Collatz Sequence Proof (1st Way)

Abstract:

Collatz Sequence rules: n (Even): $\frac{n}{2}$, or n (Odd): 3n + 1. With enough repetition, do all positive integers converge to 1?

Proof:

$$let \ n, x, y, z, t, u, v, k, r, h \in N_+, let \ x \in lS(n) = loop \ of \ Collatz \ Sequence \ (n),$$

$$let \ S(n) = \left\{\frac{n}{2} or \ (3n+1), \dots, ?\right\}, or \ S(n) = \left\{\frac{n}{2} or \ (3n+1), \dots\right\}$$

I have to prove $lS(n) = \{4,2,1\}, \forall n \in \mathbb{N}_+ \text{ and proof it is the only loop.}$

Clouds of Collatz Sequence's, r is number of elements of lS(n), & $x \in lS(n)$ Using Collatz even and odd rules on x (the 1^{st} element of lS(n)) to find all clouds.

Make each cloud = x to find value of x, and if $x \in N_+ \Rightarrow Collatz$ Sequence has lS(n).

$$r = number of elements of lS(n)$$

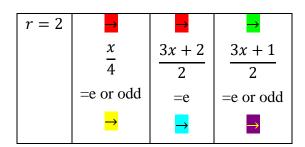
 $x = e \text{ or odd}$

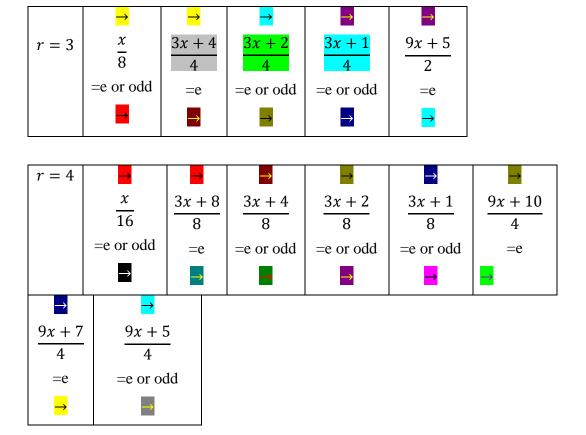
$$r = 1$$

$$\frac{x}{2}$$

$$= e \text{ or odd}$$

$$\Rightarrow$$





r = 5	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	<mark>→</mark>
	<u>x</u>	3x + 16	3x + 8	3x + 4	3x + 2	3x + 1
	32	16	16	16	16	16
	=e or odd	=e or odd	=e or odd	=e or odd	=e or odd	=e or odd
	*	\$!	@	#	%
\rightarrow	\rightarrow	<mark>→</mark>	→	\rightarrow	\rightarrow	\rightarrow
9x + 20	9x + 14	9x + 11	9x + 10	9x + 7	9x + 5	27x + 19
8	8	8	8	8	8	4
=e	=e	=e	=e or odd	=e or odd	=e or odd	=e
@@	&	(({{]]	**	***

r = 6	*	*	\$!	@	#	%
	$\frac{x}{64}$	$\frac{3x+32}{32}$	$\frac{3x+16}{32}$	$\frac{3x+8}{32}$	$\frac{3x+4}{32}$	$\frac{3x+2}{32}$	$\frac{9x+19}{16}$
%		$\{\{27x + 38\}$	@	9x + 22	% 3m 1	\$ 9 <i>x</i> + 64	!
$\frac{3x+1}{32}$	$\frac{9x + 64}{16}$	$\frac{27x + 38}{8}$	$\frac{9x + 28}{16}$	$\frac{9x+22}{16}$	$\frac{3x+1}{32}$	$\frac{9x + 64}{16}$	$\frac{9x+40}{16}$
(0	@ @	&	(({{	[[]]	**
	+ 20 16	$\frac{9x + 14}{16}$	$\frac{9x+11}{16}$	$\frac{9x+10}{16}$	$\frac{9x + 7}{16}$	$\frac{27x + 29}{16}$	$\frac{9x+5}{16}$
	**	***					
$\frac{27x + 23}{8}$		$\frac{27x + 19}{8}$					

A) let $lS(n) = \{x\}, \forall n \in N_+$

Cloud	Cloud = x
$\frac{x}{2}$	$\frac{x}{2} = x \Rightarrow x = 0 \notin lS(n)$
3x + 1	$3x + 1 = x \Rightarrow x = -\frac{1}{2} \notin lS(n)$

$$\therefore x \notin N_+ \Rightarrow lS(\mathbf{n}) \neq \{x\}, \forall n \in N_+$$

B) let $lS(n) = \{x, y\}, \forall n \in N_+$

Cloud	Cloud = x	У
$\frac{x}{4}$	$\frac{x}{4} = x \Rightarrow x = 0 \notin lS(n)$	
$\frac{3x+2}{2}$	$\frac{3x+2}{2} = x \Rightarrow 3x + 2 = 2x \Rightarrow x = -2 \notin lS(n)$	
$\frac{3x+1}{2}$	$\frac{3x+1}{2} = x \Rightarrow x = -1 \notin lS(n)$	

 $\therefore x \notin N_+ \Rightarrow lS(n) \neq \{x,y\}, \forall n \in N_+$

C) let $lS(n) = \{x, y, z\}, \forall n \in N_+$

Cloud	Solve equation: $Cloud = x$	у	Z
$\frac{x}{8}$	$\frac{x}{8} = x \Rightarrow x = 0 \notin lS(n)$		
$\frac{3x+4}{4}$	$\frac{3x+4}{4} = x \Rightarrow x = 4 \in lS(n)$	$\frac{x}{2} = 2$	$\frac{x}{4} = 1$
$\frac{3x+2}{4}$	$\frac{3x+2}{4} = x \Rightarrow x = 2 \in lS(n)$	$\frac{x}{2} = 1$	$\frac{3x+2}{2} = 4$
$\frac{3x+1}{4}$	$\frac{3x+1}{4} = x \Rightarrow x = 1 \in lS(n)$	3x + 1 =3(1)+1=4	$\frac{3x+1}{2} = 2$
$\frac{9x+5}{2}$	$\frac{9x+5}{2} = x \Rightarrow x = -\frac{5}{7} \notin lS(n)$		

$$\therefore x \in N_+ \Rightarrow lS(n) = \{x, y, z\} = \{4, 2, 1\}, \forall n \in N_+$$

$$\therefore S(n) = \left\{ \frac{n}{2} or (3n+1), \dots, 4, 2, 1 \right\}, \forall n \in \mathbb{N}_{+}$$

D) let $lS(n) = \{x, y, z, t\}, \forall n \in N_+$

Cloud	Solve equation: $Cloud = x$	у	Z	t
$\frac{x}{16}$	$\frac{x}{16} = x \Rightarrow x = 0 \notin lS(n)$			
$\frac{3x+8}{8}$	$\frac{3x+8}{8} = x \notin lS(n)$			
$\frac{3x+4}{8}$	$\frac{3x+2}{4} = x \notin lS(n)$			
$\frac{3x+2}{8}$	$\frac{3x+1}{4} = x \notin lS(n)$			
$\frac{3x+1}{8}$	$\frac{9x+5}{2} = x \notin lS(n)$			
$\frac{9x+10}{4}$	$\frac{9x+10}{4} = x \notin lS(n)$			
$\frac{9x+7}{4}$	$\frac{9x+7}{4} = x \notin lS(n)$			
$\frac{9x+5}{2}$	$\frac{9x+5}{2} = x \notin lS(n)$			

$$\therefore x \not\in N_+ \Rightarrow lS(n) \neq \{x,y,z,t\}, \forall n \in N_+$$

From Clouds of Collatz Sequence's above

When
$$r = 5$$
 elements $\Rightarrow x \notin N_+ \Rightarrow lS(n) \neq \{x, y, z, t, u\}, \forall n \in N_+$

When
$$r = 6$$
 elements $\Rightarrow x \in N_+ \Rightarrow lS(n) = \{x, y, z, t, u, v\} = \{1, 2, 4, 1, 2, 4\} = \{1, 2, 4\}, \forall n \in N_+ \}$

Pattern of Collatz Sequence

r = 1 = 3(0) + 1	$x = \frac{3^0 x + 2^0}{2^{1-0}} \Rightarrow x = 1, but \ y = 4 \notin lS(n) \Rightarrow lS(n) \neq \{x\}, \ \forall n \in N_+$
k = 0	2- 0
r = 2 = 3(0) + 2	$x = \frac{3^0 x + 2^0}{2^{2-0}} \Rightarrow x = \frac{1}{3} \notin N_+ \Rightarrow x, y \notin lS(n) \Rightarrow lS(n) \neq \{x, y\}, \ \forall n \in N_+$
k = 0	22 0 3
r = 3 = 3(1)	$x = \frac{3^{1}x + 2^{0}}{2^{3-1}} \Rightarrow x = 1, y = 4, z = 2 \Rightarrow lS(n) = \{4, 2, 1\}, \ \forall n \in \mathbb{N}_{+}$
k = 1	20 1
r = 4 = 3(1) + 1	$x = \frac{3^1 x + 2^0}{2^{4-1}} \Rightarrow x \notin N_+, \forall n \in N_+$
k = 1	2· -
r = 5 = 3(1) + 2	$x = \frac{3^1 x + 2^0}{2^{5-1}} \Rightarrow x \notin N_+, \forall n \in N_+$
k = 1	2
r = 6 = 3(2)	$x = \frac{3^2 x + 3(2^0) + 2^2}{2^{6-2}} \Rightarrow x = 1, y = 4, z = 2 \Rightarrow lS(n) = \{x, y, z\}, \ \forall n \in \mathbb{N}_+$
k = 2	20 -
r = 9 = 3(3)	$x = \frac{3^3 x + 3^2 (2^0) + 3^1 (2^2) + 2^4}{2^{9-3}} \Rightarrow x = 1, y = 4, z = 2 \Rightarrow lS(n) = \{1, 4, 2\},$
k = 3	$\forall n \in N_+$
r = 12 = 3(4)	$x = \frac{3^4x + 3^3(2^0) + 3^2(2^2) + 3(2^4) + 2^6}{2^{12-4}} \Rightarrow x = 1, y = 4, z = 2, \forall n$
k=4	_
	$\in N_{+}$
r = 15 = 3(5)	$x = \frac{3^5x + 3^4(2^0) + 3^3(2^2) + 3^2(2^4) + 3(2^6) + 2^8}{215 - 5} \Rightarrow x = 1, y = 4,$
k = 5	$2^{15-5} \longrightarrow x - 1, y - 4,$
	$Z=2 \ \forall n \in N_+$

Part A: *i*) *if* r = 3(k) $let \ x = \frac{3^k x + 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 2^{2(k-1)}}{2^{r-k}} = 1 \Rightarrow$ $lS(n) = \{1,2,4\}, \forall n \in N_+ \text{ when } r \in \{3,6,9,12,...,3(k)\}.$ Note: $3^{k-1}(2^0), 2^2, 2^4, \dots, 2^{2(k-2)}, 2^{2(k-1)}, i, e \ 2^m, and \ m \in \mathbb{N} = \{0, 2, 4, 6, 8, \dots\}$ ii) if r = 3(k+1) = 3k+3, $is \ x = \frac{3^{k+1}x + 3^k(2^0) + 3^{k-1}(2^2) + 3^{k-2}(2^4) + \dots + 3^{k-k+1}(2^{2k-2}) + 2^{2k}}{2^{r-(k+1)}} = 1 \ ?$ *Proof*: $x = \frac{3^{k+1}x + 3^k(2^0) + 3^{k-1}(2^2) + 3^{k-2}(2^4) + \dots + 3^{k-k+1}(2^{2k-2}) + 2^{2k}}{2^{r-(k+1)}} \Rightarrow$ $(2^{r-(k+1)} - 3^{k+1})x = 3^k(2^0) + 3^{k-1}(2^2) + 3^{k-2}(2^4) + \dots + 3^{k-k+1}(2^{2k-2}) + 2^{2k} \Rightarrow$ $(2^{3k+3-k-1}-3^{k+1})x=3^k(2^0)+3^{k-1}(2^2)+3^{k-2}(2^4)+\cdots+3^{k-k+1}(2^{2k-2})+2^{2k}\Rightarrow$ $(2^{2k+2} - 3^{k+1})x = 3^k(2^0) + 3^{k-1}(2^2) + 3^{k-2}(2^4) + \dots + 3^{k-k+1}(2^{2k-2}) + 2^{2k} \dots eq1$ $is (2^{2k+2} - 3^{k+1}) = 3^k (2^0) + 3^{k-1} (2^2) + 3^{k-2} (2^4) + \dots + 3^{k-k+1} (2^{2k-2}) + 2^{2k}?$ $let k = 4 \Rightarrow$ LHS = $(2^{10} - 3^5) = 781$, & $RHS = 3^4(2^0) + 3^3(2^2) + 3^2(2^4) + 3(2^6) + 2^8 = 781$

 $\therefore eq1: (781)x = 781 \Rightarrow x = 1 \Rightarrow y = 4, z = 2 \Rightarrow$

 $lS(n) = \{4,2,1\}, \forall n \in \mathbb{N}_+ \text{ when } r \in \{3,6,9,12,...,3(k),3(k+1),...\}$

Part B: let
$$r = 3(k) + h, h < 3, k, h \in N_+$$
 i) if $r = 3(k) + 1,$ when $h = 1$ let $x = \frac{3^k x + 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 2^{2(k-1)}}{2^{r-k}} \Rightarrow x \notin N_+,$ $\Rightarrow lS(n) = \emptyset, \forall n \in N_+ \text{ when } r \in \{1, 2, 4, 5, \dots, [3(k) + 1]\}$ ii) if $r = 3(k) + 2,$ when $h = 2$ is $x = \frac{3^k x + 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 2^{2(k-1)}}{2^{r-k}} \Rightarrow x \notin N_+?$ Proof:
$$x = \frac{3^k x + 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 2^{2(k-1)}}{2^{r-k}} \Rightarrow x = \frac{3^k x + 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 2^{2(k-1)}}{2^{3k+2-k}}$$

$$x = \frac{3^k x + 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 2^{2(k-1)}}{2^{2k+2}}$$
 ($2^{2k+2} - 3^k$) $x = 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 2^{2(k-1)}$... eq1 let $k = 4$ $\therefore eq1: (2^{10} - 3^4)x = 3^3(2^0) + 3^2(2^2) + 3^1(2^4) + 2^6 \Rightarrow 943 x = 175 \Rightarrow x \notin N_+ \Rightarrow lS(n) = \emptyset, \forall n \in N_+ \text{ when } r \in \{1, 2, 4, 5, \dots, [3k+1], [3k+2], \dots\}$

$$N_{+} = \{3,6,9,12,...,3(k),3(k+1),...\} \cup \{1,2,4,5,...,[3k+1],[3k+2],...\}$$

 $\therefore \ by \ part \ A \ \& \ part \ B \Rightarrow lS(n) = \{1,2,4\} \cup \emptyset = \{1,2,4\}, \forall n \in \mathbb{N}_+$