Momentum-Velocity Equivalence

Chinnaraji Annamalai

School of Management, Indian Institute of Technology, Kharagpur, India

Email: anna@iitkgp.ac.in

https://orcid.org/0000-0002-0992-2584

Abstract: In Newtonian mechanics, the momentum of a moving object is measured as the product of its mass and velocity. In this article, a new concept and equations are proposed regarding the momentum-velocity equivalence.

Keywords: object in motion, variable mass, momentum-velocity relation

Momentum and Velocity

The momentum (P) of a moving object is directly proportional to its velocity with respect (v) to its mass (m) over time (t).

 $P \alpha v \Rightarrow P = mv$, where m is constant.

Let
$$m > m_i$$
. $P = m_i v_i = mv$, where $v < v_i$.

Suppose the non-zero *m* is a variable, the following equations are true.

$$P = m_1 v_1$$
; $P = m_2 v_2$; $P = m_3 v_3$; ...; $P = m_k v_k$ at $t = k$, for $t = 1, 2, 3, ..., k$.

Since the momentum is directly proportional to the velocity, $P = m_k v_k = mv$.

Let m be constant. Then, $m_i = m$ and $v_i = v$, for $i = 1, 2, 3, \dots, k$.

i.e.,
$$P = m_1 v_1 = m_2 v_2 = m_3 v_3 = \cdots = m_k v_k = mv$$
.

Let us differentiate the momentum as follows:

$$\frac{dP}{dt} = m_k \frac{dv_k}{dt} + v_k \frac{dm_k}{dt} = \frac{d(m_k v_k)}{dt}, \text{ where } m_k \text{ and } v_k \text{ are a variable.}$$
 (1)

$$\frac{dP}{dt} = m\frac{dv}{dt} = \frac{d(mv)}{dt}, \text{ where } m \text{ is constant.}$$
 (2)

From the equations (1) and (2), we conclude that

$$m_k \frac{dv_k}{dt} + v_k \frac{dm_k}{dt} = \frac{d(m_k v_k)}{dt} = \frac{d(mv)}{dt},$$
(3)

where m_k and m are variable and constant respectively.