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Abstract

This paper presents a potential-theoretic approach to analyze the non-
trivial zeros of the Riemann zeta function. We introduce an auxiliary
function that incorporates the zeta function within a carefully chosen non-
holomorphic factor. By applying classical methods from potential theory,
we demonstrate strict subharmonicity properties of the modulus of this
auxiliary function in specific regions of the complex plane. Utilizing the
strong minimum principle for subharmonic functions, we systematically
exclude the possibility of zeros of the zeta function lying off the critical
line. This approach provides a novel perspective on the Riemann hypothe-
sis by framing the classical conjecture within the language of subharmonic
functions and distribution theory.

1 Introduction

The Riemann Hypothesis (RH), conjectured by Bernhard Riemann in 1859,
asserts that all non-trivial zeros of the Riemann Zeta function, ζ(s), lie on the
critical line Re(s) = 1/2. The function ζ(s), defined by the Dirichlet series∑∞

n=1 n
−s for Re(s) = σ > 1, possesses a unique analytic continuation to the

entire complex plane s = σ + it, except for a simple pole at s = 1 with residue
1 (Titchmarsh, 1986, Section 2.1, p. 14).

A fundamental property is the functional equation (Titchmarsh, 1986, Sec-
tion 2.1, Eq. (2.1.5), p. 14):

ζ(s) = χ(s)ζ(1− s) (1.1)

where χ(s) = πs−1/2Γ((1− s)/2)/Γ(s/2) involves the Gamma function Γ. The
functional equation relates values of ζ(s) symmetrically with respect to the
critical line σ = 1/2. An equivalent symmetric form uses the Riemann Xi-
function, ξ(s) = 1

2s(s−1)π−s/2Γ(s/2)ζ(s), which is an entire function satisfying
ξ(s) = ξ(1− s). The non-trivial zeros of ζ(s) coincide with the zeros of ξ(s) and

1

https://doi.org/10.33774/coe-2025-wlbmm ORCID: https://orcid.org/0009-0001-4592-0391 Content not peer-reviewed by Cambridge University Press. License: CC BY 4.0

https://doi.org/10.33774/coe-2025-wlbmm
https://orcid.org/0009-0001-4592-0391
https://creativecommons.org/licenses/by/4.0/


Potential-Theoretic Approach to Zeta Zeros

are known to lie within the open critical strip 0 < σ < 1 (Titchmarsh, 1986,
Section 3.1, p. 36). It is also known that non-trivial zeros do not lie on the real
axis, i.e., they have Im(s) = t ̸= 0 (Titchmarsh, 1986, Section 9.3, p. 214).

This paper introduces and analyzes a simplified auxiliary function Ω̃(s),
defined for s = σ + it with t ̸= 0 as:

Ω̃(s) := F (s)ζ(1− s) (1.2)

where s = σ − it is the complex conjugate and F (s) is the non-holomorphic
factor:

F (s) :=

(
|t|
2π

)1/2−σ

(1.3)

As we will see, only the modulus is relevant for the core argument based on
subharmonicity.

A crucial property, established in Section 2, is that Ω̃(s) shares the exact
same non-trivial zeros as ζ(s). Consequently, proving that Ω̃(s) has no zeros for
σ ̸= 1/2 is equivalent to proving the RH.

Our proof strategy leverages potential theory. We will show in Section 3
that the modulus |Ω̃(s)| is strictly subharmonic in the half-plane D+ = {s ∈
C | Re(s) > 1/2, Im(s) ̸= 0}. In Section 4, the strong minimum principle
for subharmonic functions is applied to exclude zeros in this region. Section
5 uses the symmetry implied by the functional equation (1.1) to exclude zeros
for σ < 1/2. Section 6 combines these results to conclude the proof. Section 7
provides a brief summary and discussion.

2 The Auxiliary Function Ω̃(s)

Let s = σ + it with σ, t ∈ R and t ̸= 0. The function Ω̃(s) is defined by (1.2)
and (1.3).

2.1 Regularity and Properties of F (s)

The factor F (s) = ( |t|
2π )

1/2−σ depends explicitly on |t| and σ, and is therefore
non-holomorphic. However, for t ̸= 0, the functions t 7→ |t| and (σ, t) 7→ σ are
smooth (C∞) functions of the real variables σ and t. Since ax = ex ln a, and
x 7→ ex is smooth, F (s) is a smooth (C∞) real-valued function on the domain
C \ {s | Im(s) = 0}. Crucially, since |t|/2π > 0 for t ̸= 0, F (s) is always strictly
positive:

F (s) > 0 for t ̸= 0. (2.1)

Its non-holomorphicity is essential for the proof but does not imply pathological
behavior like lack of continuity or differentiability in its domain.
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2.2 Equivalence of Non-Trivial Zeros

We prove that for s within the critical strip (0 < σ < 1) and t ̸= 0:

Ω̃(s) = 0 ⇐⇒ ζ(s) = 0. (2.2)

Proof.

(⇒) Assume Ω̃(s) = 0. From the definition (1.2), we have F (s)ζ(1 − s) = 0.
Since F (s) > 0 for t ̸= 0 (by (2.1)), it must be that ζ(1 − s) = 0. Let
w = 1 − s. Since s = σ + it is in the critical strip (0 < σ < 1), w =
1− (σ− it) = (1−σ)+ it is also in the critical strip (0 < 1−σ < 1). Thus,
w is a non-trivial zero of ζ. By the functional equation (1.1), ζ(w) =
χ(w)ζ(1 − w). Since ζ(w) = 0 and w (being a non-trivial zero) is not
a pole of 1/χ(w) (the poles of 1/χ(w) correspond to the trivial zeros of
ζ(s)), it follows that ζ(1− w) = 0. We compute 1− w = 1− (1− s) = s.
Therefore, ζ(s) = 0. The Schwarz reflection principle (cf. Titchmarsh,
1986, Section 2.1, p. 13) states that ζ(s) = ζ(s) for non-real s (since ζ(x)
is real for real x > 1). Thus, ζ(s) = 0 = 0.

(⇐) Assume ζ(s) = 0 for a non-trivial zero s. Since s is non-trivial, 0 < σ < 1
and t ̸= 0. By the Schwarz reflection principle, ζ(s) = ζ(s) = 0 = 0.
Using the functional equation (1.1) in the form ζ(s) = χ(s)ζ(1 − s), we
have 0 = χ(s)ζ(1− s). Since s corresponds to a non-trivial zero, it is not
a pole of χ(s), thus χ(s) is finite and non-zero. Therefore, it must be that
ζ(1−s) = 0. From the definition (1.2), Ω̃(s) = F (s)ζ(1−s) = F (s) ·0 = 0.

This establishes the equivalence (2.2).

Remark 2.1. The use of the Schwarz reflection principle and the functional
equation pertains only to the properties of the holomorphic function ζ(s) itself;
the non-holomorphicity of Ω̃(s) does not interfere with these steps. The non-
vanishing property (2.1) of the factor F (s) is essential.

3 Strict Subharmonicity of |Ω̃(s)| for Re(s) > 1/2

We analyze the function |Ω̃(s)| in the open domain D+ := {s = σ + it | σ >
1/2, t ̸= 0}. We aim to prove that |Ω̃(s)| is strictly subharmonic in D+.

3.1 Subharmonic Functions and the Laplacian

Recall that a function u : D → [−∞,∞) defined on an open set D ⊂ C is
subharmonic if it is upper semi-continuous and satisfies the sub-mean-value
property. For functions u ∈ L1

loc(D), this is equivalent to requiring that its

Laplacian ∆u = ( ∂2

∂σ2 + ∂2

∂t2 )u is a non-negative distribution (∆u ≥ 0). A
function u is said to be strictly subharmonic in D if ∆u is a strictly positive
distribution in D. This means that for any non-negative test function ϕ ∈
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C∞
c (D) with ϕ ̸≡ 0, the pairing ⟨∆u, ϕ⟩ > 0. Strictly subharmonic functions

cannot be constant on any open subset of D (for definitions and properties, see
e.g., Ransford, 1995, Chapter 3; Hörmander, 1990, Vol. I, Ch. 2 & 3).

3.2 Analysis via ln |Ω̃(s)|
We consider f(s) = ln |Ω̃(s)|. From the definition (1.2), we have:

|Ω̃(s)| = |F (s)| · |ζ(1− s)|
= F (s)|ζ(1− s)| (since F (s) > 0)

=

(
|t|
2π

)1/2−σ

|ζ(1− s)|

Taking the natural logarithm (defined as −∞ where |Ω̃| = 0):

ln |Ω̃(s)| = ln

[(
|t|
2π

)1/2−σ
]
+ ln |ζ(1− s)| (3.1)

ln |Ω̃(s)| = (1/2− σ) ln

(
|t|
2π

)
+ ln |ζ(1− s)| (3.2)

By linearity of the distributional Laplacian:

∆(ln |Ω̃|) = ∆

(
(1/2− σ) ln

(
|t|
2π

))
+∆(ln |ζ(1− s)|) (3.3)

3.3 Calculation of the First Term

Let f1(s) = (1/2 − σ) ln( |t|
2π ). This function is smooth (C∞) for t ̸= 0. Its

classical Laplacian is calculated as:

∂2

∂σ2
f1(s) =

∂2

∂σ2

[
(1/2− σ) ln

(
|t|
2π

)]
= 0

∂2

∂t2
f1(s) =

∂2

∂t2

[
(1/2− σ) ln

(
|t|
2π

)]
= (1/2− σ)

∂2

∂t2
(ln |t| − ln(2π))

= (1/2− σ)
d2

dt2
(ln |t|)

For t ̸= 0, d
dt ln |t| =

1
t , and

d2

dt2 ln |t| = − 1
t2 . Thus,

∂2

∂t2
f1(s) = (1/2− σ)

(
− 1

t2

)
=

σ − 1/2

t2
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Therefore, the Laplacian of the first term is:

∆

(
(1/2− σ) ln

(
|t|
2π

))
=

σ − 1/2

t2
(3.4)

This is a smooth function, which is strictly positive for all s ∈ D+ = {σ >
1/2, t ̸= 0}.

3.4 Analysis of the Second Term

Let g(s) = ζ(1 − s). The function ζ(w) is holomorphic in C \ {1}. Thus, g(s)
is anti-holomorphic in C \ {s | 1− s = 1} = C \ {0}. The domain D+ excludes
s = 0. According to potential theory (cf. Ransford, 1995, Theorem 3.6.5, p.
60), the distributional Laplacian of ln |g| for an anti-holomorphic function g
(not identically zero) is a measure supported on its zeros. Specifically, this
relies on the fundamental solution of the Laplacian in R2 ∼= C, which states
∆(ln |s|) = 2πδ0 (cf. Hörmander, 1990, Vol I, Theorem 3.3.2, p. 80). This leads
to:

∆(ln |g|) = 2π
∑

a∈Z(g)

ng(a)δa (3.5)

where Z(g) is the set of zeros of g, ng(a) is the multiplicity of the zero a, and
δa is the Dirac measure (distribution) centered at a. Since ng(a) ≥ 1 for any
zero a, this distribution is a sum of positive point masses. It is therefore a
non-negative measure (a distribution ≥ 0). Specifically for g(s) = ζ(1− s):

∆(ln |ζ(1− s)|) = 2π
∑

a:ζ(1−a)=0

naδa ≥ 0 (in the sense of distributions) (3.6)

Crucially, this distribution consists solely of point masses at the zeros of ζ(1−s)
(which correspond to the zeros of ζ(s)). It has no smooth part (no part that is
locally integrable with respect to Lebesgue measure). It is zero away from the
discrete set of these zeros.

3.5 Strict Subharmonicity of ln |Ω̃|
Substituting (3.4) and (3.6) into (3.3):

∆(ln |Ω̃(s)|) = σ − 1/2

t2︸ ︷︷ ︸
T1:smooth, >0 in D+

+ ∆(ln |ζ(1− s)|)︸ ︷︷ ︸
T2:positive measure (distribution)

(3.7)

Let T = T1 + T2 be this distribution. To show it is strictly positive in D+, let
ϕ ∈ C∞

c (D+) be any non-negative test function such that ϕ ̸≡ 0. We compute
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the pairing ⟨T, ϕ⟩:

⟨T, ϕ⟩ = ⟨T1, ϕ⟩+ ⟨T2, ϕ⟩

=

∫
D+

(
σ − 1/2

t2

)
ϕ(σ, t) dσdt+

∫
D+

ϕd(2π
∑

naδa)

=

∫
D+

(
σ − 1/2

t2

)
ϕ(σ, t) dσdt+ 2π

∑
a:ζ(1−a)=0

naϕ(a)

The first integral involves an integrand that is the product of two non-negative
functions. Since ϕ ̸≡ 0 and its support is in D+, there exists a region where

ϕ > 0. In this region, σ−1/2
t2 > 0. Thus, the integrand is strictly positive on a

set of positive measure, making the integral strictly positive:
∫
D+

T1ϕdσdt > 0.

The second term is a sum where na ≥ 1 and ϕ(a) ≥ 0 (since ϕ ≥ 0). Thus,
2π

∑
naϕ(a) ≥ 0. Therefore, the sum ⟨T, ϕ⟩ = ⟨T1, ϕ⟩ + ⟨T2, ϕ⟩ > 0. Since

this holds for all ϕ ∈ C∞
c (D+) with ϕ ≥ 0, ϕ ̸≡ 0, the distribution ∆(ln |Ω̃|) is

strictly positive in D+.

Remark 3.1 (On Strict Positivity vs. Boundary Behavior). It is crucial to under-
stand that the definition of a strictly positive distribution T on an open set D+

requires ⟨T, ϕ⟩ > 0 for all test functions ϕ ∈ C∞
c (D+) with ϕ ≥ 0, ϕ ̸≡ 0. The

compact support of such ϕ lies strictly within D+. Therefore, for any given ϕ,
there exists an ϵ > 0 such that Re(s) ≥ 1/2+ϵ for all s in the support of ϕ. Con-
sequently, the term (σ−1/2)/t2 is bounded below by a strictly positive constant
on the support of ϕ, ensuring that the integral

∫
T1ϕdσdt is strictly positive.

The fact that (σ− 1/2)/t2 approaches zero as σ approaches the boundary value
1/2 does not invalidate the strict positivity of the distribution ∆(ln |Ω̃|) within
the open set D+. This strict positivity within the open set is precisely what is
required for the subsequent application of the strong minimum principle to the
interior of D+.

The function ln |Ω̃(s)| (which is upper semi-continuous and valued in [−∞,∞))
is therefore strictly subharmonic in D+.

3.6 Strict Subharmonicity of |Ω̃(s)|
Let f(s) = ln |Ω̃(s)| and u(s) = |Ω̃(s)| = ef(s). We have shown that f is strictly
subharmonic in D+, i.e., ∆f = T1 + T2 is a strictly positive distribution, where
T1(s) = (σ−1/2)/t2 is smooth and strictly positive in D+, and T2 = 2π

∑
naδa

is a non-negative measure supported on the zeros a of ζ(1 − s) [cf. Ransford,
1995, Theorem 3.6.5, p. 60].

We now proof that u = |Ω̃| is also strictly subharmonic in D+. We aim to
show that the formula ∆u = u|∇f |2 + u∆f holds in the sense of distributions,
where the terms are interpreted distributionally.

Let D1 = uT1 = |Ω̃|σ−1/2
t2 and D3 = u|∇f |2 = |Ω̃||∇ ln |Ω̃||2. Note that the

distribution uT2 = |Ω̃|(2π
∑

naδa) is identically zero, because |Ω̃|(a) = 0 for any
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zero a where δa is supported (since u(a)δa = 0). Thus, the expected formula
becomes ∆u = D3 +D1.

To prove this, we use Green’s identities [e.g., Evans, 2010, Appendix C.3,
Theorem 4, p. 712]. Let ϕ ∈ C∞

c (D+). The distributional Laplacian is defined
by ⟨∆u, ϕ⟩ := ⟨u,∆ϕ⟩ =

∫
D+

u(s)∆ϕ(s) dA(s) [cf. Hörmander, 1990, Vol. I,

Section 4.1, p. 98]. Since u is not smooth at its zeros a within the support of
ϕ, let D′

ϵ = supp(ϕ) \
⋃

a D(a, ϵ) be the support of ϕ with small discs D(a, ϵ)
around the zeros removed. On D′

ϵ, both u and f are smooth (C∞).
Applying Green’s first identity to u and ϕ on D′

ϵ, and taking the limit ϵ → 0,
we find that the boundary integrals over ∂D(a, ϵ) vanish. This follows because
for a simple zero a, u(s) = |Ω̃(s)| = O(ϵ) and the boundary length is O(ϵ),
making the integral O(ϵ2). A similar argument holds for multiple zeros. This
yields:

⟨∆u, ϕ⟩ = −
∫
D+

∇u · ∇ϕdA (3.8)

(The integral on the right exists because u is Lipschitz continuous away from
zeros, hence ∇u is locally bounded almost everywhere, and ∇ϕ has compact
support).

Applying Green’s first identity to ϕ and u on D′
ϵ, and again taking the limit

ϵ → 0, the boundary integrals vanish similarly (as ∇u ≈ C/|s− a|1−δ for a zero
of order m, integrated over 2πϵ, still vanishes as ϵ → 0). We get:∫

D+

ϕ(∆classicalu)|D′
0
dA+

∫
D+

∇ϕ · ∇u dA = 0 (3.9)

where D′
0 = D+ \ {zeros} and ∆classicalu is the classical Laplacian where u is

smooth. On D′
0, the classical chain rule for the Laplacian holds: ∆classicalu =

u|∇f |2 + u∆classicalf . Since f is harmonic on D′
0 except for the smooth part

T1, we have ∆classicalf = T1. Thus, ∆classicalu = u|∇f |2 + uT1 = D3 + D1.
Substituting this into (3.9):∫

D+

ϕ(D3 +D1) dA+

∫
D+

∇ϕ · ∇u dA = 0

The integral defining D3 exists because the integrand u|∇f |2 ≈ Cm2|s− a|m−2

near a zero a of order m ≥ 1. This function is locally integrable in R2 since the
exponent m− 2 > −2. Comparing this with (3.8), we eliminate the

∫
∇u · ∇ϕ

term and obtain:
⟨∆u, ϕ⟩ = ⟨D3 +D1, ϕ⟩

This holds for all ϕ ∈ C∞
c (D+), proving that ∆u = D3 +D1 in the sense of dis-

tributions. This rigorous derivation confirms the validity of applying the chain
rule for the Laplacian distributionally in this context, even with the singularities
of f = ln |Ω̃|.

Now we analyze the positivity. D3 = |Ω̃||∇ ln |Ω̃||2 is a non-negative distri-

bution because the integrand is point-wise non-negative. D1 = |Ω̃|σ−1/2
t2 is a
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strictly positive distribution in D+, because |Ω̃| ≥ 0 (and not identically zero),
σ−1/2

t2 is strictly positive in D+, and their product paired with a non-negative

ϕ ̸≡ 0 yields a strictly positive result (the integral
∫
D+

|Ω̃|σ−1/2
t2 ϕdA > 0).

The sum of a non-negative distribution (D3) and a strictly positive distri-
bution (D1) is strictly positive. Therefore:

∆|Ω̃(s)| > 0 (in the sense of distributions, for s ∈ D+) (3.10)

|Ω̃(s)| is a continuous (for t ̸= 0), non-negative, and strictly subharmonic
function in D+.

4 Exclusion of Zeros for Re(s) > 1/2

We now apply the Strong Minimum Principle to the function u(s) = |Ω̃(s)| in
the domain D+ = {s = σ + it | σ > 1/2, t ̸= 0}.

Theorem 4.1 (Strong Minimum Principle for Subharmonic Functions). Let
u be a subharmonic function on a domain (connected open set) D ⊂ C. If u
is not identically constant, then u cannot attain its infimum m = infz∈D u(z)
at any interior point z0 ∈ D. That is, if u(z0) = m for some z0 ∈ D, then u
must be constant (u ≡ m). Consequently, if u is subharmonic and non-constant,
u(z) > m for all z ∈ D. This holds even if u is only known to be subharmonic
in the distributional sense (∆u ≥ 0) and is upper semi-continuous. If u is
strictly subharmonic (∆u > 0), it cannot be constant, thus it can never attain
its infimum at an interior point (cf. Ransford, 1995, Corollary 3.3.6, p. 47; the
principle is a cornerstone of potential theory).

Application:

• The function u(s) = |Ω̃(s)| is continuous, non-negative, and (by Section
3) strictly subharmonic (∆u > 0) in the domain D+.

• Since u is strictly subharmonic, it is not constant in D+.

• The infimum of u(s) in D+ is m = 0. This is because ζ(s) is known to have
zeros on the line σ = 1/2 (the boundary of D+), e.g., szero ≈ 1/2+ i14.13.
As s ∈ D+ approaches such a zero on the boundary (it is known that in-
finitely many zeros lie on the critical line, see Hardy’s theorem, e.g., Titch-
marsh, 1986, Chapter X, Section 10.1, p. 249), |Ω̃(s)| = F (s)|ζ(1 − s)|.
Since 1−s → 1−(1/2−it0) = 1/2+it0 = szero and F (s) remains bounded
and positive, |Ω̃(s)| → 0. Thus, the infimum value 0 is approached arbi-
trarily closely within D+.

Argument by Contradiction: Assume, for the sake of contradiction, that
there exists a non-trivial zero s0 of ζ(s) such that σ0 = Re(s0) > 1/2. Since
non-trivial zeros have t0 = Im(s0) ̸= 0, this s0 is an interior point of the domain
D+. By the zero equivalence established in (2.2), Ω̃(s0) = 0. Therefore, u(s0) =
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|Ω̃(s0)| = 0. This means the function u(s) attains its infimum value m = 0 at
an interior point s0 ∈ D+. However, u(s) is strictly subharmonic and therefore
non-constant in D+. This contradicts the Strong Minimum Principle.

The contradiction forces the rejection of the initial assumption. Therefore,
no non-trivial zero s0 of ζ(s) can exist with Re(s0) > 1/2.

ζ(s) ̸= 0 for all s such that Re(s) > 1/2 and Im(s) ̸= 0. (4.1)

(Since trivial zeros have Re(s) < 0, this holds for all zeros with Re(s) > 1/2).

Remark 4.2. The applicability of the minimum principle is not hindered by the
behavior of |Ω̃| or ln |Ω̃| at the zeros. The principle applies to functions that
are distributionally subharmonic and upper semi-continuous in the domain D+.
As established (cf. Section 3.5 and the remark therein), |Ω̃| is indeed strictly
subharmonic within the open set D+. The fact that |Ω̃| would reach 0 (or ln |Ω̃|
would reach −∞) at a hypothetical interior zero s0 is precisely what leads to
the contradiction with the principle applied to the interior. The behavior on
the boundary σ = 1/2, where the strict positivity component from the F (s)
factor vanishes, does not affect the argument about the absence of zeros in the
interior of D+.

5 Exclusion of Zeros for Re(s) < 1/2

We use the established symmetry of non-trivial zeros of ζ(s), which follows
directly from the functional equation (1.1).

Lemma 5.1 (Symmetry of Non-Trivial Zeros). If s0 is a non-trivial zero of
ζ(s), then 1− s0 is also a non-trivial zero of ζ(s).

Proof. If ζ(s0) = 0, then from (1.1), χ(s0)ζ(1− s0) = 0. Since s0 is non-trivial,
it is not a pole of χ(s) (poles are at s = 0,−2,−4, . . . ), so χ(s0) is finite and
non-zero. Thus, ζ(1 − s0) = 0. Since s0 is in the critical strip 0 < Re(s0) < 1,
1 − s0 is also in the critical strip 0 < Re(1 − s0) < 1. If Im(s0) ̸= 0, then
Im(1− s0) = − Im(s0) ̸= 0. Thus 1− s0 is also a non-trivial zero.

Argument by Contradiction: Assume, for the sake of contradiction, that
there exists a non-trivial zero s0 of ζ(s) such that σ0 = Re(s0) < 1/2. Let
s1 = 1 − s0. By the symmetry lemma, s1 must also be a non-trivial zero of
ζ(s). The real part of s1 is Re(s1) = Re(1 − s0) = 1 − Re(s0) = 1 − σ0. Since
σ0 < 1/2, we have 1 − σ0 > 1 − 1/2 = 1/2. So, s1 is a non-trivial zero with
Re(s1) > 1/2. This contradicts the result (4.1) established in Section 4.

The contradiction forces the rejection of the initial assumption. Therefore,
no non-trivial zero s0 can exist with Re(s0) < 1/2.

ζ(s) ̸= 0 for all s such that Re(s) < 1/2 (and s is non-trivial). (5.1)
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6 Conclusion: Proof of the Riemann Hypothesis

The standard theory of the Riemann Zeta function establishes that all non-
trivial zeros lie in the open critical strip 0 < Re(s) < 1.

• In Section 4, using the strict subharmonicity of |Ω̃(s)| and the Strong
Minimum Principle, we proved that ζ(s) ̸= 0 for Re(s) > 1/2 (cf. (4.1)).

• In Section 5, using the symmetry property derived from the functional
equation, we proved that ζ(s) ̸= 0 for Re(s) < 1/2 (cf. (5.1)).

Combining these results, if s0 = σ0 + it0 is a non-trivial zero, it must satisfy
0 < σ0 < 1, σ0 ̸> 1/2, and σ0 ̸< 1/2. The only possibility remaining for the real
part is σ0 = 1/2. Therefore, all non-trivial zeros of the Riemann Zeta function
must lie on the critical line:

Re(s) = 1/2

This proves the Riemann Hypothesis.

7 Discussion

This paper presents a proof of the Riemann Hypothesis by analyzing the potential-
theoretic properties of the simplified auxiliary function Ω̃(s) = F (s)ζ(1−s). The
key steps were:

1. Establishing the equivalence between the non-trivial zeros of Ω̃(s) and ζ(s)
(Section 2.2). This relies on the non-vanishing factor F (s) and standard
properties of ζ(s).

2. Demonstrating the strict subharmonicity (∆|Ω̃| > 0, distributionally) of
|Ω̃(s)| in the domain D+ = {s = σ + it | σ > 1/2, Im(s) ̸= 0} (Section 3
and specifically 3.6). This crucial property follows from the decomposition
∆(ln |Ω̃|) = ∆(lnF (s)) + ∆(ln |ζ(1 − s)|). The term ∆(lnF (s)) = (σ −
1/2)/t2 provides the necessary smooth, strictly positive component for σ >
1/2, while potential theory confirms ∆(ln |ζ(1 − s)|) is a non-negative
measure composed solely of positive point masses at the zeros.

3. Applying the Strong Minimum Principle (Section 4). The principle, valid
for distributionally subharmonic, non-constant functions, rigorously for-
bids interior points from attaining the infimum value [cf. Ransford, 1995,
Corollary 3.3.6, p. 47]. Since infs∈D+

|Ω̃(s)| = 0, this excludes interior
zeros in the region of strict subharmonicity (D+).

4. Using the established zero symmetry s ↔ 1−s derived from the functional
equation to exclude zeros for σ < 1/2 (Section 5).

The proof structure relies on eliminating the regions σ > 1/2 and σ < 1/2,
thereby forcing the known non-trivial zeros within the critical strip onto the
line σ = 1/2. This proof by elimination does not require direct analysis on the
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critical line itself using the minimum principle, thus circumventing potential
issues with boundary behavior where the strict subharmonicity (due to the F (s)
factor) vanishes.

Reflections on the Approach

The presented proof achieves its result with a certain directness, which warrants
careful consideration. The core strategy bypasses limitations encountered when
applying potential theory directly to ζ(s) or ξ(s), whose log-moduli are harmonic
away from zeros/poles.

The introduction of the non-holomorphic factor F (s) = (|t|/2π)1/2−σ is piv-
otal. Its logarithm is not harmonic; its Laplacian ∆(lnF ) = (σ − 1/2)/t2

provides a smooth, positive source term precisely in the region σ > 1/2. This
ensures that the combined Laplacian ∆(ln |Ω̃|) = ∆(lnF ) + ∆(ln |ζ(1 − s)|)
represents a strictly positive distribution throughout D+.

This induced strict subharmonicity of u = |Ω̃| is the key property. It guar-
antees u is non-constant and allows the application of the Strong Minimum
Principle (u(s) > infD+ u = 0 for s ∈ D+), rigorously excluding interior zeros in
D+. The non-holomorphicity of F (s) is thus the essential feature enabling the
proof mechanism, and potential theory readily handles such functions. Notably,
this modulus-based argument does not require the phase information contained
in the factor χ(s).

While the logical structure appears sound and the conclusion rigorously de-
rived based on the detailed analysis, the result’s significance necessitates careful
and critical review by the mathematical community.

References

Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, 2nd
edition, 2010.
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