Non trivial zeros of the Riemann zeta function

W. Oukil

Faculty of Mathematics.

University of Science and Technology Houari Boumediene. BP 32 EL ALIA 16111 Bab Ezzouar, Algiers, Algeria.

March 11, 2025

Abstract

In this paper, we consider the representation of the Riemann zeta function ζ defined by Abel's summation formula. We show that: if $|\zeta(s)| = 0$ then $|\zeta(1-s)| \neq 0$ for any point s in the critical strip except the critical line.

Keywords: Riemann hypothesis, Riemann zeta function, Non trivial zeros.

AMS subject classifications: 00A05

1 Main results

Consider the representation of the Riemann zeta function ζ defined by Abel's summation formula [[1], page 14 Equation 2.1.5] as

$$\zeta(s) := -\frac{s}{1-s} - s \int_{1}^{+\infty} u^{-1-s} \{u\} du, \quad s \neq 1, \quad \Re(s) > 0, \quad \Im(s) \in \mathbb{R}, \tag{1}$$

where $\{u\}$ is the fractional part of the real u. Denote by $B \subset \mathbb{C}$ the critical strip except the critical line, defined as

$$B:=\Big\{s\in\mathbb{C}:\quad\Re(s)\in(0,\frac{1}{2})\cup(\frac{1}{2},1),\quad\Im(s)\in\mathbb{R}\Big\}.$$

We shall prove the following result:

Theorem 1. Consider the Riemann zeta function ζ given by Equation (1). We have

$$\left|\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(1-s)}{(1-s)(2-s)}\right| > 0, \quad \forall s \in B.$$

Proof. Consider the Equation (1), using the integration by parts formula, that gives

$$\frac{\zeta(z)}{z(1+z)} = -\frac{1}{2} \left(\frac{1}{1-z} + \frac{1}{z} \right) + \int_{1}^{+\infty} u^{-2-z} \eta(u) du, \quad \forall z \in B.$$
 (2)

W. Oukil

where by Dirichlet's Theorem, the real 1-periodic function $\eta:[1,+\infty)\to\mathbb{R}$ is defined as

$$\eta(u) := \int_{1}^{u} \left(\frac{1}{2} - \{v\}\right) dv = \sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^2} \left(1 - \exp(ij2\pi u)\right), \quad \forall u \ge 1.$$
 (3)

Let be $s \in B$. From Equation (2) we have

$$\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(1-s)}{(1-s)(2-s)} = \int_1^{+\infty} \left(u^{-2-s} - u^{-3+s} \right) \eta(u) du. \tag{4}$$

For every n > 2 define

$$\omega(s,n) := 2 \frac{\int_1^n \left(u^{-2-s} - u^{-3+s} \right) \eta(u) du}{\int_1^n \left(u^{-2-s} - u^{-3+s} \right) du}.$$
 (5)

Equation (4) can be written as

$$\left(\int_{1}^{n} \left(u^{-2-s} - u^{-3+s}\right) du\right)^{-1} \left(\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(1-s)}{(1-s)(2-s)}\right) = \omega(s,n),$$

Then

$$n^{2+s}\omega(s,n) = \left(\int_1^n \left(u^{-2-s} - u^{-3+s}\right) du\right)^{-1} \left(\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(1-s)}{(1-s)(2-s)}\right),$$

Prove the present theorem by contradiction. Suppose that

$$\left| \frac{\zeta(s)}{s(1+s)} - \frac{\zeta(1-s)}{(1-s)(2-s)} \right| = 0.$$
 (6)

Then

$$|\omega(s,n)| = 0, \quad \forall n > 2. \tag{7}$$

By definition of $\omega(s,n)$ in Equation (5) we have

$$x_s(n) = 2 \int_1^n \left(u^{-2-s} - u^{-3+s} \right) \eta(u) du, \quad n \ge 2,$$

where in order to simplify the notation we denoted the sequence $\{x_s(n)\}_n$ as

$$x_s(n) := \omega(s, n) \int_1^n \left(u^{-2-s} - u^{-3+s} \right) du, \quad n \ge 2.$$
 (8)

We can write

$$x_s(n) = 2 \int_1^{+\infty} \left(u^{-2-s} - u^{-3+s} \right) \eta(u) du - 2 \int_n^{+\infty} \left(u^{-2-s} - u^{-3+s} \right) \eta(u) du, \quad n \ge 2.$$
 (9)

By the hypothesis (6) and Equation (4), we have

$$\left| \int_{1}^{+\infty} \left(u^{-2-s} - u^{-3+s} \right) \eta(u) du \right| = 0,$$

it follows,

$$x_s(n) = -2 \int_n^{+\infty} \left(u^{-2-s} - u^{-3+s} \right) \eta(u) du, \quad n \ge 2.$$
 (10)

From Equation (3) we have

$$\int_1^u \left(\eta(v) - \sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^2} \right) dv = -i \sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^3} \exp(ij2\pi u), \quad \forall u \ge 1.$$

By consequence,

$$\int_{k}^{k+1} \left(\eta(v) - \frac{1}{12} \right) dv = 0, \quad \forall k \in \mathbb{N}, \quad \text{and} \quad \left| \int_{1}^{u} \left(\eta(v) - \frac{1}{12} \right) dv \right| \leq \frac{1}{2^{2} \pi^{3}} \zeta(3), \quad \forall u \geq 1.$$

Using the integration by parts formula, we have

$$\int_{n}^{+\infty} \eta(u) \left(u^{-2-s} - u^{-3+s} \right) du = \frac{1}{12} \left(\frac{n^{-1-s}}{1+s} - \frac{n^{-2+s}}{2-s} \right) - \int_{n}^{+\infty} \int_{k}^{u} \left(\eta(v) - \frac{1}{12} \right) dv \left((2+s)u^{-3-s} - (3-s)u^{-4+s} \right) du.$$

Since $s \in B$, then

$$\lim_{n \to +\infty} \left| \left(\frac{n^{-1-s}}{1+s} - \frac{n^{-2+s}}{2-s} \right)^{-1} \int_{n}^{+\infty} \eta(u) \left(u^{-2-s} - u^{-3+s} \right) du \right| = \frac{1}{12}.$$

Thanks to Equations (10) we obtain

$$\lim_{n \to +\infty} \left| \left(\frac{n^{-1-s}}{1+s} - \frac{n^{-2+s}}{2-s} \right)^{-1} x_s(n) \right| = \frac{1}{12}.$$

By definition of $x_s(n_m)$ in Equation (8), we get

$$\left| \int_{1}^{+\infty} \left(u^{-2-s} - u^{-3+s} \right) du \right| \lim_{n \to +\infty} \left| \left(\frac{n^{-1-s}}{1+s} - \frac{n^{-2+s}}{2-s} \right)^{-1} \omega(s,n) \right| = \frac{1}{12},$$

We obtained a contradiction with Equation (7).

References

[1] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function (revised by D.R. Heath-Brown), Clarendon Press, Oxford. (1986).