Non trivial zeros of the Zeta function using the differential equations

W. Oukil

Faculty of Mathematics.
University of Science and Technology Houari Boumediene.
BP 32 EL ALIA 16111 Bab Ezzouar, Algiers, Algeria.

May 20, 2024

Abstract

Using the differential equations, we obtain a more flexible expression for the Riemann Zeta function on the critical strip. This allows us to prove that for every $\tau \in \mathbb{R}^*$ there exists at most a unique point $r \in (0,1)$ such that $\Im\Big(\zeta(r+i\tau)\Gamma(r+i\tau)\Big) = 0$, where Γ is the Gamma function.

Keywords: Zeta function, Bernoulli numbers, Differential equations. AMS subject classifications: 00A05

1 Main results

Consider the representation of the Riemann Zeta function ζ defined by the Abel summation formula [[1], page 14 Equation 2.1.5] as

$$\zeta(s) := -\frac{s}{1-s} - s \int_{1}^{+\infty} u^{-1-s} \{u\} du, \ \Re(s) \in (0,1), \ \Im(s) \in \mathbb{R}^*, \quad (1)$$

where $\{u\}$ is the fractional part of the real u. In order to simplify the notation, denote $B \subset \mathbb{C}$ the critical strip, defined as

$$B := \{ s \in \mathbb{C} : \Re(s) \in (0,1), \Im(s) \in \mathbb{R}^* \},$$

We prove the following theorems,

Theorem 1. Consider the Zeta function given by the Equation (1). For every $s \in B$ we have

$$\zeta(s)\Gamma(s) = \int_0^1 u^{-2+s} \left(\frac{u}{\exp(u) - 1} - 1\right) du - \int_0^1 u^{-s} \Psi(u) du,$$

where the real function $\Psi:(0,1)\to\mathbb{R}$ is defined as

$$\Psi(u) = u^{-2} \int_0^{+\infty} \{x\} \exp(-xu^{-1}) dx, \quad \forall u \in (0, 1).$$

Theorem 2. For every $\tau \in \mathbb{R}^*$ there exists at most a unique point $r \in (0,1)$ such that

$$\Im\Big(\zeta(r+i\tau)\Gamma(r+i\tau)\Big)=0.$$

2 Basic Lemmas

For every $s \in B$, the Equation (1) is equivalent to,

$$\frac{\zeta(s)}{s} = -\frac{1}{1-s} - \int_{1}^{+\infty} u^{-1-s} \{u\} du.$$

The aim is to studies the differential equation of solutions the functions

$$t \mapsto \psi_s(z,t) := t^s \Big[z + \int_1^t u^{-1-s} \{u\} du \Big], \quad z \in \mathbb{C}, \ t \ge 1.$$

Remark that $\lim_{t\to+\infty} t^{-s}\psi_s((1-s)^{-1},t) = -s^{-1}\zeta(s)$. The strategy to prove the Theorem 1, is to find this limit. For every $s\in B$ we consider the following differential equation

$$\frac{d}{dt}x = st^{-1}x + t^{-1}\{t\},$$

$$t \in \mathbb{R}_+^*/\mathbb{N}, \quad x(1) = \frac{1}{1-s}, \ z \in \mathbb{C}, \quad x : \mathbb{R}_+^* \to \mathbb{C}.$$

$$(2)$$

Lemma 3. Let be $s \in B$. There exists a unique continuous solution $\psi_s(t) : \mathbb{R}_+^* \to \mathbb{C}$ of the differential equation (2) which is defined as

$$\psi_s(t) = t^s \int_0^t u^{-1-s} \{u\} du, \quad \forall t > 0.$$

Proof. Let be $s \in B$ fixed. The function

$$t \in \mathbb{R}_+^* \mapsto t^s \int_0^t u^{-1-s} \{u\} du,$$

is C^{∞} on $\mathbb{R}_+^*/\mathbb{N}$ and continuous on \mathbb{R}_+^* . Since $\{u\}=u$ for every $u\in(0,1),$ then

$$\int_0^1 u^{-1-s} \{u\} = \frac{1}{1-s}.$$

The Equation (2) is a non-homogeneous linear differential equation. The unique continuous solution $\psi_s(t): \mathbb{R}_+^* \to \mathbb{C}$ such that $\psi_s(1) = \frac{1}{1-s}$. is given by

$$\psi_s(t) = t^s \int_0^t u^{-1-s} \{u\} du, \ \forall t > 0.$$

Let us introduce the following notations,

Notation 4. Let $g: \mathbb{R}_+ \to \mathbb{C}$ be a continuous function, we denote the function $\Phi[g]: \mathbb{R}_+ \to \mathbb{C}$ as

$$\Phi[g](t) := \int_0^t g(u)du, \quad \forall t \ge 0,$$

Notation 5. We denote the function $p: \mathbb{R} \to \mathbb{R}$ as

$$p(t) := \{t\}, \quad \forall t > 0.$$

Lemma 6. For every $n \in \mathbb{N}$ we have

$$\Phi^{n+1}[p](t) = -\frac{1}{(n+2)!} \sum_{k=1}^{n+2} B_k \binom{n+2}{k} t^{n-k+2} + p_n(t), \quad \forall t \ge 0,$$

where $(B_k)_{k\in\mathbb{N}}$ are the Bernoulli numbers and and where the real sequence functions $(p_n)_{n\in\mathbb{N}}$ is defined for every $k\in\mathbb{N}$ as

$$p_{2k+1}(t) := (-1)^k \sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^{2k+3}} \sin(j2\pi t),$$
$$p_{2k}(t) := (-1)^k \sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^{2k+2}} \cos(j2\pi t),$$

Proof. Prove that

$$\Phi[p](t) = \int_0^t \{u\} du = \frac{1}{2}t - \frac{1}{12} + p_0(t), \quad \forall t \ge 0,$$

The function $u \mapsto \{u\}$ is 1-periodic, then there exists a continuous 1-periodic function $\tilde{p} : \mathbb{R} \to \mathbb{R}$ such that

$$\int_0^t \{u\} du = t \int_0^1 \{u\} du + \tilde{p}(t), \quad \forall t \ge 0.$$

Since

$$\int_0^1 \{u\} du = \int_0^1 u \ du = \frac{1}{2},$$

we get

$$\Phi[p](t) - \frac{1}{2}t = \int_0^t \left(\{u\} - \frac{1}{2} \right) du = \tilde{p}(t), \quad \forall t \ge 0.$$
 (3)

The function \tilde{p} is a piecewise C^{∞} , continuous on \mathbb{R} and 1-periodic. By Dirichlet Theorem, the Fourier series

$$n \mapsto \sum_{k=-n}^{n} a_k \exp(ik2\pi t),$$

converge uniformly on \mathbb{R}_+ to the function $t \mapsto \tilde{p}(t)$, where $(a_k)_k \subset \mathbb{C}$ are the Fourier coefficients of the function \tilde{p} .

$$\tilde{p}(t) = \sum_{j \in \mathbb{Z}} a_j \exp(ij2\pi t), \quad \forall t \ge 0.$$

By definition of the Fourier coefficients and the Equation (3) we have

$$\begin{split} a_j &= \int_0^1 \exp(-ij2\pi u) \tilde{p}(u) du \\ &= \int_0^1 \exp(-ij2\pi u) \Big(\int_0^u \Big(\{v\} - \frac{1}{2}\Big) dv \Big) du \\ &= \frac{1}{2} \int_0^1 \exp(-ij2\pi u) u(u-1) du = \frac{1}{(2j\pi)^2}, \quad \forall j \in \mathbb{Z}^*, \end{split}$$

and

$$a_0 = \frac{1}{2} \int_0^1 u(u-1)du = -\frac{1}{12} = -\sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^2}.$$

The function \tilde{p} satisfies

$$p(t) = \sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^2} \left(\exp(ij2\pi t) - 1 \right) = -\frac{1}{12} + p_0(t), \quad \forall t \ge 0.$$

The Equation (3) implies

$$\Phi[p](t) = \frac{1}{2}t - \frac{1}{12} + p_0(t), \quad \forall t \ge 0.$$

Integrate successively to obtain

$$\Phi^{n+1}[p](t) = \frac{1}{2} \frac{t^{n+1}}{(n+1)!} + \sum_{k=0}^{n} \frac{c_k}{(n-k)!} t^{n-k} + p_n(t), \quad \forall t \ge 0, \ \forall n \ge 0,$$

where $(c_k)_{k\in\mathbb{N}}$ are defined as

$$c_{2k+1} = 0$$
 and $c_{2k} = (-1)^k \sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^{2(k+1)}}, \quad \forall k \ge 0.$

By definition of the Bernoulli numbers $(B_k)_{k\in\mathbb{N}^*}$, we get

$$\Phi^{n+1}[p](t) = -\frac{1}{(n+2)!} \sum_{k=1}^{n+2} B_k \binom{n+2}{k} t^{n-k+2} + p_n(t), \quad \forall t \ge 0, \ \forall n \ge 0,$$

3 Proof of the Theorem 1

Proof of the Theorem 1. Let be $s \in B$ and consider the continuous solution $\psi_s(t): \mathbb{R}_+^* \to \mathbb{C}$ defined in the Lemma 3. We recall that

$$\psi_s(t) = t^s \int_0^t u^{-1-s} p(u) du, \quad \forall t > 0, \tag{4}$$

where $p(t) = \{t\}$ is defined as in the Notation 5. Using the fact p(u) = u for every $u \in [0, 1)$, we have

$$\psi_s(t) = (1-s)^{-1}t, \quad \forall t \in (0,1),$$

Then the function ψ_s satisfies the following differential equation

$$t\frac{d}{dt}\psi_s = s\psi_s + \{t\}, \quad t \ge 0, \quad \psi_s(0) = 0.$$

By definition of Φ in the Notation 4, we get

$$t\frac{d}{dt}\Phi^{n+1}[\psi_s](t) = (n+1+s)\Phi^{n+1}[\psi_s](t) + \Phi^{n+1}[p](t),$$

$$\Phi^{n+1}[\psi_s](0) = 0, \quad \forall t \ge 0, \quad \forall n \ge 0,$$
(5)

Integrate

$$\Phi^{n+1}[\psi_s](t) = t^{n+1+s} \int_0^t u^{-n-2-s} \Phi^{n+1}[p](u) du, \quad \forall t \ge 0, \quad \forall n \ge 0,$$

In particular, we get

$$\frac{(n+1)!\Phi^{n+1}[\psi_s](n)}{n^{n+1}} = (n+1)!n^s \int_0^n u^{-n-2-s}\Phi^{n+1}[p](u)du, \quad \forall n \ge 0,$$

which can be written as

$$\frac{(n+1)!\Phi^{n+1}[\psi_s](n)}{n^{n+1}} = (n+1)!n^s \int_0^{+\infty} u^{-n-2-s}\Phi^{n+1}[p](u)du$$
$$-(n+1)!n^s \int_n^{+\infty} u^{-n-2-s}\Phi^{n+1}[p](u)du, \quad \forall n \ge 0.$$

Use the integration by part formula for the first integral of the right term of the last equality, we get

$$\frac{(n+1)!\Phi^{n+1}[\psi_s](n)}{n^{n+1}} = \frac{(n+1)!n^s}{\prod_{j=1}^{n+1}(j+s)} \int_0^{+\infty} u^{-1-s}p(u)du$$
$$-(n+1)!n^s \int_n^{+\infty} u^{-n-2-s}\Phi^{n+1}[p](u)du, \quad \forall n \ge 0.$$

Since $p(u) = \{u\}$. By definition of the Zeta function given by the Equation (1), we get

$$\frac{\zeta(s)}{s} \frac{(n+1)! n^s}{\prod_{j=1}^{n+1} (j+s)} = -\frac{(n+1)! \Phi^{n+1} [\psi_s](n)}{n^{n+1}} - (n+1)! n^s \int_n^{+\infty} u^{-n-2-s} \Phi^{n+1} [p](u) du, \quad \forall n \ge 0.$$

Using the Taylor formula and the definition of Φ , we have

$$\Phi^{n+1}[\psi_s](n) = \frac{1}{n!} \int_0^n (n-x)^n \psi_s(x) dx,$$

Then

$$\frac{\zeta(s)}{s} \frac{(n+1)!n^s}{\prod_{j=1}^{n+1}(j+s)} = -\frac{n+1}{n^{n+1}} \int_0^n (n-x)^n \psi_s(x) dx - (n+1)!n^s \int_r^{+\infty} u^{-n-2-s} \Phi^{n+1}[p](u) du.$$

Replace in the last Equation the function ψ_s by it quantity given in the Equation (4), we obtain

$$\begin{split} \frac{\zeta(s)}{s} \frac{(n+1)!n^s}{\prod_{j=1}^{n+1}(j+s)} &= -\frac{n+1}{n^{n+1}} \int_0^n (n-x)^n x^s \int_0^x u^{-1-s} p(u) du dx \\ &- (n+1)!n^s \int_n^{+\infty} u^{-n-2-s} \Phi^{n+1}[p](u) du, \quad \forall n \geq 0. \end{split}$$

Since $s \in B$, then $\Re(s) \in (0,1)$ and p(u) = u for $u \in [0,1)$. Using the integration by part formula, we have

$$\int_0^n (n-x)^n x^s \int_0^x u^{-1-s} p(u) du dx = \int_0^n p(x) x^{-1-s} \int_x^n (n-u)^n u^s du dx.$$

We have obtained

$$\frac{\zeta(s)}{s} \frac{(n+1)! n^s}{\prod_{j=1}^{n+1} (j+s)} = -\frac{n+1}{n^{n+1}} \int_0^n p(x) \ x^{-1-s} \int_x^n (n-u)^n u^s du dx
- (n+1)! n^s \int_n^{+\infty} u^{-n-2-s} \Phi^{n+1}[p](u) du.$$
(6)

By the Lemma 6, we have

$$\Phi^{n+1}[p](u) = p_n(u) - q(n, u), \tag{7}$$

where in order to simplify the notation, we denoted q(n, u) the following Bernoulli polynomial

$$q(n,u) := \sum_{k=1}^{n+2} \frac{B_k}{k!} \frac{u^{n+2-k}}{(n+2-k)!}.$$
 (8)

By the notation of p_n in the Lemma 6, we have $\sup_{n>0} \max_{v\in[0,1]} |p_n(v)| < +\infty$. By Stirling formula, we get

$$\lim_{n \to +\infty} (n+1)! n^s \int_n^{+\infty} u^{-n-2-s} p_n(u) du = 0.$$

The Equation (6), implies

$$\zeta(s)\Gamma(s) = \lim_{n \to +\infty} \eta_s(n), \tag{9}$$

where

$$\eta_s(n) := -\frac{n+1}{n} \int_0^n p(x) \ x^{-1-s} \int_x^n (1 - \frac{u}{n})^n u^s du dx$$
$$+ (n+1)! n^s \int_n^{+\infty} u^{-n-2-s} q(n, u) du.$$

and where Γ is the Gamma function. Now, we simplify the limit $\lim_{n\to+\infty} \eta_s(n)$. By definition of q in the Equation (8), we have

$$\eta_{s}(n) = -\frac{n+1}{n} \int_{0}^{n} p(x) x^{-1-s} \int_{x}^{n} (1 - \frac{u}{n})^{n} u^{s} du dx
+ (n+1)! n^{s} \int_{n}^{+\infty} u^{-s} \sum_{k=1}^{n+2} \frac{B_{k}}{k!} \frac{u^{-k}}{(n+2-k)!} du
= -\frac{n+1}{n} \int_{0}^{n} p(x) x^{-1-s} \int_{x}^{n} (1 - \frac{u}{n})^{n} u^{s} du dx
+ (n+1)! \int_{0}^{1} u^{-2+s} \sum_{k=1}^{n+2} \frac{B_{k}}{k!} \frac{n^{1-k} u^{k}}{(n+2-k)!} du.$$
(10)

Implies

$$\eta_s(n) = -\frac{n+1}{n} \int_0^n p(x) \ x^{-1-s} \int_x^n (1 - \frac{u}{n})^n u^s du dx + \int_0^1 u^{-2+s} \varphi_n(u) du,$$
(11)

where in order to simplify the notation, we denoted

$$\varphi_n(u) := \sum_{k=1}^{n+2} \frac{B_k}{k!} \frac{(n+1)! n^{1-k} u^k}{(n+2-k)!}, \quad \forall u \in (0,1), \ \forall n \ge 0.$$

For every fixed $n \ge 1$ the function $u \mapsto \varphi_n(u)$ is an alternating finite series. For every fixed $(n, m) \in \mathbb{N}^2$ such that $4m \le n$ we have

$$\sum_{k=1}^{2(2m+1)} \frac{B_k}{k!} \frac{(n+1)! n^{1-k} u^k}{(n+2-k)!} \le \varphi_n(u) \le \sum_{k=1}^{4m} \frac{B_k}{k!} \frac{(n+1)! n^{1-k} u^k}{(n+2-k)!}, \ \forall u \in (0,1),$$

Then for every $m \geq 1$, we get

$$\sum_{k=1}^{2(2m+1)} \frac{B_k}{k!} u^k \le \lim_{n \to +\infty} \varphi_n(u) \le \sum_{k=1}^{4m} \frac{B_k}{k!} u^k, \ \forall u \in (0,1),$$

Implies

$$\lim_{m \to +\infty} \sum_{k=1}^{2(2m+1)} \frac{B_k}{k!} u^k \le \lim_{n \to +\infty} \varphi_n(u) \le \lim_{m \to +\infty} \sum_{k=1}^{4m} \frac{B_k}{k!} u^k, \ \forall u \in (0,1),$$

In other words, the following convergence is uniform

$$\lim_{n \to +\infty} \varphi_n(u) = \sum_{k=1}^{+\infty} \frac{B_k}{k!} u^k = \frac{u}{\exp(u) - 1} - 1, \ \forall u \in (0, 1).$$

From the Equation (11), we obtain

$$\lim_{n \to +\infty} \eta_s(n) = -\int_0^{+\infty} p(x) \ x^{-1-s} \int_x^{+\infty} \exp(-u) u^s du dx$$
$$+ \int_0^1 u^{-2+s} \left(\frac{u}{\exp(u) - 1} - 1\right) du.$$

Use the change of variable $u \mapsto xv$, for the first integral of the right term of the last equality, we get

$$\lim_{n \to +\infty} \eta_s(n) = -\int_0^{+\infty} p(x) \int_1^{+\infty} \exp(-xv) v^s dv dx$$
$$+ \int_0^1 u^{-2+s} \left(\frac{u}{\exp(u) - 1} - 1\right) du.$$

then

$$\lim_{n \to +\infty} \eta_s(n) = -\int_1^{+\infty} v^s \left(\int_0^{+\infty} p(x) \exp(-xv) dx \right) dv$$
$$+ \int_0^1 u^{-2+s} \left(\frac{u}{\exp(u) - 1} - 1 \right) du.$$

By consequence, the Equation (9) implies,

$$\zeta(s)\Gamma(s) = -\int_{1}^{+\infty} v^{s} \left(\int_{0}^{+\infty} p(x) \exp(-xv) dx \right) dv$$
$$+ \int_{0}^{1} u^{-2+s} \left(\frac{u}{\exp(u) - 1} - 1 \right) du.$$

4 Proof of the Theorem 2

Proof of the Theorem 2. Let be $\tau \in \mathbb{R}^*$ fixed. Define the function $f_{\tau}:(0,1)\mapsto \mathbb{R}$ as

$$f_{\tau}(r) := \Im\Big(\zeta(r+i\tau)\Gamma(r+i\tau)\Big), \quad \forall r \in (0,1).$$

The strategy to prove the present Theorem is to prove that $\tau \frac{d}{dr} f_{\tau}(r) < 0$ for every $r \in (0, 1)$. By the Theorem 1, we have

$$f_{\tau}(r) = \int_{0}^{1} \sin(\tau \ln(u)) u^{-2+r} \left(\frac{u}{\exp(u) - 1} - 1\right) du$$
$$+ \int_{0}^{1} \sin(\tau \ln(u)) u^{-r} \Psi(u) du$$
$$= \frac{1}{\tau} \int_{0}^{1} \left(1 - \cos(\tau \ln(u))\right) \frac{d}{du} g(r, u) du.$$

where in order to simplify the notation, we denoted

$$g(r,u) := \frac{u^r}{\exp(u) - 1} - u^{-1+r} + u^{1-r}\Psi(u), \quad \forall u \in (0,1),$$

Implies

$$\frac{d}{dr}f_{\tau}(r) = \frac{1}{\tau} \int_{0}^{1} \left(1 - \cos(\tau \ln(u))\right) \frac{d}{dr} \frac{d}{du} g(r, u) du$$

$$= \frac{1}{\tau} \int_{0}^{1} \left(1 - \cos(\tau \ln(u))\right) \frac{d}{du} \frac{d}{dr} g(r, u) du, \tag{12}$$

Since

$$\Psi(u) = u^{-2} \int_0^{+\infty} \{x\} \exp(-xu^{-1}) dx, \quad \forall u \in (0, 1),$$

Then for every $u \in (0,1)$ the function g(r,u) can be written as

$$g(r,u) = u^{-1} \int_0^{+\infty} \left[\frac{u^r}{\exp(u) - 1} - u^{-1+r} + u^{-r} \{x\} \right] \exp(-xu^{-1}) dx.$$

Implies

$$\frac{d}{du}\frac{d}{dr}g(r,u) = \int_0^{+\infty} h_r(u,x)u^{-2+r}\exp(-xu^{-1})dx$$

where

$$h_r(u,x) := \frac{1}{\exp(u) - 1} - u^{-3+r} - (1-r)\ln(u)\frac{1}{\exp(u) - 1}$$
$$-\ln(u)\frac{\exp(u)u}{(\exp(u) - 1)^2} + \ln(u)(2-r)u^{-1},$$
$$+ x\ln(u)\left(\frac{u^{-1}}{\exp(u) - 1} - u^{-2}\right)$$
$$+ \left(\ln(u)(1+r) - x\ln(u)u^{-1} - 1\right)u^{-2r}\{x\}$$

For every fixed $r \in (0,1)$ we have $\frac{d}{du}h_r(u,x) > 0$ for every $u \in (0,1)$ and x > 0. Since $h_r(1,x) < 0$ for all x > 0, then $h_r(u,x) < 0$ for every $u \in (0,1)$ and x > 0 We obtain

$$\forall r \in (0,1): \quad \frac{d}{du}\frac{d}{dr}g(r,u) < 0, \quad \forall u \in (0,1).$$

By consequence, the Equation (12) implies $\tau \frac{d}{dr} f_{\tau}(r) < 0$ for every $r \in (0,1)$.

References

[1] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function (revised by D.R. Heath-Brown), Clarendon Press, Oxford. (1986).