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1.Glossary of acronyms and terms

Term

Tracking carbon and landcover change

AGB Above Ground Biomass

BACI Before-after control-impact

BGB Below Ground Biomass

GEDI NASA Global Ecosystem Dynamics Investigation space-borne LiDAR

AFC Annual Forest Change product from Vancutsem et al 2021

LUC Land Use Class. These are undisturbed forest, degraded forest, deforested,
regrowth forest, water and other (agriculture, urban etc.).

TMF Tropical moist forest - these receive high rainfall which is not seasonal,
supporting evergreen trees

REDD+ Project terminology

REDD+ Reducing Emissions from Deforestation and Forest Degradation

PDD Project design document, prepared in preparation of REDD+ project

Economic terms

SCC Social Cost of Carbon

RCP IPCC Representative Concentration Pathway

Technical terms

Carbon
density

Amount of carbon storage in AGB, BGB and soil per unit land area (typically Mg
C per hectare). A hectare is 100 x 100 m

LUC carbon
density

The average carbon density of a LUC; setting this as a constant allows carbon
stock changes to be calculated by simply tracking land use change.

Evaluation
period

The time period for which carbon credits are being assessed.
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2. Assumptions

Assumption Justification Comments

Carbon measurement

A1 We consider the next 500 years
when carbon accounting.

With a discount rate of 3%, the
present value of damages 500 years
in the future are 1 millionth of the
damages today.

The lower the discount rate, the
longer we need to model carbon
releases.

A2 We can estimate project quality
as being low or high. It is
acceptable to use PDD
estimates of leakage and AGB
for projects that are assessed to
be high quality.

Projects are routinely assessed as
being high or low quality according to
expert knowledge of the reputation of
proponents, the quality of the data
used by the project, how long the
project has been running for, and
qualitative appraisal of the resilience
of the project.

There can be a significant difference
in additionality and leakage
depending on whether the project is
assessed as low-quality or
high-quality.

We aim to remove elements of
qualitative appraisal as algorithmic
methods improve.

A3 LUC carbon density does not
change appreciably over time.

A reasonable first-order assumption. This may not be accurate, as carbon
density increases each year after the
last episode of deforestation or
disturbance and carbon density of
undisturbed forest is falling over time
as a result of global warming (Hubau
et al. 2020; Brienen et al. 2015). Our
method will be upgraded to reflect
this.

A4 AGB per LUC that is measured
in a 30 km region around the
project area (as opposed to the
project area alone) is
representative of the project.

Rare land use classes have only a
few GEDI shots, so we needed to
sample outside the project area.

A 30 km buffer around the project
was chosen as it ensured that a set
of GEDI points were available to
assess land use class carbon
densities..

This may not be accurate as small
patches of “undisturbed” forest
outside project areas are likely to
have lower AGB as they are affected
by edge effects and historical
disturbance. Preliminary sensitivity
analyses have shown that median
carbon density of the undisturbed
class is fairly insensitive to including
the 30 km buffer (vs. project only).
This may be tested formally in future.

A5 The GEDI L4A product is an
accurate measure of AGB for
each LUC

This is the state of the art for tropical
moist forests and can be replaced by
better estimates as they become
available (e.g. from improved GEDI
allometries)

Nb, Estimates seem particularly bad
for dry forests with open canopies but
reasonable for TMF.

A6 GEDI L4A shots are correctly
filtered using degrade_flag ==
0, beam_type == 'full',
l4_quality_flag == 1, leaf_off = 0

This is the best publicly-known
setting right now according to the
GEDI team (Personal
communication)

Need to upgrade to better filtering as
it becomes available
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A7 Land use/forest change
classification by Annual Forest
Change map (AFC) (Vancutsem
et al. 2021) is accurate for
tropical moist forests

This is currently the best known
source for tracking annual gains,
losses and degradation of the
tropical moist forests.

Building our technology on the AFC
product makes us dependent on its
continued existence - the long-term
commitment of the JRC to resourcing
its annual update needs to be
checked .

Mapbiomas is an appropriate source
for Brazil and Indonesia and uses the
same classes.

A8 Carbon density for each LUC is
the same in the project and its
counterfactual areas

A reasonable first-order assumption Also see comments on A4. This
could be refined if necessary

A9 Belowground biomass (BGB)
and deadwood biomass are
assumed to be 20% and 11% of
AGB respectively.

(Cairns et al. 1997)
(IPCC 2003)

When a forest loses x% of its AGB
due to degradation, it also loses x%
of its BGB and deadwood biomass.
Soil carbon is assumed to remain
unchanged.

A10 Total biomass values are
converted to carbon densities
by multiplying by the average
carbon density of 0.47

(Martin and Thomas 2011) This is known to vary somewhat
between ecosystems. Martin and
Thomas found a standard deviation
of 0.025 across their Panamanian
sample

A11 Matches can be found for all
pixels that are sampled from the
project area and its leakage
buffer

Poor matches will be reflected in
standardised mean differences
greater than 0.2.

Matching the unique areas
(especially inaccessible areas) within
the project area may be impossible.
A simple method for excluding
inaccessible areas has been
developed which assumes zero
additionality in these areas. To avoid
bias, the project area has to be
reduced accordingly. A better
approach would be to break up the
evaluation of the project into
standard units which can be
automatically excluded if matching
fails.

A12 Potential match pixels must be
within a 2000 km buffer around
the project as well as match on
biome and country

Restricts matching to a similar
vegetation type within the same
geographic region

For projects under pressure from
international threats it may be
important to match globally, but this
introduces further complications.
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A13 Local leakage only occurs in a
5km buffer around the project

A 5-km buffer is grounded in the
notion that forest protection has an
effect on behaviour of people living
close to its boundary. The choice of
5 km versus 10 or 15 km is
somewhat arbitrary.
A paper on deforestation leakage
undermining the conservation value
of tropical and subtropical protected
areas (Ford et al. 2020) looked at
leakage in a 10 km zone for 120
protected areas. Guizar-Coutiño
(2022) evaluated the effectiveness of
40 REDD sites at reducing CO2
emissions using a 15 km buffer.

Quantifying local leakage and
attributing causality to the project is
challenging: first, actions beyond the
control of the project can cause
changes in leakage area carbon
stock; second, for small projects, the
leakage area can be many times
larger than the project area and even
small changes in stocks relative to
the leakage counterfactual are
amplified over the large area, so that
the additionality signal is exceeded.
Consequently, we take the view that
the maximum amount of leakage that
can occur is limited by the total
quantity of additionality generated; in
other words the food or fibre
production attributable to leakage,
can not exceed the amount displaced
by the project. Local leakage can
potentially be ignored but only
through evidence that the actors,
labour and finance involved were
completely different from those
involved in the project.

A14 Only REDD+ project areas
(both Verra and non-Verra)
should be excluded from
counterfactual matches

Guizar-Countiño et al. 2022 found
inclusion of other types of protected
areas made little difference to
additionality estimates

There may be arguments to match
on specific land use management
classes (e.g. community forest or
industrial forest) or by ownership.
This is not currently implemented.

Need to expand this to include all
REDD sites from VCS + Plan Vivo
scrape

A15 CO2 fluxes following a land
cover class change are equal to
the difference in stocks between
those classes and this change
is instantaneous

This assumption is satisfactory for
estimates of fluxes arising from
deforestation of undisturbed forest
and provides estimates that are close
to or as good as those used by most
carbon projects which parameterise
land cover class carbon density
estimates from field plots.

The approach is naive for tracking
land cover changes between other
classes, particularly where complex
degradation or regeneration
dynamics are at play.

In reality carbon stocks in different
pools are drawn down or released at
different rates (i.e. they are not
instantaneous). Applying simple time
lags to emissions is a straightforward
improvement for future versions.

A16 Because each counterfactual
point is forced to be the same
land cover class as its paired
project point at project start,
additionality is assumed to be
equal to the simple difference at
the end of the evaluation period

This is for simplicity. Selection bias could result in
under-estimating the counterfactual
loss trajectory in the pre-project
period. This would materialise as a
divergence of the counterfactual from
the project line rather than vice versa
as expected.

This issue can be reduced by
working with aggregated pixel blocks
(as per Garcia and Heilmeyer, 2023).
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Permanence

A17 The annual discount rate of the
SCC is 3%.

This discount rate is compatible with
an increase in the SCC of 2% per
year as well as the implied Ramsey
discount rate using the mean pure
time preference rate and elasticity of
marginal utility of the expert survey
reported in Drupp et al. (2018).

Balmford et al. (2023) provide
sensitivity analysis of eP to discount
rate choice.

A18 Relative concentration pathway
(RCP) 4.5 is used to project
atmospheric carbon
concentration.

RCP 4.5 is more conservative than
RCP 2.6.

This assumes a moderately fast
decarbonization, not as fast as RCP
2.6 but not as slow as RCP 8.5

A19 Subjective assessments of
project quality are reflected in
lower release rates during the
project term and, importantly,
that release schedules reflect
credit value without exposing
buyers to unanticipated reversal
risk.

In the absence of better data this
allows us to value impermanent
storage of NBS credits, factoring a
qualitative perception of risks.

There can be a significant difference
in EP depending on whether the
project is assessed as low-risk or
high-risk.

Low-frequency catastrophic events
need to be included in the forecast of
reversal risk, as well as more
complex forecasts of drawdowns and
release in both the project and
counterfactual scenarios. We need to
make this stochastic and to use
informed parameters. Extensive
ongoing work addresses these
issues.

Matching

A20 A sampling density of 0.05-0.25
randomly generated spatial
pixels per hectare over the
project area is sufficient

This is currently set to generate a
reasonably dense sample at the
scale of most REDD+ projects.

For larger projects we have reduced
the sampling density due to the run
time required on GEE. For smaller
projects we want to establish a
higher sample density to ensure
precision in the treatment set.

Ideally, we should choose a target no
of pixels based on statistical
sampling theory

A21 The significant factors driving
deforestation are covered by
the following matching
variables: jurisdiction (country),
ecoregion, land use class,
elevation, slope, accessibility
[time to health care as a proxy
for time to town], proportionate
land cover in a 1km radius. We
assume that matching using
BACI + Mahalanobis distance
sampling without replacement
and without callipers gives
reliable estimates of
additionality.

These are well known proximal
causes applied to “unplanned”
deforestation (Geist and Lambin
2001). However, the ultimate causes
may be “planned” deforestation for
commodity production for
international markets
https://ourworldindata.org/drivers-of-
deforestation

Population density is so coarse that it
is currently not found to be a useful
matching variable.

Soil types are a categorical hierarchy
but currently too fine to be used
effectively for matching. A better
layer should be sought.

Including recent history of
deforestation in 1 km radius around
points improves matching but needs
more thought to consider if this
creates bias in outcomes.

Additionality estimates are very
sensitive to decisions about the
choice of matching algorithm and its
parameters (Guizar-Coutiño 2022)
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A22 Counterfactual matches are
only made within the same
country

Political decisions are key to success
of REDD+; matching by country is
reasonable because reference areas
are typically in the same region
(VM0009) and subject to the same
policies, legislation and regulation
(VM0015).There is precedent for
matching in country (Guizar-Countiño
et al., 2022; West et al., 2023).

Some projects may be exposed to
threats which are international in
nature, in which case a country-level
counterfactual will underestimate
additionality.

We have the ability to test the
sensitivity of results to matching to
similar ecoregions beyond the
country, should this be necessary.

A23 To be matched, pixels must
have the same land use at start
of project and at 5 and 10 years
before the start (t0, t-5, t-10)

This is a reasonable approximation
to VCS which requires that REDD+
projects have remained forest for 10
years prior to project initiation
(VM0007; VM0015).

It is possible to extend the demand
that pixels be matched on the entire
time series. However this can only
ever go back as early as
approximately 1990.

A24 Matching using BACI +
Mahalanobis distance sampling
without replacement and
without callipers gives reliable
estimates of additionality.

This is a widely used approach in
assessment of conservation impacts
(Schleicher et al., 2019)

Additionality estimates are very
sensitive to decisions about the
choice of matching algorithm and its
parameters (Guizar-Coutiño 2022)

A25 The project area is the spatial
polygon that defines the area in
which the project is primarily
operating to conserve forest.
Consequences on carbon
storage are only assessed
within the project and
surrounding leakage areas.

Verra trims project area boundaries
to exclude any deforestation occuring
within the project boundary in the run
up to implementation. Under their
standard there’s no deforestation in
the project area prior to project start,
by definition. Thus, it is not
necessary to apply BACI
methodologies to the project area
under these circumstances.
Guizar-Coutiño et al. (2022) chose to
work with CI methods not BACI for
this reason. An alternative solution to
this is to analyse project and buffer
areas simultaneously, because the
buffer areas include the deforested
pixels that Verra has excluded from
the project area.

A26 We assume that the evolution of
the project and the
counterfactual differ due only to
human intervention.

This is the state of the art. Project and counterfactual pixels that
have the same parameters might still
differ due to their inherent
stochasticity. Moreover, project pixels
are typically geographically
contiguous, whereas counterfactual
pixels may not be. In this case, even
with perfect per-pixel matching,
geographically contiguous
disturbances may affect project pixels
more than counterfactual pixels, and
deforestation pressures on small
parcel sizes may affect
counterfactual pixels more than
project pixels. We can test this
through placebos.
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3.Notation

Term Meaning (units) Default value

SCC(t) Social cost of carbon at time interval t ($⋅GtCO2
-1)

𝛿 Annual discount rate 3%/year

L Lifetime of carbon in the atmosphere 500 years (A1)

R Mean observed deforestation amount in the project in the prior 5
years from the time at which this computation is being carried out
(GtCO2)

D Social cost of damage from the release of sequestered carbon
following the assumed release schedule

t0 Year of start of project implementation

tnow Year of evaluation

t-5 Five years before year of implementation

tend Year when the project ends according to the project design
document

trelease Year when all net sequestration in the evaluation period is
released

Ptot(t) Total biomass in project in year t

Ctot(t) Total biomass in the matched counterfactual region in year t

4.Inputs

1. Project design document (PDD) and any project monitoring reports which contain
a. Years for which project ex-post additionality, leakage and other impacts need to be

estimated
b. A KML file with geodetic polygons that delineate the project zone(s).

2. GEDI Level 4a data providing aboveground biomass of a location (latitude, longitude) from
the GEDI waveform from a shot at that location (Duncanson et al., 2022)

3. Land cover time series consisting of an image layer for each year. For any pixel, its land use
class for a given year can be looked up as AFC[year][latitude][longitude. We use the Annual
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Forest Change Collection (AFC) land use class at 30m resolution per pixel [Vancutsem et al,
2021]. The land use classes(LUC) are Undisturbed, Degraded, Deforested, Regrowth, Water,
and Other.

4. Large Scale International Boundary (LSIB) Polygons (United States Department of State,
Office of the Geographer. 2017)

5. RESOLVE Ecoregions 2017 (RESOLVE Biodiversity and Wildlife Solutions, Dinerstein et at.
2017)

6. NASA/CGIAR SRTM 90m Digital Elevation (NASA/CGIAR) to derive slope.
7. Accessibility to Healthcare in 2015 (Malaria Atlas Project; Weiss et al, 2018)
8. OpenLandMap USDA Soil Taxonomy Great Groups (EnvirometriX)
9. GPWv411: UN-Adjusted Population Density (NASA SEDAC)
10. Qualitative assessment whether the project is low or high quality. (A2)
11. Polygon database of all REDD+ projects + 5km buffer around each project in tropical moist

forests (compiled from Verra registry and any other REDD+ projects we are aware of).
12. Social Cost of Carbon (SCC) Table from (Groom and Venmans. 2022). See also (Nordhaus

2014; Marshal and Kelly 2010)
13. Filters for country, ecoregion (Dinerstein et al. 2017), elevation range (Jarvis et al. 2008);

GTOPO30), accessibility range 2015 (Weiss et al. 2018), soil type (Hengle and Nauman
2018) and above ground biomass range in 2010 (Spawn et al., 2020).

14. Population density for the nearest 5 year interval (Center for International Earth Science
Information Network-CIESIN - Columbia University. NASA Socioeconomic Data and
Applications Center (SEDAC) Palisades, NY 2018.

15. PDD estimate of AGB per LUC.
16. Leakage estimation from PDD.

5. Outputs
1. Additionality of the project for each year in the evaluation period which is the period from the

official start year of the project until the most recent year of ex-post evaluation; if no
alternative claims of additionality are available the evaluation is made up to the most recently
available land cover data (GtCO2)

2. Local leakage of the project for each year in the evaluation period (GtCO2)
3. An estimate of equivalent permanence (eP) of the carbon sequestered in the evaluation

period (0<= EP <= 1).
4. Paired pixels with the first element of the pair being from the match area and the second

being in the region from which counterfactuals are drawn, used for visualisation.

6. Algorithm
Sketch

The project area is modelled as a population of 30m by 30m pixels, each of whose centroids
lies within the given project polygons. Each pixel is associated with a land use class, such as
‘Undisturbed’ or ‘Deforested’ using the JRC Annual Forest Change map. We then use GEDI shots to
estimate the carbon density of each land use class (LUC) (Section 6.1).

We match each project pixel to 100 counterfactual pixels which are from the same LUC and
have similar environmental properties to the project pixel (e.g. similar accessibility), and compute the
total biomass in the project area and the total biomass in all the counterfactual pixels, divided by 100.
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(Section 6.2 and 6.3) Their difference is the additionality in the project. A similar computation is
carried out for the leakage area. This leakage is subtracted from the additionality.

Finally the permanence of (additionality-leakage) in the evaluation period is estimated using
the approach from (Balmford et al, 2023) (Section 6.4).

6.1 Data preparation for identifying candidate counterfactual
pixels and tracking land use

1. Coarsened proportional land cover layers are produced for each land use class for each year
at 1200 m resolution by first converting the 30 m land class pixels to a binary layer (i.e. is the
pixel in the class or not for each of the 6 LUC) and then summing the binary layer and dividing
by the total number of contributing pixels. This results in computing the proportion of each
LUC in each 1200m x 1200m patch.

Comment: We now estimate the carbon density in Mg/ha for each LUC in the project area. AGB was
predicted by the NASA team by modelling relative canopy height density values extracted from full
waveform space-borne LiDAR measurement as a function of field measurements of AGB obtained
from a global dataset, using ordinary least squares regression (Duncanson et al. 2022). (A3)

2. If the project is assessed as high quality, then the AGB per land class for both the project and
control are determined using both the values reported in the PDD as well as the process
detailed below. If the PDD does not report AGB values for certain land classes, the
assumptions made in determining these values should be clearly stated. (A2)

3. Let B = a set of pixels, initially empty.

4. Find all GEDI level 4a shots falling within the project area as well as a 30 km buffer around it
and add them to B. Comment: Currently, this is done using the ‘buffer’ function in Google
Earth Engine. (A4, A5)

5. Let S be the set of shots in B after filtering using degrade_flag == 0, beam_type ==

'full', l4_quality_flag == 1, flag != “leaf-off state”. (A6)

6. For each shot s in S

a. Set s.LUC from the Annual Forest Change land use class (A7, A8)

b. Discard s if the LUC of any of the 8 immediately neighbouring pixels differs from the
s.LUC. This corrects for the fact that GEDI shots have a 10 m geolocation error with
respect to AFC (Dubayah et al. 2020).

c. Save s.land_use_class and s.agbd in a table T.

7. Compute the median s.agbd value for each land use class from T.

8. Belowground biomass (BGB) and deadwood biomass is assumed to be 20% and 11% of AGB
respectively (Cairns et al. 1997; IPCC 2003). (A9)

9. Total biomass (= AGB + BGB + deadwood biomass) is converted to carbon density in Mg/ha
by multiplying by the average carbon density of 0.47 (A10)
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6.2 Additionality

1. Let T be the set of pixels in the project area as defined by the project polygons at time t0 (A24,
A25). Let |T | be the number of pixels in T.

2. For each pixel in T find its land use class V.
3. For each year t of time series from t0 to tnow, where t0 = year of project start and tnow is the year

of assessment.
a. Let NT,V(t) be the number of pixels in each class V in T in year t
b. The proportion of the project area in class V in year t is NT,V(tnow)/|T|.
c. For each land use class V

i. Find the total area in class V by multiplying NT,V(t)/|T| by the total project area,
T *30*30 in square metres.

ii. ST,V(t) = Carbon stock per ha in class V * total area of class V in the project.
d. Ptot(t) = total carbon stock for year t in the project area = SP,V(t)Σ

𝑉 

e. Do the following 100 times indexed by i (as a bootstrap and to match each pixel to
100 counterfactual pixels):

i. Let C be the set of counterfactual matching pixels, which is the result of
calling Procedure Find Matches with:

1. Match source = all project polygons (A11)
2. Match destination = the intersection of a 2000 km buffer around

project(A12), the country boundary from LSIB countries for the
project’s country, and the ecoregion boundaries from RESOLVE
Ecoregions for all the ecoregions that lie within the project

3. Exclude region = other REDD+ project areas AND a 5 km leakage
buffer around these REDD+ projects AND a 5km leakage buffer
around the project polygon. (A13, A14)

ii. Let |C| be the number of pixels in C.
iii. For each pixel in C find its land use class V.
iv. Let NC,V(t) be the number of pixels in class V in C in T.
v. The proportion of the counterfactual area in class V in year t is NC,V(t)/|C|.

vi. For each land use class V
1. Find the total area in class V in the counterfactual scenario by

multiplying NC,V(t)/|C| by the total project area.
2. SC,V(t)(i) = carbon stock per unit area in class V * total area of class V

in the counterfactual scenario.
f. Ctot(t) = mean total carbon for year t in the counterfactual scenario = SC,V(t)(i)

1
100 Σ

𝑉 
Σ

𝑖 

g. Calculate additionality within project area as (A15, A16, A26):
Additionality(t) = Ptot(t) - Ctot(t)

6.3 Leakage
Note: calculation of CO2 stock changes in leakage zones follows the same logic as calculation of
additionality CO2 stock changes (above), with the only difference being the area where the
calculations are made

1. If the project is assessed as high quality, then the leakage is determined as a fraction of the
additionality as reported in the PDD as well as using the process detailed below. (A2)

2. The leakage area is a 5 km buffer around the project polygons. (A14)
3. Let T be the set of pixels in the leakage area at time t0. Let |T | be the number of pixels in T.
4. For each pixel in T find its land use class V.
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5. For each year t of time series from t0 to tnow, where t0 = year of project start and tnow is the year
of assessment.

a. Let NT,V(t) be the number of pixels in each class V in T in year t.
b. The proportion of the project area in class V in year t is NT,V(t)/|T|.
c. For each land use class V

i. Find the total area in class V by multiplying NT,V(t)/|T| by the total leakage
area T *30*30 in square metres.

ii. ST,V(t) = carbon stock per unit area in class V * total area of class V in the
leakage area.

d. Ltot(t) = mean total carbon stock for year t in the leakage area = SP,V(t)Σ
𝑉 

e. Do the following 100 times indexed by i (as a bootstrap and to match each leakage
pixel to 100 counterfactual pixels)

i. Let C be the set of counterfactual matching pixels, which is the result of
calling Procedure Find Matches with

1. Match source = leakage area (A11)
2. Match destination = 2000 km buffer around project (A12) + country

boundary from LSIB countries for the project’s country + ecoregion
boundaries from RESOLVE Ecoregions for all the ecoregions that lie
within the project

3. Exclude region = other REDD+ project areas AND a 5 km leakage
buffer around these REDD+ projects AND the project area.(A13,
A14)

ii. Let |C| be the number of pixels in C.
iii. For each pixel in C find its land use class V.
iv. Let NC,V(t) be the number of pixels in class V in C in T.
v. The proportion of the counterfactual area in class V in year t is NC,V(t)/|C|.

vi. For each land use class V
1. Find the total area in class V in the counterfactual scenario by

multiplying NC,V(t)/|C| by the total project area.
2. SC,V(t)(i) = carbon stock per ha in class V * total area of class V in the

counterfactual scenario.
f. Ltot(t) = mean total carbon stock for year t in the project area = ST,V(t)(i)

1
100 Σ

𝑉 
Σ

𝑖 

g. Ctot(t) = mean total carbon stock for year t in the counterfactual scenario = 1
100 Σ

𝑉 
Σ

𝑖 

SC,V(t)(i)
h. Calculate leakage as (A15, A16):

Leakage(t) = Ltot(t) - Ctot(t)

6.4 Permanence
This computation is carried out at the end of an evaluation period in year ti. Let the end of the
immediately previous time period where estimates of additionality and leakage are available be
denoted by ti-1 (normally, this would be the end of the previous year, which may precede the year of
project start).

1. Let C(ti) denote the net sequestration/release of (additionality -leakage) during the ith

evaluation period ti, which is computed at the end of that period:

C(ti) = (Additionality(ti) - Leakage(ti)) - ((Additionality(ti-1) - Leakage(tii-1))

1. Compute the average annual additionality, net of leakage, for the past 5 years in the project
as:
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R = (C(ti) - C(ti-5)).1
5

where ti-5 denotes 5 years before ti.
2. Adjust C(ti) for anticipated releases from prior evaluations that didn’t happen:

a. Let r(t1,ti) denote the anticipated release in the evaluation period ti estimated at any
prior time t1.

b. Compute Adjustment = r(t1,ti)Σ
𝑡1

c. Let Cadj(ti) = C(ti) + Adjustment. If Cadj(ti) is negative, then the project will need to
borrow credits from other projects or a credit buffer, requiring human intervention.

3. If Cadj(ti) is positive, the benefit of sequestration is Cadj(ti) * SCC(ti), where SCC(ti) is the social
cost of carbon in the time interval ti (see Table in Appendix). Otherwise, the damage from
carbon release is -Cadj(ti) * SCC(ti). (A17, A18)

4. If a project is assessed to be high quality then the release during each evaluation period
before the end of the project, tend, is 0 and r(ti, tend+ j), j >0 is equal to R until Cadj(ti) drops to
zero. (A19, A2)

5. If a project is assessed to be low quality then r(ti, ti+ j), j >0 is equal to R until Cadj(ti) drops to
zero. (A19, A2)

6. Let trelease denote the year when all net sequestration in the prior period is released. Under the
release schedule assumed in the previous step, and with a discount factor , the damage𝛿
from the carbon release (D) is calculated as:

𝐷 =
𝑖=𝑡𝑖

𝑡𝑖 +𝑡
𝑟𝑒𝑙𝑒𝑎𝑠𝑒

∑ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝑖)⋅𝑆𝐶𝐶(𝑖)  /(1 + 𝛿)(𝑖 −𝑡𝑖)

7. Equivalent permanence (eP) is calculated as eP = (Cadj(ti) - D)/Cadj(ti)

6.5 Find Matches (match source, match destination, exclude
area) (This is called from Section 6.2 and 6.3)

Inputs:
1. Match source (polygon)
2. Match destination (polygon) = landscape within which project is located.
3. Exclude area (polygon) = areas where matches won’t be sought. The match area is

automatically excluded.

Algorithm
1. Let K be a sample of 30m-resolution pixels in the match source, sampled at a density of 0.25

points per hectare for smaller projects and 0.05 points per ha for large projects (>250k ha)
(A20)

2. Let R be the potential set of pixels in the matching destination(s), i.e. the counterfactual area,
but excluding pixels in the exclude area.

3. Let S be an empty set of pixels (the candidate matches). We later select the matches from
this candidate set, so can be somewhat loose about the matching criteria in choosing pixels in
S.
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4. Because Google Earth engine cannot export more than 10,000 points at a time, we
repeatedly sample points from the match destination R to incrementally build up S.
Specifically, let P be a sample of 100 points from R alternating between randomly or stratified
by land cover class

a. For each pixel in K and for each potential pixel p in P add p to S if all of the following
fields match (A21):

i. Country (A22)
ii. Ecoregion
iii. Land use class at t-10 and t-5 and t0
iv. Elevation (±200m)
v. Slope (±2.5°)

vi. Accessibility in 2015 (±10 minutes)
5. Run step 4 until S has 10 times as many pixels as the project area K.

Comment: Now we proceed to matching the match area pixels in K with candidate pixels in S for
calculating additionality

6. Let MP be the empty set of pixels (used to store the matched pairs)
7. For a 10% sample of pixels in K, pair one-to-one with the pixel in S that has exact match to:

a. land use class (from input 2) at years t-10, t-5 and t0, where t = the project start date.
(A23)

b. Country
c. Ecoregion

and that has the minimum Mahalanobis distance across the following matching variables:
d. Elevation
e. Slope
f. Accessibility
g. Coarsened proportional cover of undisturbed and deforested land within a 1 km

radius buffer around the points at t-10, t-5 and t0
Comment: We use the MatchIt package in R (version 4.4.0) in R (version 4.2.1), sampling
without replacement and without callipers. [A24]

8. Add all paired pixels to MP
9. Compute the standardised mean differences between each matching variable of the paired

pixels in MP (specifically, between the treatment and control in treatment standard
deviations).

10. Matching results are considered valid and can be used for additionality calculations if:
a. All matching variables are balanced which is defined as the std mean diff <0.2
b. A continuous matching variable in the range [0,1] with a value of close to 1 or 0

(>0.975 or <0.025) has standard mean difference > 0.2. This is because, when close
to 0% or 100%, the standard mean difference can be misleading.

11. If results are not valid, then no credible claims can be made, so exit with failure to match.
12. Return MP

7. Known issues
1. The current method does not depend on empirical observations: landscape-level

quantification of disturbance patterns estimated from remote sensing data products is needed
to estimate area-specific release schedules.

2. The current method does not take into account spatial and temporal variability in disturbance
and carbon release schedule: it will be preferable to take into account local environmental
(temperature, dryness etc.) and socioeconomic (proximity to road, settlements, existing
disturbed areas) factors, as well as past land use and disturbance history in order to account
for this variability and to be able to make more accurate predictions in a shifting future.
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3. The matching process is ad hoc, so we should test with placebos.
4. This methodology will not work well for plots/polygons that are smaller than 10ha or so

because of the pixel size being 30m.
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