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Abstract

This is the second of a series of short papers exploring
various aspects of quantum mechanics and quantum field
theory. The intent of the full series of articles is to take
the reader/student from a basic starting point (somewhere
around high school / first year undergraduate maths/ physics/
engineering) to an understanding of relativistic quantum
mechanics that would be appropriate for a third/fourth
year undergraduate or early stage postgraduate.

This particular article is a derivation of Maxwell’s Equa-
tion from first principles, meaning with no a priori knowl-
edge of the form of the equations, or even of the form of
the electric and magnetic fields.

1 Introduction

1.1 Series Overview

The intent of this series of articles is to allow the reader/student to under-
stand the basic concepts of quantum mechanics and quantum field theory,
but with a starting point of comparatively basic maths and physics, such as a
first year undergraduate studying maths, physics or engineering might have.
The prerequisites are:

� Vectors and basic matrix algebra including eigenvectors and eigenval-
ues.

� Partial differentiation and vector calculus.

� A purely qualitative knowledge of quantum mechanics and special rel-
ativity.

The original motivation for this work was a desire to understand the Higg’s
Boson and how it somehow “creates” mass. To get to that endpoint it turns

*Non-affiliated author.
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out it’s necessary to understand Special (but thankfully not General) rel-
ativity, group theory, Lagrangians and local gauge invariance, Hamilton’s
Principle, the calculus of variations and electro-weak unification. All these
topics, and others, will be introduced along the way.

“Natural units” , where ℏ = c = 1, will be used throughout1, with these
units, mass, energy and momentum are dimensionally equal, as are length
and time which is useful for the concept of spacetime. We’ll also be using
Heaviside–Lorentz units where, in addition, ϵ0 = µ0 = 1.

2 Preliminaries

Unfortunately this paper has to introduce the topic of Tensors, which is a
generalisation of the concept of a vector. In fact scalar quantities can be
considered zero–order tensors, in which case vectors are 1st order tensors
and what we mean by a tensor is a 2nd order (or higher) tensor2. We can
also consider, conceptually, that if a scalar is a quantity with no directional
information ie magnitude only, a vector is a quantity with both magnitude
and direction, then a 2nd order tensor is a quantity that encodes magnitude
and two directions (and so on for higher order tensors), or put another way
a tensor is like a combination of two vectors.

In the Dirac paper (Coker [1]) we were introduced to covariant and con-
travariant vectors with upper and lower indices, so it may not be a surprise
that tensors also have covariant and contraviant components, indeed can be
a mix of both. Whilst tensors have a particular order, they can be of any
dimension (other than scalars of course); not surprisingly for particle physics,
our tensors have dimension four, so typically we use greek indices to indicate
this (µ or ν mostly, but also σ and ρ sometimes). Hence a tensor is expressed
as one of:

Aµν a tensor with two contravariant indices

Aµν a tensor with two covariant indices

Aµ
ν a tensor with one contravariant index and one covariant index

Note that Aµ
ν is not necessarily the same as Aµ

ν .

Whilst our vectors and tensors have dimension four, we use the convention
that the first component (ie µ = 0) is the timelike dimension, and the other
three components refer to the three spacelike dimensions. If we wish to refer
to only the spacelike components we use a roman as opposed to a greek index,
typically i = 1, 2, 3 or j. We will use this convention in Sub-Section 6.1

2.1 Tensor Algebra

Tensor algebra is based around manipulation of the indices and use of the
Einstein Summation Convention where if an index is repeated then a sum-

1Again a topic to be covered in a later paper, but see almost any quantum mechanical
text for a further description.

2Actually tensors have both order and rank, the terms do have strict definitions but
they tend to be used interchangeably.
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mation over the repeated index is assumed:

aibi =
3∑

i=1

aibi = a1b1 + a2b2 + a3b3

In the Dirac paper we encountered this convention, ie we used terms such as
xν = gµνx

µ and ∂µ∂
µ, where we referred to this as “contracting” an index.

However when dealing with tensors it is essential to remember that we only
contract indices when one is an upper, the other a lower index.

Sticking to 1st order tensors for the moment we see:

AµBµ = A0B0 + A1B1 + A2B2 + A3B3

here, whilst Aµ and Bµ are tensors the components A0 and B0 etc are simply
numbers, hence A0B0 = B0A

0, therefore

BµA
µ = B0A

0 +B1A
1 +B2A

2 +B3A
3

= A0B0 + A1B1 + A2B2 + A3B3

= AµBµ

This leads us to a very important distinction, even though vectors are 1st

order tensors, tensor algebra is not the same as vector algebra. The tensor
product AµBµ looks very much like the scalar product of two vectors, but
this only works if A is a row vector and B is a column vector in which case
AB is sort of equal to AµBµ, but whilst A

µBµ = BµA
µ AB ̸= BA.

We can extend this argument a little further, from our knowledge of vector
and matrix algebra we know that AB is a scalar whereas BA is in fact a
matrix. Similarly AµBµ is scalar but AµBν = Cµ

ν is a 2nd order tensor –
the indices are different so we do not contract them. Similarly AµBν = Cµν

whilst AµBµ is simply a mistake – whilst the rules seem difficult and the
use of tensors is far from trivial, the notation and the use of the summation
convention usually allows one to spot mistakes in equations.

Another way to think of this is that the rules of vector and matrix algebra
tell us how to combine the components when we multiply things together
and the order of items in the product terms is important, By contrast, for
tensors it is the index labels and their position that tells us how to combine
components and the order is not relevant.

Addition and subtraction of tensors is comparatively straightforward, the
tensors just need to be of the same order and dimension (and the combination
of covariant and contravariant components needs to be the same), which is
a complex way of saying that the indices just need to be in the same place.

Cµν = Aµν +Bµν – correct

Cµν = Aµν +Bµ
ν – incorrect

Some other rules, the actual index symbol bears no particular relevance, ie
F µν is the same tensor as F σρ. Next, the index that we contract over is often
called the dummy index, any other index is the “free” index, and we should
expect the dummy index to disappear from the result of the contraction and
the free index to remain, For example, Aµ

νB
ν , this means we contract over

the ν index:

Aµ
νB

ν = Cµ
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similarly

AµνBν = Cµ

In these examples the dummy index has disappeared leaving only the free
index.

Next, in any one tensor product (or term in an equation, provided we take
some care and consider how this could affect other terms) we can re–label
the indices provided we are consisent :

aµB
µνcν = aνB

νµcµ – correct

aµB
µνcν = aνB

µνcµ – incorrect

Lastly, Aµν is not necessarily equal to Aνµ, if it is then Aµν is symmetric.
Tensors can also be anti–symmetric where Aµν = −Aνµ.

2.2 Raising and Lowering Indices

As has been mentioned elsewhere, we can raise and lower vector indices using
the metric:

xν = gµνx
µ

where we now see how this is done with our rules on contracting the dummy
index. This can be extended to higher order tensors:

gµνF
µρ = Fν

ρ

here we have contracted against the first index, and we now also see why it’s
important to offset the lower and upper indices to indicate which is the first
and second. We can repeat this a 2nd time:

gσρFν
ρ = Fνσ

gσρgµνF
µρ = Fνσ

It’s worth writing this out in full, component by component, as it will help
us to understand how to manipulate tensor indices. From the Dirac paper
we know that we use the (+,−,−,−) shorthand for the metric, so we have:

gµνF
µρ = Fν

ρ

we can iterate through the Fν
ρ indices as follows:

F0
ρ = gµ0F

µρ

F1
ρ = gµ1F

µρ

F2
ρ = gµ2F

µρ

F3
ρ = gµ3F

µρ

expanding F0
ρ we do so by expanding the µ index on the right hand side

F0
ρ = g00F

0ρ + g10F
1ρ + g20F

2ρ + g30F
3ρ

where all terms except the first are zero from the definition of gµν , hence

F0
ρ = F 0ρ
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continuing

F1
ρ = −F 1ρ

F2
ρ = −F 2ρ

F3
ρ = −F 3ρ

The net effect, therefore, is to reverse the sign of all the rows of F µν except
the first3. Lowering the second index we proceed:

gσρFν
ρ = Fνσ

Fν0 = g0ρFν
ρ

= g00Fν
0 + g01Fν

1 + g02Fν
2 + g03Fν

3

= Fν
0

Fν1 = −Fν
1

Fν2 = −Fν
2

Fν3 = −Fν
3

and the net effect of this is to reverse the sign of all the columns. We can
summarise the combined effect of lowering both indices using the shorthand:

gσρgµν =


+ − − −
− + + +
− + + +
− + + +

 (1)

2.3 Tensor Products

In previous sections we have seen the product of two (or more) tensors and so
far the rules have seemed fairly straight forward – if an index is repeated we
“contract” (and the order of the resultant tensor is reduced), if not we create
a higher order tensor. However, so far we have only contracted one index at
a time, the extension of this to contracting two indices is not immediately
obvious. For example how do we manage the product AµνBµν?

Our rules on dummy indices would seem to say neither is a free index, there-
fore the result would have no index, in others words this tensor product
results in a scalar result ie this is the scalar product of two tensors. This
applies generally ie AµνBµν , A

µνρBµνρ, Aµ
νAµ

ν are all scalar products. If we
consider AµνBµν we interpret this as contracting the first index of A with the
first of B, and similarly for the second. It turns out that this will be useful
later, so it’s also worth working this through in detail.

To calculate AµνBµν we carry out the contraction in two stages:

AµνBµρ = Cν
ρ

then we contract Cν
ρ with itself by setting ν = ρ

Cν
ν = C0

0 + C1
1 + C2

2 + C3
3

3We use the convention that the first index indicates the rows when we lay the tensor
out so it looks like a matrix.
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this is clearly similar to the trace of a matix, but means we only need to
calculate the diagonal components.

C0
0 = Aµ0Bµ0

C1
1 = Aµ1Bµ1

C2
2 = Aµ2Bµ2

C3
3 = Aµ3Bµ3

Aµ0Bµ0 expands as:

Aµ0Bµ0 = A00B00 + A10B10 + A20B20 + A30B30

similarly

Aµ1Bµ1 = A01B01 + A11B11 + A21B21 + A31B31

Aµ2Bµ2 = A02B02 + A12B12 + A22B22 + A32B32

Aµ3Bµ3 = A03B03 + A13B13 + A23B23 + A33B33

by inspection we see that AµνBµν is the component–wise product then sum
of the tensor components.

3 Deriving Maxwell’s Equations

In many courses Electro-Magnetism and Maxwell’s equations are taught from
more or less the historical perspective of how they were developed, based on
experimental work of Faraday, Ampère and so on.

Latterly, once Special Relativity was established, it was found that the
Electro-Magnetic fields/vectors could be combined into a single second order
tensor, and this facilitated a better insight into Electro-Magnetism. Later,
after the principles of quantum mechanics were established (particularly the
Dirac Equation), and the Lagrangian formulation was developed, it also be-
came clear that Lagrangians are (or at least seem to be) the fundamental de-
scription of particles and fields. In particular, the application of Hamilton’s
Principle to the right Lagrangian could lead to the derivation of a number
of basic equations including both the Klein-Gordon and Dirac’s equations
(although not Schrödinger’s). Somewhat magically, if one then applies local
gauge invariance to the Dirac Lagrangian a field appears and from this field
it is possible to derive Maxwell’s Equations (and therefore all of Electro-
Magnetism).

However, the step from the Electro-Magnetic field tensor to Maxwell’s Equa-
tions often appears to start with prior knowledge of the latter, so not really
being a full derivation. It is the aim of this paper to show that Maxwell’s
Equations can be derived with no a priori knowledge.

In order to get to Maxwell’s Equations the starting point is quite simple:

� Special Relativity (ie the speed of light is invariant in all inertial frames
of reference).

� First quantisation.

� Lagrangians and Hamilton’s Principle.

� Local Gauge Invariance.
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The rough outline of the derivation is as follows:

1. Special relativity allows one to deduce the energy-momentum relation-
ship.

2. From there it is possible to derive the Klein–Gordon Equation using
the principle of first quantisation.

3. Dirac’s Equation can then be derived (see Coker [1]).

4. Then, using the Lagrangian formulation and Hamilton’s Principle you
can “build” the Dirac Lagrangian.

5. If one then applies local gauge invariance to this Lagrangian, you need
to introduce a gauge field.

6. This field can then be included in a Lagrangian of its own.

7. Application of Hamilton’s Principle from there leads to the compact
and Lorentz Invariant form of Maxwell’s Equations, although not the
equations in their commonly understood form.

8. Finally, by expanding the field tensor into its components, Maxwell’s
Equations will emerge.

This paper covers the argument from 4 onwards.

4 Lagrangians

This section is a fairly swift introduction to Lagrangians, for a better start
Hamill [2] is a good place to begin. For Particle Physics, the Lagrangian is
defined as:

L = L(ϕ, ∂ϕ/∂t,∇ϕ)
= L(ϕ, ∂µϕ)

here the calligraphic L is used to denote the fact that strictly L is the La-
grangian density and therefore:

L =

∫ x1

x2

L(ϕ, ∂µϕ)d3x

Where the use of d3x implies we are integrating over the 3 spatial dimensions.

In order to demonstrate why Lagrangians are so important we first need to
undertand the term “action” and Hamilton’s4 Principle.

The action of a system is the integral of the Lagrangian over time, as the
system evolves in configuration space.

I =

∫ t2

t1

Ldt

=

∫ t2

t1

dt

∫ x2

x1

Ld3x

4Sir William Rowan Hamilton 1805 — 1865
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where the limits of the integration are the start and finish times/positions of
the process being analysed.

Hamilton’s principle states that the path or trajectory that a system follows
through configuration space is that which minimises the action5.

If we are to use this Principle, we will need a method to determine that
a trajectory is stationary, and for this we need the Calculus of Variations,
in which case Hamilton’s principle is equivalent to saying that along the
trajectory the variation of the action is zero:

δI = δ

∫ t2

t1

Ldt

=

∫ t2

t1

δLdt

=

∫ t2

t1

dt

∫ x2

x1

δLd3x

= 0

(note the use of the lower-case δ to denote the variation, as distinct from the
derivative operators d or ∂, although they do commute, i.e. δ(∂ϕ) = ∂(δϕ)).

The power of the Lagrangian and Hamilton’s Principle is that the latter can
be used to derive basic equations such as the Klein–Gordon Equation or
Dirac’s Equation, provided of course that you choose the right Lagrangian.
In addition, using Lagrangians means we can also use Noether’s Theorem
which states that symmetries of the Lagrangian imply conserved quantities.
Finally, as we will find out in later papers, the individual terms in a La-
grangian describe in a fundamental way how particles and fields interact and
for this reason the Lagrangian is in many ways the fundamental formulation
of Particle Physics.

4.1 A Scalar Field Lagrangian

In order to see the power of the Lagrangian method it’s best to work through
an example, and for this we choose a simple scalar field. The Lagrangian for
a free, non-interacting, real scalar field is given by:

L =
1

2
[(∂µϕ)(∂

µϕ)−m2ϕ2] (2)

In order to proceed, we calculate the variation of this Lagrangian, δL, in-
tegrate it to calculate δI and set the result to zero. Before we start, we
note that calculating a variation is very similar to differentiation and partial
differentiation. So if f = f(x, y) then:

δf =
∂f

∂x
δx+

∂f

∂y
δy

and if f = ab then:
δf = aδb+ bδa

5Strictly, the trajectory has to be stationary, rather than an actual minimum, but from
a mathematical point of view there isn’t much distinction.
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So:

δL = δ
{

1
2
[(∂µϕ)(∂

µϕ)−m2ϕ2]
}

=
1

2

{
∂µϕδ(∂µϕ) + ∂µϕδ(∂

µϕ)− 2m2ϕ(δϕ)
}

=
1

2

{
∂µϕ∂µ(δϕ) + ∂µϕ∂

µ(δϕ)− 2m2ϕ(δϕ)
}

where in the last line we have used the fact that δ(∂ϕ) = ∂(δϕ). Placing δL
under the integration, we get the formula for the variation of the Action:

δI =

∫ t2

t1

dt

∫ x2

x1

1

2

{
∂µϕ∂µ(δϕ) + ∂µϕ∂

µ(δϕ)− 2m2ϕ(δϕ)
}
d3x

To proceed further we need a quick diversion into Integration By Parts.

d

dx
(AB) = B

dA

dx
+ A

dB

dx∫ x2

x1

d(AB) =

∫ x2

x1

BdA+

∫ x2

x1

AdB

[
AB

]x2

x1
=

∫ x2

x1

BdA+

∫ x2

x1

AdB

if x1 and x2 are chosen such that AB is the same at these points the left
hand side of this equation is zero, hence:∫ x2

x1

BdA = −
∫ x2

x1

AdB

Dropping the integration signs we have a general rule that AdB = −BdA
provided that this is expressed in a definite integral where AB is the same at
the limits of the integral.

To proceed with calculating δI we look at the first term and say that A = ∂µϕ
and dB = ∂µδϕ, therefore AB = ∂µϕδϕ. At the beginning and end of the
trajectory δϕ = 0 by definition and therefore AB = 0 also, meaning we can
use this trick and we can also make a similar substitution for the 2nd term
so we get:

δI =

∫ t2

t1

dt

∫ x2

x1

1

2

{
∂µϕ∂µ(δϕ) + ∂µϕ∂

µ(δϕ)− 2m2ϕ(δϕ)
}
d3x

= −
∫ t2

t1

dt

∫ x2

x1

1

2

[
δϕ∂µ∂

µϕ+ δϕ∂µ∂µϕ+ 2m2ϕ(δϕ)
]
d3x

so we can now factor out the δϕ term

δI = −
∫ t2

t1

dt

∫ x2

x1

1

2
δϕ

[
∂µ∂

µϕ+ ∂µ∂µϕ+ 2m2ϕ
]
d3x

Finally, applying Hamilton’s Principle requires that δI = 0. In order for this
to be true in general, the quantity in the square brackets must be identically
zero. Bearing in mind that ∂µ∂

µ = ∂µ∂µ we get:

∂µ∂µϕ+m2ϕ = 0

which is the Klein–Gordon Equation.

From this initial example we can see how equations (often referred to as equa-
tions of motion) for particles (or waves) can be derived from the Lagrangian
usng Hamilton’s Principle.
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4.2 A Lagrangian for Spin–Half Fields

Creating a Lagrangian for spin–half particles is actually easier, although first
we need to introduce the Dirac Adjoint ψ̄ = ψ†γ0. The reason ψ̄ is used is
that ψ̄ψ is Lorentz Invariant whereas ψ†ψ is not. This leads us to the Dirac
Lagrangian for a free, non-interacting, fermionic field:

L = iψ̄γµ∂µψ −mψ̄ψ (3)

If we now calculate the variation of this Lagrangian, we do so by holding ψ
constant and varying ψ̄, giving us:

δL = δψ̄(iγµ∂µψ −mψ)

and in our usual formulation this requires that iγµ∂µψ − mψ = 0 which is
Dirac’s Equation.

If we now repeat the process holding ψ̄ constant whilst we vary ψ we can
derive Dirac’s Equation for the adjoint spinor ψ̄. The calculation is a little
more involved, but nothing we haven’t already done:

δL = ψ̄iγµδ(∂µψ)−mψ̄δψ

= ψ̄iγµ∂µ(δψ)−mψ̄δψ

= −i∂µψ̄γµδψ −mψ̄δψ

= −(i∂µψ̄γ
µδψ +mψ̄δψ)

where we’ve used the integration by parts trick between the 2nd and 3rd lines.
Hence:

i∂µψ̄γ
µ +mψ̄ = 0

which is Dirac’s Equation for adjoint spinor. You can actually derive this
equation directly from the equation for ψ, but it requires knowledge of various
γ matrix identities.

Using both forms of Dirac’s Equation we can now do something a bit clever:

i∂µψ̄γ
µ +mψ̄ = 0

iγµ∂µψ −mψ = 0

if we post-multiply the first equation by ψ and pre-multiply the 2nd by ψ̄:

i∂µψ̄γ
µψ +mψ̄ψ = 0

iψ̄γµ∂µψ −mψ̄ψ = 0

then add, the mass terms cancel and we can divide through by i:

∂µψ̄γ
µψ + ψ̄γµ∂µψ = 0

this is now the differential of a product and we get:

∂µ(ψ̄γ
µψ) = 0

which readers will recognise as a continuity equation for the quantity ψ̄γµψ.
We will be using this later but for now we define:

jµ = qψ̄γµψ (4)
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where q is a constant we have included in case we need it later. As a constant
it has no effect on the continuity equation; note that the same conserved
current can be derived using Noether’s Theorem and working from the Dirac
Lagrangian, but the derivation above is quite a lot simpler.

Incidentally if we compare Equation (2) with Equation (3) we could be for-
given for making the intuitive leap that terms in a Lagrangian that are neg-
ative and quadratic in a field represent a mass term.

4.3 The Euler–Lagrange Equation

Before we move on, it’s worth looking at the Euler–Lagrange equation. This
is in fact a general statement of Hamilton’s Principle and many authors use
this directly, rather than applying the principle to the actual Lagrangian.

With our definition of the Lagrangian and the Action:

I =

∫ t2

t1

dt

∫ x2

x1

L(ϕ, ∂µϕ)d3x

we start by calculating δL starting with the definition of L:

L = L(ϕ, ∂µϕ)

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ∂µϕ

=
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µδϕ

integrating by parts

=
∂L
∂ϕ

δϕ− ∂µ

(
∂L

∂(∂µϕ)

)
δϕ

hence we get
∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
= 0

which is the Euler–Lagrange equation for a continuous field. The term in
brackets is also defined as the momentum density Πµ:

Πµ =
∂L

∂(∂µϕ)
(5)

5 Gauge Theory

Gauge Theory is the historical term, but it is unfortunately a bit of a mis-
nomer, in most cases what we mean when we talk about gauge invariance is
phase invariance. If we start with the Dirac Lagrangian:

L = iψ̄γµ∂µψ −mψ̄ψ

and if we now make the ‘gauge’ transformation

ψ → eiqχψ
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where q is a constant that we’ve added in because we think we may need it
later and χ is our phase variable, the Lagrangian becomes

L = ie−iqχψ̄γµ∂µ(e
iqχψ)−me−iqχψ̄eiqχψ (6)

If χ is constant everywhere (in space and time) then the exponential terms
cancel and we can see that L is invariant to this type of gauge transformation.
This is known as a Global Invariance.

By contrast, if χ is not constant then we have what is called a Local Invari-
ance. For the 2nd term in Equation (6) this isn’t an issue as the exponential
terms still cancel, however for the first term the exponential is inside the
differential and therefore leads to an additional term in ∂µχ:

iψ̄γµ∂µψ → ie−iqχψ̄γµ∂µ(e
iqχψ)

= ie−iqχψ̄γµ(eiqχ∂µψ + iqψ∂µχe
iqχ)

= iψ̄γµ∂µψ − qψ̄γµψ∂µχ (7)

If we now define a field Aµ such that it transforms:

Aµ → Aµ − ∂µχ (8)

then the quantity qψ̄γµψAµ transforms thus:

qψ̄γµψAµ → qψ̄γµψAµ − qψ̄γµψ∂µχ (9)

if we now subtract (9) from (7) the terms in ∂µχ cancel and we can therefore
say that

L = iψ̄γµ∂µψ −mψ̄ψ − qψ̄γµψAµ

is invariant to a change of local gauge. We can also substitute for jµ from
Equation (4)

L = iψ̄γµ∂µψ −mψ̄ψ − jµAµ

5.1 Gauge Fields

This is now our first example of a gauge field, the need for which has arisen
solely because we have required the Dirac Lagrangian to be locally gauge
invariant. The term we have created in the Lagrangian is what we will later
call an interaction term, including as it does the product of a field and (in
this case) what looks like a current. So the question now arises, is there a
gauge invariant term for the field on its own which should also be included
in the Lagrangian?

Before we address that question it’s worth considering that:

� The Lagrangian is a statement of energy, which is a scalar quantity,
therefore the Lagrangian and all its individual terms also need to be
scalar.

� Therefore any additional terms must be one (or a combination) of:

– A naturally scalar quantity.
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– A scalar quantity formed by the scalar product of two vectors.

– A scalar quantity formed of the scalar product of two tensors.

The simplest, most obvious Lagrangian term is simply AµAµ, giving us6:

L = AµAµ − jµAµ

δL = δAµAµ + AµδAµ − jµδAµ

remembering that XµYµ = XµY
µ

δL = 2AµδAµ − jµδAµ

which implies Aµ = 1
2
jµ which is obviously nonsense. In fact we didn’t really

need to do that analysis, contracting a vector with itself is always going to
lead to this result meaning the new term for the Lagrangian can’t be the
scalar product of two vectors, so our first real attempt needs to be with a
second order tensor for which we will use the symbol F µν .

6 The Field Tensor

The previous section has shown us that local gauge invariance requires a
gauge field to be included in the Lagrangian. In addition, any term in the
Lagrangian, solely for the gauge field, has to be formed from at least a 2nd

order tensor. Whilst this may seem an extra degree of complexity (this is
the first time we have really needed an actual tensor), it turns out that
understanding this tensor will give us a better insight into the meaning of
the gauge field Aµ.

In order to create a scalar term, we need to fully contract this tensor with
another 2nd order tensor (which is more or less the definition of the scalar
product of two tensors). In principle we could use any tensor, but in practice
we have no justification for using anything other than the Aµ field. However,
in order to build a 2nd order tensor from the Aµ field, we need to carry out a
tensor multiplication with another vector (ie multiply two first order tensors
together to create a second order one). Again we have no justification for
using any other field, but we can use the derivative of the the Aµ field.

Hence our first attempt at building a tensor is:

F µν = ∂µAν

We can now carry out a first attempt at applying Hamilton’s Principle to a
Lagrangian:

L = F µνFµν − jνAν

δL = (δF µνFµν + F µνδFµν)− jνδAν

= 2F µνδFµν − jνδAν

substituting for Fµν and remembering that δ and ∂ commute

= 2F µνδ(∂µAν)− jνδAν

= 2F µν∂µδAν − jνδAν

6Remember this is a Lagrangian for the field Aµ so we include all terms that include
the field.
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using the integration by parts trick allows us to move the ∂µ to the left at
the expense of a minus sign

= −2∂µF
µνδAν − jνδAν

from here we can simplify the result if we insert −1
2
into the Lagrangian at

the beginning:

L = −1

2
F µνFµν − jνAν

δL = ∂µF
µνδAν − jνδAν

hence

∂µF
µν = jν

This looks very neat, but the problem with this attempt is that it is pretty
obviously not gauge invariant, ie

F µν = ∂µAν

Aν → Aν − ∂νχ

F µν → ∂µAν − ∂µ∂νχ

Instead we need to consider F µν = ∂µAν − ∂νAµ, which is gauge invariant:

Aν → Aν − ∂νχ

F µν → ∂µAν − ∂µ∂νχ− ∂νAµ + ∂ν∂µχ

∂ν and ∂µ are effectively the same operator hence

∂ν∂µχ = ∂µ∂νχ

F µν → ∂µAν − ∂νAµ = F µν

At this point it’s worth noting that if we swap indices consistently we get:

F νµ = ∂νAµ − ∂µAν

= −F µν

ie F µν is anti-symmetric.

Reverting to our Lagrangian:

L = F µνFµν − jνAν

δL = 2F µνδFµν − jνδAν

substituting for Fµν , remembering that we are varying the field Aµ = Aν .

δFµν = δ(∂µAν)− δ(∂νAµ)

= ∂µδAν − ∂νδAµ

δL = 2F µν(∂µδAν − ∂νδAµ)− jνδAν

again, integrating by parts

= −2(∂µF
µνδAν − ∂νF

µνδAµ)− jνδAν
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now we need to swap around the tensor indices for the middle term

∂νF
µνδAµ = ∂µF

νµδAν

= −∂µF µνδAν

δL = −2(∂µF
µνδAν + ∂µF

µνδAν)− jνδAν

= −4∂µF
µνδAν − jνδAν

so if we start with:

L = −1

4
F µνFµν − jνAν

the −4 cancels and interestingly we get the same final equation as our first
attempt:

∂µF
µν = jν (10)

It’s worth taking a moment to understand this equation. jν we know from
Equation (4) is a conserved quantity, although we perhaps don’t know ex-
actly what is being conserved. More importantly this conserved, current-like
term is equal to the differential of the new tensor we have constructed from
the gauge field. We knew, of course, that the two terms had to be related
somehow as all we’ve done to get to Equation (10) is apply Hamilton’s Prin-
ciple as we previously did for the scalar field and the Dirac Lagrangians.
Equation (10) is somehow the equation(s) of motion for both the gauge field
and the current.

The anti–symmetry of F µν means that it only has 6 independent components.
In the context of cartesian coordinates, this is a bit of a hint that the tensor
may be describing two vector quantities. To proceed further we need to break
F µν into its components.

6.1 Components of the Tensor

Given that F µν = (∂µAν − ∂νAµ) we can break it down into its components.
Here we again use the convention that the first index refers to the rows of
the tensor. So for the first row:

F 0ν = ∂0Aν − ∂νA0

looking at just the first term

∂0Aν =
∂Aν

∂t

we now expand the second index, which is the columns.

∂0Aν =
[
∂A0

∂t
∂A1

∂t
∂A2

∂t
∂A3

∂t

]
repeating this for the second term

∂νA0 =
[
∂A0

∂t
−∂A0

∂x
−∂A0

∂y
−∂A0

∂z

]
putting both together

F 0ν =
[
∂A0

∂t
− ∂A0

∂t
∂A1

∂t
+ ∂A0

∂x
∂A2

∂t
+ ∂A0

∂y
∂A3

∂t
+ ∂A0

∂z

]
15
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For the next row we repeat the process, tracking minus signs carefully

F 1ν =
[
−∂A0

∂x
− ∂A1

∂t
−∂A1

∂x
+ ∂A1

∂x
−∂A2

∂x
+ ∂A1

∂y
−∂A3

∂x
+ ∂A1

∂z

]
and so on for the other rows. Here we can see that the diagonal terms will
all be zero, which is a relief as we are expecting an anti-symmetric tensor,
but we can also see the anti-symmetry emerging for the off diagonal terms.
So the full tensor is:

F µν =


0 ∂A1

∂t
+ ∂A0

∂x
∂A2

∂t
+ ∂A0

∂y
∂A3

∂t
+ ∂A0

∂z

−∂A0

∂x
− ∂A1

∂t
0 −∂A2

∂x
+ ∂A1

∂y
−∂A3

∂x
+ ∂A1

∂z

−∂A0

∂y
− ∂A2

∂t
−∂A1

∂y
+ ∂A2

∂x
0 −∂A3

∂y
+ ∂A2

∂z

−∂A0

∂z
− ∂A3

∂t
−∂A1

∂z
+ ∂A3

∂x
−∂A2

∂z
+ ∂A3

∂y
0


If we make the not unreasonable assumption that Aµ is a four-vector, then
the components Ai define a spatial vector7 which we can denote as A, if we
also define A0 = ϕ we get Aµ = (ϕ,A) then the first “row” of the tensor
becomes (dropping the first component which is zero):

F 0i =
∂A

∂t
+∇ϕ = X

and

F i0 = −X

which simplifies three of the six independent components. We then note
that the remaining three components look like the components of the curl of
a vector:

Y = ∇×A

=

∣∣∣∣∣∣
ı̂ ȷ̂ ẑ
∂
∂x

∂
∂y

∂
∂z

A1 A2 A3

∣∣∣∣∣∣
so we get

F µν =


0 X1 X2 X3

−X1 0 −Y 3 Y 2

−X2 Y 3 0 −Y 1

−X3 −Y 2 Y 1 0


From Equation (4) we know that jν = qψ̄γνψ; whilst it’s not obvious, it isn’t
a surprise that jν is a four–vector8. Hence we can say that jν = (ρ,J), so
ρ = j0 therefore

ρ = ∂µF
µ0

F 00 = 0 so we can drop the first component, leaving us with

ρ = ∂iF
i0

7Remembering our convention for the use of a roman i as the index.
8This can be shown from the Lorentz transformation properties of ψ, see Thomson [3,

Appendix B.3], for example.
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here we see that i is repeated in the upper and lower positions, so we contract
against this index, hence

ρ =
∂(−X1)

∂x
+
∂(−X2)

∂y
+
∂(−X3)

∂z

ρ = −∇.X (11)

Similarly J = ji = ∂µF
µi so we only consider the rightmost three colums of

F µν (and dropping the zero terms)

∂µF
µ1 =

∂X1

∂t
+
∂Y 3

∂y
− ∂Y 2

∂z

∂µF
µ2 =

∂X2

∂t
− ∂Y 3

∂x
+
∂Y 1

∂z

∂µF
µ3 =

∂X3

∂t
+
∂Y 2

∂x
− ∂Y 1

∂z

again this can be re-arranged into a partial derivative and the curl of a vector:

J =
∂X

∂t
+∇×Y (12)

and by now, the expected form of Maxwell’s Equations should be emerging.

From the simple definitions of X and Y we can see:

∇.Y = ∇.(∇×A) = 0 (13)

∇×X = ∇× (
∂A

∂t
+∇ϕ)

=
∂(∇×A)

∂t

=
∂Y

∂t
(14)

if we now make the final substitutions X = −E and Y = B we get the
expected Maxwell Equations:

∇.E = ρ from (11)

∇×B− ∂E

∂t
= J from (12)

and

∇.B = 0 from (13)

∇× E+
∂B

∂t
= 0 from (14)

and finally the field tensor becomes:

F µν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


where the numerical indices have been swapped to indicate cartesian axes.

17
https://doi.org/10.33774/coe-2024-w9tsh ORCID: https://orcid.org/0009-0005-4766-604X Content not peer-reviewed by Cambridge University Press. License: CC BY-NC-ND 4.0

https://doi.org/10.33774/coe-2024-w9tsh
https://orcid.org/0009-0005-4766-604X
https://creativecommons.org/licenses/by-nc-nd/4.0/


6.2 Gauge Invariance Revisited

Having defined the E and B fields in terms of the derivatives of the original
Aµ field, it’s worth confirming that we have retained the gauge invariance
that was required in Equation (8). Given that F µν is invariant, it would be
surprising if the constituent fields were not, but nevertheless instructive to
check.

B = ∇×A

E = −∂A
∂t

−∇ϕ (15)

where Aµ = (ϕ,A). To confirm we haven’t lost the gauge invariance we need
to expand Equation (8) but in its contravariant form:

Aµ → Aµ − ∂µχ

note that χ is not a four–vector, so

∂µχ =

(
∂χ

∂t
,−∇χ

)
so

ϕ→ ϕ− ∂χ

∂t
and

A → A+∇χ
therefore

B → ∇× (A+∇χ)
= ∇×A+∇×∇χ
= ∇×A

and

E → −∂(A+∇χ)
∂t

−∇(ϕ− ∂χ

∂t
)

= −∂A
∂t

−∇ϕ− ∂

∂t
(∇χ) +∇

(
∂χ

∂t

)
= −∂A

∂t
−∇ϕ

6.3 Expanding the Lagrangian

Using Equation (1) we can lower both indices:

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


From subsection 2.3 we see that F µνFµν is the component–wise product and
then sum of the components of the two sensors

F µνFµν = −2((Ex)2 + (Ey)2 + (Ez)2) + 2((Bx)2 + (By)2 + (Bz)2)

= −2E2 + 2B2
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hence

L = −1

4
F µνFµν

=
1

2
(E2 −B2)

We haven’t discussed the Hamiltonian9, but it is defined as follows:

H = π∂0ϕ− L
where

π =
∂L

∂(∂0ϕ)

π is known as the conjugate momentum. In fact we can see from Equation
(5) that π is just the timelike conponent of Πµ (and ϕ is just the field the
Hamiltonian refers to)10.

For the case in hand the field is Aµ, noting that Aµ = (ϕ,A) and in the
absence of free charge and a current, ϕ = ∇ϕ = 0 hence:

π =
∂L

∂(∂0Aµ)

H =
∂L

∂(∂0Aµ)
∂0A

µ − L

∂0A
µ =

∂A

∂t
= −E from (15)

therefore

H =
∂L

∂(−E)
(−E)− L

=
∂L

∂E
E− L

∂L
∂E

=
1

2

∂(E2 −B2)

∂E
= E

so

H = E2 − L

=
1

2
(E2 +B2)

Given that we understand the Hamiltonian to be the total energy and H is
therefore the energy density, this is the result we would expect.

9Again Hamill [2] is a good starting point, but most particle physics texts cover this
topic.

10Four vectors have a timelike component (typically µ = 0) and spacelike components.
For the standard spacetime vector xµ the timelike component is just time, but for four–
momentum pµ the timelike component is in fact energy.

19
https://doi.org/10.33774/coe-2024-w9tsh ORCID: https://orcid.org/0009-0005-4766-604X Content not peer-reviewed by Cambridge University Press. License: CC BY-NC-ND 4.0

https://doi.org/10.33774/coe-2024-w9tsh
https://orcid.org/0009-0005-4766-604X
https://creativecommons.org/licenses/by-nc-nd/4.0/


7 Summary

Having established the Dirac Equation through quantum mechanics and spe-
cial relativity, this equation can be embedded in the Lagrangian formulation
which links the Lagrangian to equations of motion using Hamilton’s Principle.
Once the Lagrangian is established the principle of Local Gauge Invariance
requires a gauge field to be included. From the gauge field we first develop
a tensor then a scalar term that can be fed back into the Lagrangian. If we
then re-apply Hamilton’s Principle we can show how the tensor is related to
the conserved current that is implied (by Noether’s Theorem) from the Dirac
Lagrangian. Still working from first principles, it is then possible to expand
the field tensor into its components and from there Maxwell’s Equations
emerge.

It’s also worth noting that the fact that local gauge invariance leads us
from the Dirac Equation to Maxwell’s Equations and Electro–Magnetism,
is pretty strong evidence that this principle is correct and indeed fundamen-
tal to physics.

All of the above can be captured in a single equation, which defines the
Lagrangian for Quantum Electrodynamics (QED):

L = iψ̄γµ∂µψ −mψ̄ψ − qψ̄γµψAµ −
1

4
F µνFµν
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