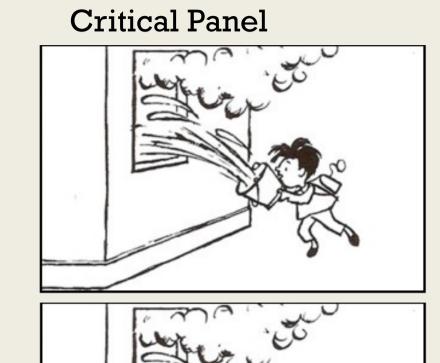
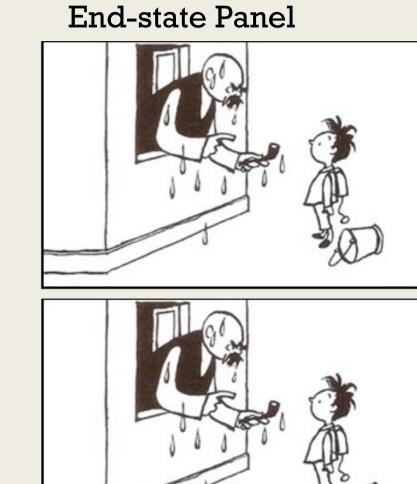

CROSS-CODAL BRIDGING

INFORMATION PROCESSING:

DIFFERENCES ACROSS LANGUAGES


Cross-codal* bridging information in stories in English and Chinese:


a) From picture to text

Bridging Event Panel The son passes by the house and sees the smoke.

儿子从房子边经过, 看到了浓烟。

b) From text to picture

Smoke billows out

Context Panel

of the windows of the house.

滚滚浓烟从一户人家 的窗户中飘出来。

Bridging Event Panel

儿子从窗户把水泼进 屋里。

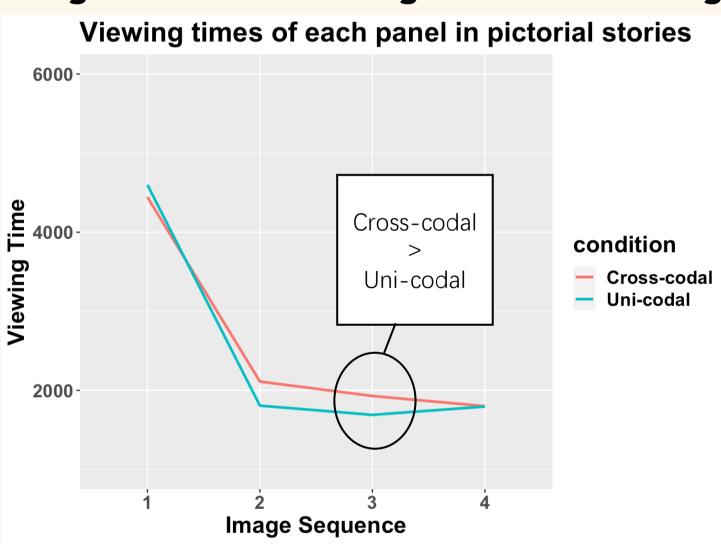
window.

The son pours

water into the

Critical Panel End-state Panel

> The father comes out of the window all wet, pointing to his pipe.


爸爸湿漉漉地从窗户 里探出身子,指着手 里的烟斗。

In this study, we compared comprehension of stories with cross-codal bridging event with uni-codal stories.

* Codality refers to the specific information coding systems (e.g. pictorial vs. textual).

Results and Discussion

• Figure 1. The reading times of the English monolinguals

Reading times of each sentence in textual stories Cross-codal Uni-codal condition Cross-codal Uni-codal 2000 **Sentence Sequence**

• Figure 2. The reading times of the Chinese monolinguals

condition

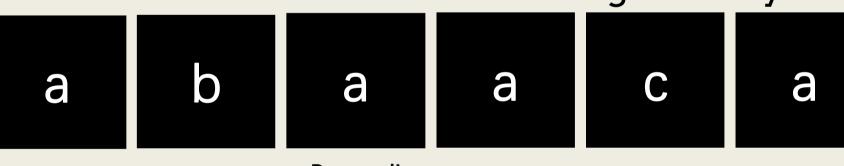
Uni-codal

Cross-codal

Viewing times of each panel in pictorial stories Cross-codal Uni-codal 2000 **Image Sequence**

Reading times of each sentence in textual stories 6000 Cross-codal condition Cross-codal Uni-codal Uni-codal 2000 **Sentence Sequence**

Cross-codal integration from text to picture did not cause problems for both groups.


→ Cross-codal bridging information can be processed without extra efforts.

 Cross-codal integration from picture to text caused distortion in reading for English monolingual speakers, but not Chinese monolingual speakers.

→ Alphabetic texts are harder to process than pictures, but logographic texts are not.

These patterns were modulated by working memory capacities:

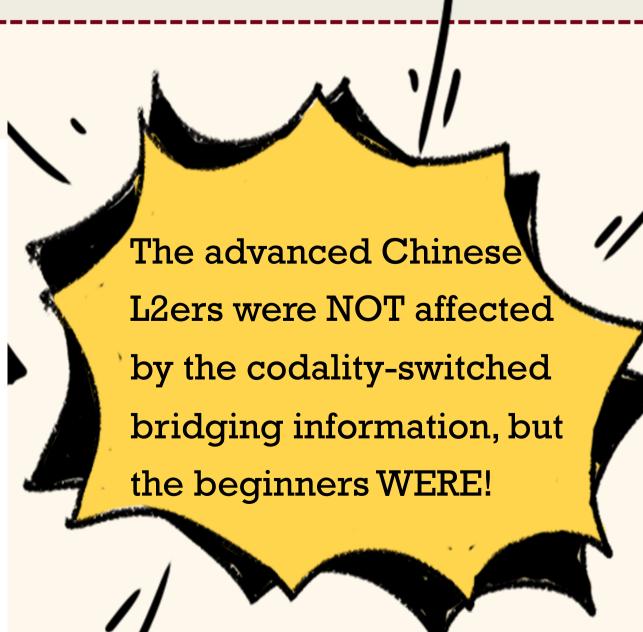
2-back task to test the verbal working memory:

Backward Corsi task to test the visuo-spatial working memory:

One of the blocks is Click on the highlighted ... followed by another. blocks on the screen

English Llers: The higher the verbal working memory capacity, the better they are at cross-codal processing from picture to text.

 Chinese Llers: The higher the visuo-spatial working memory capacity, the better they are at text processing.


What about reading in an L2?

- Both English and Chinese L2ers, whose L1 was Chinese and English, respectively, found picture to text cross-codal integration hard, like the English Llers.
- \rightarrow L2 texts more difficult than pictures to process.
- But proficiency also plays a role in Chinese L2ers...
- advanced Chinese L2ers performed depictive processing of the Chinese characters like the Chinese Llers, but for the less proficient Chinese L2ers, the visuo-spatial route is blocked.

• Figure 5. The reading times of the Chinese L2ers divided by proficiency

Chinese L2ers with a higher proficiency: Viewing times of each panel in pictorial stories condition Cross-codal Uni-codal **Image Sequence**

Chinese L2ers with a lower proficiency: Viewing times of each panel in pictorial stories condition Cross-coda Uni-codal 2000 Image Sequence

■ Figure 3. Demonstration of the 2-back task

■ Figure 4. Demonstration of

the backward Corsi task

Conclusion

- Cross-codal bridging information integration does NOT require additional cognitive resources.
- Alphabetic text processing is less straightforward than logographic text and picture processing.
- The activation of meaning from logographic patterns is blocked in less proficient L2 Chinese speakers.
- Acknowledgement ! This work is supported by the Trinity Hall Grants for research related and clinical expenses

References

- Cohn, N., & Kutas, M. (2015). Getting a cue before getting a clue: Event-related potentials to inference in visual narrative comprehension. Neuropsychologia, 77, 267–278. https://doi.org/10.1016/j.neuropsychologia.2015.08.026
- Gernsbacher, M. A. (1996). The structure-building framework: What it is, what it might also be, and why. Models of Understanding Text, 289–311. Gernsbacher, M. A., Varner, K. R., & Faust, M. E. (1990). Investigating differences in general comprehension skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(3), 430.
- Huang, H. S., & Hanley, J. R. (1995). Phonological awareness and visual skills in learning to read Chinese and English. Cognition, 54(1), 73–98. https://doi.org/10.1016/0010-0277(94)00641-W
- Huff, M., Rosenfelder, D., Oberbeck, M., Merkt, M., Papenmeier, F., & Meitz, T. G. K. (2020). Cross-codal integration of bridging-event information in narrative
- understanding. Memory & Cognition, 48(6), 942–956. Mcbride-Chang, C., Chow, B. W. Y., Zhong, Y., Burgess, S., & Hayward, W. G. (2005). Chinese character acquisition and visual skills in two Chinese scripts. Reading and Writing, 18(2), 99–128. https://doi.org/10.1007/s11145-004-7343-5
- Schnotz, W. (2014). Integrated Model of Text and Picture Comprehension. In R. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (2nd ed., pp. 72–
- Pérez, A., Schmidt, E., Kourtzi, Z., & Tsimpli, I. (2020). Multimodal semantic revision during inferential processing: The role of inhibitory control in text and
- 103). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.006 picture comprehension. Neuropsychologia, 138, 107313.

E-mail Address: cz344@cam.ac.uk

and Applied Linguistics

Department of Theoretical

UNIVERSITY OF

CAMBRIDGE

Chenyi Zhang,

Ianthi Tsimpli

Elaine Schmidt,

Research Questions

- Can the pictorial information be integrated in a textual story?
- Is cross-codal integration from picture to text, and vice versa, universal?
- Reading logographic scripts relies on visual skills (Mcbride-Chang et al., 2005), and reading alphabetic scripts: depends on phonological awareness (Huang & Hanley, 1995)
- How do verbal and visuo-spatial working memory capacities affect cross-codal processing?
- How do the L2 English and L2 Chinese speakers perform?

Research Design

- Participants: 69 Chinese monolingual speakers, 58 English monolingual speakers, 63 Chinese learners of English, and 59 English learners of Chinese.
- Materials: 48 four-panel comics from Father and Son (Plauen, 1934-1937) and the transcriptions in English and Chinese.
- A norming study validated the matchiness between the pictures and texts, and revealed no difference between the informativeness of the stories in the two codalities.
- Procedure: A standard viewing time paradigm, where the panels or sentences were presented one at a time, and the viewing or reading time of each panel or sentence was recorded.
- Variables: Reading times of the second segment (i.e. the bridging) event panel or sentence) and that of the third segment (the critical panel or sentence).