following binomial series and its results. 

If 𝑥 = 1 and 𝑦 = 1 in ∑ 𝑉𝑖
𝑛−𝑖𝑥𝑖𝑦𝑛−1 =

𝑛

𝑖=0

(𝑥 + 𝑦)𝑛, then ∑ 𝑉𝑖
𝑛−𝑖 =

𝑛

𝑖=0

2𝑛.              (1) 
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Also, if 𝑥 = 2 and 𝑦 = 1 in the binomial series, then ∑ 𝑉𝑖
𝑛−𝑖2𝑛−𝑖 =

𝑛

𝑖=0

3𝑛.          (2) 

Like theorem 3.1, by simplifying (1) and (2), we conclude that  

𝑉1
𝑛−1 + 3𝑉2

𝑛−2 + 7𝑉3
𝑛−3 + ⋯ + 𝑉𝑛−2

2 ∑ 2𝑖

𝑛−3

𝑖=0

+ 𝑉𝑛−1
1 ∑ 2𝑖

𝑛−2

𝑖=0

+ 𝑉𝑛
0 ∑ 2𝑖

𝑛−1

𝑖=0

= 3𝑛 − 2𝑛 

Hence, Corollary is proved. 

 

4. Conclusion  
In this article, a theorem on binomial series was proved with more details. This idea can enable 

the scientific researchers to solve the real life problems. 
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