A Theorem on Binomial Series

Chinnaraji Annamalai
School of Management, Indian Institute of Technology, Kharagpur, India
Email: anna@iitkgp.ac.in
https://orcid.org/0000-0002-0992-2584

Abstract

This paper presents a theorem on binomial series. These ideas can enable the scientific researchers to solve the real life problems.

MSC Classification codes: 05A10, 40A05 (65B10)
Keywords: computation, combinatorics, binomial coefficient

1. Introduction

When the author of this article was trying to develop the multiple summations of geometric series, a new idea stimulated his mind to create a combinatorial geometric series [1-9]. The combinatorial geometric series is a geometric series whose coefficient of each term of the geometric series denotes the binomial coefficient V_{n}^{r}. In this article, binomial identities and multinomial theorem is provided using the binomial coefficients for combinatorial geometric series.

2. Combinatorial Geometric Series

The combinatorial geometric series [1-9] is derived from the multiple summations of geometric series[10-19]. The coefficient of each term in the combinatorial refers to the binomial coefficient V_{n}^{r}.
$\sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} \sum_{i_{3}=i_{2}}^{n} \cdots \sum_{i_{r}=i_{r-1}}^{n} x^{i_{r}}=\sum_{i=0}^{n} V_{i}^{r} x^{i} \& V_{n}^{r}=\frac{(n+1)(n+2)(n+3) \cdots(n+r-1)(n+r)}{r!}$,
where $n \geq 0, r \geq 1$ and $n, r \in N=\{0,1,2,3, \cdots\}$.
Here, $\sum_{i=0}^{n} V_{i}^{r} x^{i}$ refers to the combinatorial geometric series and
V_{n}^{r} is the binomial coefficient for combinatorial geometric series.
Lemma 2. 1: $V_{n-1}^{r+1}+V_{n}^{r}=V_{n}^{r+1}$.
Proof. Let us prove this lemma using the combinatorial geometric series.
By substituting $x=1$ in the combinatorial geometric series $\sum_{i=0}^{n} V_{i}^{r} x^{i}$, we get
$\sum_{i=0}^{n} V_{i}^{r}(1)^{i}=\sum_{i=0}^{n} V_{i}^{r}=V_{0}^{r}+V_{1}^{r}+V_{2}^{n}+V_{3}^{r}+\cdots+V_{n-1}^{r}+V_{n}^{r}=V_{n}^{r+1}$.
This is one of the binomial identities based on the combinatorial geometric series.
From the above binomial identity, we get the following result:
$V_{n-1}^{r+1}+V_{n}^{r}=V_{n}^{r+1},\left(\because \sum_{i=0}^{n-1} V_{i}^{r}=V_{n-1}^{r+1}\right)$.
Let us prove the binomial equation $V_{n-1}^{r+1}+V_{n}^{r}=V_{n}^{r+1}$.)

$$
\begin{aligned}
V_{n-1}^{r+1}+V_{n}^{r}= & \frac{n(n+1)(n+2) \cdots(n+r)}{(r+1)!}+\frac{(n+1)(n+2) \cdots(n+r)}{r!} \\
& =\frac{(n+1)(n+2) \cdots(n+r)}{r!}\left(\frac{n}{r+1}+1\right)= \\
& =\frac{(n+1)(n+2) \cdots(n+r)}{r!}\left(\frac{n+r+1}{r+1}\right) . \\
V_{n-1}^{r+1}+V_{n}^{r}= & \frac{(n+1)(n+2) \cdots(n+r)(n+r+1)}{(r+1)!}=V_{n}^{r+1} .
\end{aligned}
$$

Hence, the lemma is proved.

3. Theorem on Binomial Series

Theorem 3. 1: $V_{0}^{n} \sum_{i=0}^{n-1} 2^{i}+V_{1}^{n-1} \sum_{i=0}^{n-2} 2^{i}+V_{2}^{n-2} \sum_{i=0}^{n-3} 2^{i}+\cdots+3 V_{n-2}^{2}+V_{n-1}^{1}=3^{n}-2^{n}$.
Proof. Let us prove this theorem using the following binomial series and its results.

$$
\begin{equation*}
\text { If } x=1 \text { and } y=1 \text { in } \sum_{i=0}^{n} V_{i}^{n-i} x^{i} y^{n-1}=(x+y)^{n} \text {, then } \sum_{i=0}^{n} V_{i}^{n-i}=2^{n} \text {. } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Also, if } x=1 \text { and } y=2 \text { in the binomial series, then } \sum_{i=0}^{n=0} V_{i}^{n-i} 2^{n-i}=3^{n} \text {. } \tag{2}
\end{equation*}
$$

From (1)and (2), we get $\sum_{i=0}^{n} V_{i}^{n-i}\left(2^{n-i}-1\right)=3^{n}-2^{n}$, i.e. $V_{0}^{n}\left(2^{n}-1\right)+V_{1}^{n-1}\left(2^{n-1}-1\right)+$ $V_{2}^{n-2}\left(2^{n-2}-1\right)+V_{2}^{n-2}\left(2^{n-2}-1\right)+V_{3}^{n-3}\left(2^{n-3}-1\right)+\cdots+V_{n-3}^{3}\left(2^{3}-1\right)+V_{n-2}^{2}\left(2^{2}-1\right)+$ $V_{n-1}^{1}\left(2^{1}-1\right)=3^{n}-2^{n}$.

From this expression, we conclude that
$V_{0}^{n} \sum_{i=0}^{n-1} 2^{i}+V_{1}^{n-1} \sum_{i=0}^{n-2} 2^{i}+V_{2}^{n-2} \sum_{i=0}^{n-3} 2^{i}+\cdots+7 V_{n-3}^{3}+3 V_{n-2}^{2}+V_{n-1}^{1}=3^{n}-2^{n}$,
where $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$.
Hence, theorem is proved.
Corollary 3. 1: $V_{1}^{n-1}+3 V_{2}^{n-2}+\cdots+V_{n-2}^{2} \sum_{i=0}^{n-3} 2^{i}+V_{n-1}^{1} \sum_{i=0}^{n-2} 2^{i}+V_{n}^{0} \sum_{i=0}^{n-1} 2^{i}=3^{n}-2^{n}$.
Proof. Let us prove this corollary using the following binomial series and its results.

$$
\begin{equation*}
\text { If } x=1 \text { and } y=1 \text { in } \sum_{i=0}^{n} V_{i}^{n-i} x^{i} y^{n-1}=(x+y)^{n} \text {, then } \sum_{i=0}^{n} V_{i}^{n-i}=2^{n} \text {. } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Also, if } x=2 \text { and } y=1 \text { in the binomial series, then } \sum_{i=0}^{n} V_{i}^{n-i} 2^{n-i}=3^{n} \text {. } \tag{2}
\end{equation*}
$$

Like theorem 3.1, by simplifying (1) and (2), we conclude that
$V_{1}^{n-1}+3 V_{2}^{n-2}+7 V_{3}^{n-3}+\cdots+V_{n-2}^{2} \sum_{i=0}^{n-3} 2^{i}+V_{n-1}^{1} \sum_{i=0}^{n-2} 2^{i}+V_{n}^{0} \sum_{i=0}^{n-1} 2^{i}=3^{n}-2^{n}$
Hence, Corollary is proved.

4. Conclusion

In this article, a theorem on binomial series was proved with more details. This idea can enable the scientific researchers to solve the real life problems.

References

[1] Annamalai, C. (2022) Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions. The Journal of Engineering and Exact Sciences, 8(7), 14648-01i. https://doi.org/10.18540/jcecv18iss7pp14648-01i.
[2] Annamalai, C. (2022) Application of Factorial and Binomial identities in Information, Cybersecurity and Machine Learning. International Journal of Advanced Networking and Applications, 14(1), 5258-5260. https://doi.org/10.33774/coe-2022-pnx53-v21.
[3] Annamalai, C. (2022) Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity. The Journal of Engineering and Exact Sciences, 8(8), 14713-01i. https://doi.org/10.18540/jcecv18iss8pp14713-01i.
[4] Annamalai, C. (2022) Computation of Multinomial and Factorial Theorems for Cryptography and Machine Learning. COE, Cambridge University Press. https://doi.org/10.33774/coe-2022-b6mks-v9.
[5] Annamalai, C. (2022) Computation of Binomial, Factorial and Multinomial Theorems for Machine Leaning and Cybersecurity. COE, Cambridge University Press. https://doi.org/10.33774/coe-2022-b6mks-v11.
[6] Annamalai, C. (2022) Series and Summations on Binomial Coefficients of Optimized Combination. The Journal of Engineering and Exact Sciences, 8(3), 14123-01e. https://doi.org/10.18540/icecvl8iss3pp14123-01e.
[7] Annamalai, C. (2022) Factorials and Integers for Applications in Computing and Cryptography. COE, Cambridge University Press. https://doi.org/10.33774/coe-2022b6mks.
[8] Annamalai, C. (2022) Computing Method for Combinatorial Geometric Series and Binomial Expansion. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4168016.
[9] Annamalai, C. (2022) Annamalai's Binomial Identity and Theorem, SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn. 4097907.
[10] Annamalai, C. (2010) Applications of exponential decay and geometric series in effective medicine dosage. Advances in Bioscience and Biotechnology, 1(1), 51-54. https://doi.org/10.4236/abb.2010.11008.
[11] Annamalai, C. (2017) Analysis and Modelling of Annamalai Computing Geometric Series and Summability. Mathematical Journal of Interdisciplinary Sciences, 6(1), 11-15. https://doi.org/10.15415/mjis.2017.61002.
[12] Annamalai, C. (2017) Annamalai Computing Method for Formation of Geometric Series using in Science and Technology. International Journal for Science and Advance Research In Technology, 3(8), 187-289. http://ijsart.com/Home/IssueDetail/17257.
[13] Annamalai, C. (2017) Computational modelling for the formation of geometric series using Annamalai computing method. Jñānābha, 47(2), 327-330. https://zbmath.org/?q=an\%3A1391.65005.
[14] Annamalai, C. (2018) Novel Computation of Algorithmic Geometric Series and Summability. Journal of Algorithms and Computation, 50(1), 151-153. https://www.doi.org/10.22059/JAC.2018.68866.
[15] Annamalai, C. (2018) Computing for Development of A New Summability on Multiple Geometric Series. International Journal of Mathematics, Game Theory and Algebra, 27(4), 511-513.
[16] Annamalai, C. (2020) Combinatorial Technique for Optimizing the combination. The Journal of Engineering and Exact Sciences, 6(2), 0189-0192.
https://doi.org/10.18540/jcecvl6iss2pp0189-0192.
[17] Annamalai, C. (2018) Annamalai's Computing Model for Algorithmic Geometric Series and Its Mathematical Structures. Journal of Mathematics and Computer Science, 3(1),1-6 https://doi.org/10.11648/j.mcs.20180301.11.
[18] Annamalai, C. (2018) Algorithmic Computation of Annamalai's Geometric Series and Summability. Journal of Mathematics and Computer Science, 3(5),100-101. https://doi.org/10.11648/j.mcs.20180305.11.
[19] Annamalai, C. (2019) Recursive Computations and Differential and Integral Equations for Summability of Binomial Coefficients with Combinatorial Expressions. International Journal of Scientific Research in Mechanical and Materials Engineering, 4(1), 6-10. https://ijsrmme.com/IJSRMME19362.

