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1 Introduction

1.1 Problem formulation

Oxford dictionary defines stress as “physiological disturbance or damage caused to an
organism by adverse circumstances”. According to World Health Organization (WHO) nearly
one in three European workers (more than 40 million people) report that they are affected
by stress at work [8]. Although a certain small level of stress can help an employee to
stay focused, energetic, and able to meet new challenges in the workplace, it becomes
dangerous when stress is protracted. As it was stated in the problem description, “the
losses are not only measured in billions of euro and dollars, but are a matter of something
less tangible, but far more valuable – human lives”.
People experience stress when they perceive that there is an imbalance between the de-
mands made of them and the resources available to cope with those demands (e.g. knowl-
edge, abilities, control, etc).
There exists a wide range of methods to measure employee’s stress level. For instance,
Questionnaire on psychosocial working conditions that was developed and piloted in 2007
by the Central Institute of Labor Protection as a means of supporting workers suffering
from the negative consequences of work-related stress. In reality, an employee could be
stressed due to some personal troubles which cannot be influenced by a company, but an
employer still has to cope with such uncontrollable stress bursts as they directly influence
the productivity.
Our aim is to construct a mathematical model of stress dynamics that takes into account
stress level and response of employees to different motivation factors. It suggests an op-
timal motivational scenario that maximizes “profit”, i.e. provides tradeoff between the best
business outcome and the stress level. It consists of task-reward sequences (i.e. scenarios
that include tasks and reinforcement delivered when they are completed). We propose a
statistical inference method for the model based on data.

1.2 Psychological background

In this subsection we briefly describe the psychological literature research we made when
analysing the problem. The proposed model is intended to be backed by the theory of
psychology. However, it should be noted that none of the authors is a qualified psychologist.
The relationships between stress, motivation and performance seem to be a frequently
discussed issue in the psychological literature, see e.g. [12] for a detailed review. However,
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Figure 1: Stylised relationship between stress and performance.

we have not found one unambiguous and widely-accepted model of these relations. Based
on the article [9] one can divide the models into three main groups:

• negative linear relationship - underpinned by the belief that high stress level de-
creases performance;
• positive linear relationship - stress and anxiety are challenges that improve perfor-
mance;
• combination of the above (inverted-U, Yerkes-Dodson model) - there is the optimal
stress level and deviation in both directions reduces the performance, see [15] as the
seminal paper in this direction and [13] for a modern treatment.

The models are summarised in Figure 1. In fact, similar relationships may be used to de-
scribe dependence between stress and motivation (willinges to work) or motivation (reward)
and performance. However, it should be noted that every model has been criticised based
on the empirical data, see e.g. [14]. Moreover, problems with correct definition and method-
ology of measuring stress should be emphasised. One can measure subjective feelings that
clearly may be biased or try to find objective measure. See e.g. [7, 12] for further discussion.
It is clear that the problems mentioned above are outside of the domain of mathematics.
However, when using the proposed model one has to decide on the cost functional that
reflects employer’s belief on employees’ performance and behaviour (see Section 3 for
details). Hence, the thorough psychological study must be performed.
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1.3 Solution and document overview

Our task was to create a tool for designing motivation system. We propose the solution
that combines various techniques taken from statistics, machine learning and stochastic
control theory. In Section 2 we describe changes of stress level in terms of a controlled
Markov chain. By applying appropriate control (tasks and rewards) the employer affects
the employee’s stress level and the company’s cost. We express the business goal in terms
of various cost functions; see Section 3 for details. In order to use the proposed solution,
the employer needs to have the transition probability matrix of the Markov chain. In Section
4 we propose two methods of estimation – logistic-type regression and Bayesian updating
rule. Once the transition matrix is given, one can apply the algorithm from 5 to obtain opti-
mal solution. In Section 6 we present illustrative implementation of the proposed motivation
scheme. Further ideas are discussed in Section 7.

2 Model design

We want to model the stress level of an employee by a controlled Markov chain (see e.g.
[1]). Here, the control reflects actions that can be done by the employer and affect the
employee’s stress level. This includes e.g. setting sales targets and possible rewards for
meeting them. Using a Markov chain we are able to capture some form of inertia in stress
level, i.e. the fact that it should depend on the stress in the past. Moreover, the random
nature reflects some external circumstances that affect stress level, e.g. related to private
life and not described by the model.
Consider a single employee or a homogeneous group of employees. Denote A – the set
of possible actions that can be performed by the employer towards their employee for
a given day (period). For computational reasons, we assume that the number of possible
actions is finite, i.e. |A| = K , but this assumption may be relaxed. Moreover, for convenience
(both interpretational and mathematical), we will assume that each a ∈ A has the form
a = (a(d), a(r)), where a(d) is a quantified “business value” of the task (target, demand) and
a(r) is a quantified “reward” that were given to an employee.
We assume that the employee always meets the target, possibly increasing their level of
stress. Hence, the reward for meeting the target is always paid and from the perspective
of the employer a(r) describes the cost of the action while a(d) denotes the income. We
refer to Section 7 for possible modifications of this approach.
Let S = (S0, S1, . . .) be a time-homogeneous controlled Markov chain on a filtered probability
space (Ω,F , (Ft),P). The chain S describes the stress level of the particular employee. Here
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Figure 2: Dynamics of the model. At time t the control at affects the probability of transition
from the stress level St to St+1 and results in the cost ct(at, St).

the time corresponds to subsequent days (periods) of the considered motivation scheme.
We assume that the stress level is measured in the discrete scale and can take only finite
number of states. Hence, S := {1, . . . , N} will denote the state space for the Markov chain
S with the convention that higher number corresponds to higher stress level. It should be
explicitly stated that in our model the stress level is directly observable, i.e. we are able to
reliably measure it.
To each action a ∈ A, we associate a probability transition matrix

P (a) = {Pij(a)}Ni,j=1

of size N ×N that represents the probabilities of changing the stress level from i to j given
a particular action a of the employer, i.e.

Pij(a) = P (St+1 = j | St = i, at = a) , t ∈ N.

With the slight abuse of notation define at : S 7→ A as the mapping (decision rule) that
specifies the action undertaken by the employer at time t depending on the current stress
level. In other words, if the stress level at time t is given by s, then the employer apply
control at(s). By a = (a0, a1, a2, . . . ) we denote the policy of the employer, that is a sequence
of decision rules. It should be clear from the context when at denotes the decision rule
(function) and when it describes the control itself (the value of the function).
Let T ∈ N denote the horizon of the control problem, i.e. number of days (periods) to the
end of the project and considered motivation scheme. In this case by CT (s0, a) we denote
the expected cost corresponding to the initial stress level s0 of the employee and the policy
a. For simplicity of the argument we consider the cost functional in the additive form, i.e.

CT (s0, a) := Es0

(
T−1∑
t=0

ct(at, St) + cT (ST )

)
, (2.1)

where Es0 denotes the conditional expectation given that S0 = s0. Here ct(a, s) is an intertem-
poral cost at time t of undertaking an action a, when the current level of employee’s stress
is s. At the final step the employer does not take any action, so the cost at time T depends
only on the terminal stress level. For possible choices of intertemporal cost functions see
Section 3. The dynamics of the model is summarised in Figure 2.
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The objective of the employer is to apply a policy a that minimizes CT (s0, a) given initial state
s0. With the slight abuse of notation we denote by CT (s0) the optimal cost, i.e.

CT (s0) := inf
a
CT (s0, a). (2.2)

The optimal policy, if exists, is then
a∗ = argminCT (s0, a).

In addition to the problem (2.2) we consider infinite horizon functional given by
C∞(s0) = inf

a
Es0

( ∞∑
t=0

ct(at, St)

)
, (2.3)

assuming appropriate convergence of the sum. This approach may be useful if the duration
of the project is unknown or the employer wants to take into account long-run balance
between employee’s wellness and the company standing. See Subsection 5.2 for further
assumptions on ct and Section 7 for generalisations of infinite horizon model.
Method for finding the optimal policy is described in Section 5.

3 Performance quantification

One of the most crucial points is the appropriate choice of the intertemporal cost func-
tion ct. Recall that a possible action taken by the employer consists of a(d) – the business
value of the task demanded by the employee – and a(r) – employee’s reward for fulfilling the
task. Here we should note that the task does not have to provide a direct profit, but it may
also consist of learning or teaching activities. Nonetheless, we can also associate monetary
value to such tasks.
The cost function should not only take into account the direct cost of an action a (that is,
cost of a(r) and profit from a(d)), but also help managing the stress level of an employee,
for example by introducing a penalty for certain stress levels or adding the cost of hiring
a new worker in case an employee decides to leave the company. Please note that while
it is straightforward that the cost of an action and penalty for leaving have monetary val-
ues, it is less obvious how to interpret the penalty for stress as a real cost. However, by
introducing this penalty we take into account the situation when the overstressed worker
is less productive and therefore does not meet the target completely or needs more time
to finish it. Hence the penalty for stress may be interpreted as the indirect cost of a lower
efficiency of an employee. Therefore we assume the general form of the cost function:

ct(s, a) = cost of a+ penalty for s ( + leaving cost ) . (3.1)
Page 8



Optimal motivation scheme design using machine learning and control theory ESGI144
Here we briefly discuss each component of the formula (3.1).

1. Cost of a.
Let us denote this cost by g(a). The minimal requirement for g is being decreasing
in a(d) and increasing in a(r). The choice of function g depends on the employer’s
preference, may be treated as a form of utility of a(d) and disutility a(r). Here we list a
few functions, which are mostly inspired by the utility theory.
• Linear function

g(a) = αa(r) − βa(d), where α, β > 0.

The main advantage of this function is its simplicity and computational feasibility.
• Assuming a(r), a(d) > 0, we may apply logarithmic function

g(a) = α ln a(r) − β ln a(d), for α, β > 0.

It is concave in a(r) and convex in a(d) – both properties reflect the following fact:
When the value of a(r) (respectively a(d)) is high, a perturbation of this value implies
a smaller change of the cost than the same perturbation when a(r) (respectively
a(d)) is small. If α = β, then the function depends only on the ratio a(r)

a(d) . The
choice of logarithmic utility corresponds to Kelly criterion of maximisation long
run investment return.
• Under the same assumptions on a(r), a(d), we can use power function

g(a) = α

(
a(r)

a(d)

)β

for α ≥ 0, β ∈ (0, 1).

As in the previous example, this function is concave in a(r) and convex in a(d).
2. Penalty for stress
The penalty for stress will be denoted by p(s). The choice of p depends directly on the
employer’s view on how stress affects the efficiency of an employee. As it was dis-
cussed in Subsection 1.2, there are three main hypotheses about the relation between
stress and performance, each of whom may be reflected in the penalty p(s).
• In order to follow the “negative linear” approach mentioned in [9], one should
choose p to be strictly increasing in s. The simplest (and least computationally
demanding) example is a linear function p(s) = αs for some α > 0.
• In order to be consistent with the “inverted-U” model from [15] and [13], one needs
to choose a preferable stress level ŝ (usually in the middle of scale) and define
e.g. p(s) = α|s− ŝ| or p(s) = α(s− ŝ)2 for α > 0. These functions are symmetric with
respect to ŝ and penalize the deviation from the optimal level of stress in both
directions.
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• A slight modification of the approach proposed above is choosing p(s) = α(s− ŝ)+,
α > 0. Here x+ := max(0, x) stands for the positive part of x. Such a function pe-
nalizes only exceeding ŝ and is indifferent to stress levels below ŝ. This behaviour
resembles the properties of semivariance.
• Another variation of these approaches is to penalise deviations from ŝ in an asym-
metric way. This may be reflected in a function p(s) = α(s − ŝ)+ + β(s − ŝ)− for
positive α 6= β. The notion x− := max(0,−x) stands for the negative part of x.

3. Leaving cost.
We may distinguish the state ∆ := N as a situation where the employee decides to
leave the company (either due to being overstressed or to external factors, such as
a better offer from another company). Then, the new employee may be immediately
hired hence we do not need to assume that the state ∆ is absorbing. However such
situation generates a substantial cost (which we denote by L) for the employer and is
rather undesirable. Therefore we may add L1{s=∆} to the cost function.
A remark should be stated at this point – if we penalise high stress levels using the
function p mentioned in point 2, adding a leaving cost may lead to penalising stress
twice: once (explicitly) via p(s), and second time by increasing the probability of reach-
ing level∆, which increases the conditional expectation of L1{s=∆}. Secondly, the event
of an employee leaving the company is rather rare and it might be difficult to estimate
the probabilities of reaching the state ∆.

Remark 3.1. All functions proposed above are time-independent. However, this property
may be easily relaxed, for example by allowing the multiplicative constants that appear in
the formulas to depend on t. This enables us to capture the fact that the goals of the
company may evolve during the time period of the project – e.g. the employer might be
more likely to encourage more work at the beginning or in the middle of the project. On
the other hand, in the infinite horizon case we usually assume that ct(a, s) = γtc(a, s), for
γ ∈ (0, 1), in order to ensure convergence of the sum in (2.3), see Subsection 5.2.
Remark 3.2. As mentioned in Section 2, at the final step the employer does not perform
any action, so the terminal cost cT does not depend on a. Therefore cT consist only of the
penalty for stress and possibly of leaving cost. Both may be constructed as proposed in
points 2 and 3.
Remark 3.3. Please note that using penalty for stress (that is measured in some abstract
scale) we may lose direct interpretability of the cost functional in monetary units. However,
if p is piecewise linear, the multiplicative constants α and β may be interpreted as the cost
of changing stress level by one. We may associate monetary value to this according to the
interpretation of the penalty as the cost of lower productivity of an employee. The direct
interpretability of cost functional in monetary units is lost also when introducing non-linear
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cost of control (e.g. power function). Note that we do not face this problem in case of
penalty for leaving.

4 Bayesian learning for transition probabilities estimation

In this section, we present a Bayesian method for estimating Markov transition probabilities.
We split it into three parts. In Subsection 4.1 we recall several definitions and notation; in Sub-
section 4.2 we introduce general framework and discuss necessary updating algorithms; in
Subsection 4.3, we describe one of possible ways to estimate priors.
For more details on Bayesian statistics in general and its applications in machine learning,
see [3] or [10].

4.1 Definitions and notation

For reader’s convenience, we start with recalling several definitions and notation that will
be used in what follows.
Definition 4.1. Random vector X = (X1, ..., Xd) has multinomial distribution with vector of
parameters (m; p1, .., pd), m ∈ N, pi > 0,∑d

i=1 pi = 1, if

P(X1 = x1, ..., Xd = xd) =

 d!
x1!...xd!

px1
1 ...pxd

d , when∑d
i=1 xi = m,

0 otherwise,
for non-negative integers x1, ..., xd.
Remark 4.2. Multinomial distribution is a generalization of binomial distribution in case of d
possible outcomes. In this case parameter m has an interpretation of the number of trials
while p1,..., pd are probabilities of different outcomes in each trial.
Definition 4.3. The Dirichlet distribution of order d ≥ 2 with parameters α1, ..., αd > 0 is a
continuous distribution with probability density

f(x1, ..., xd) =

(∏d
i=1 Γ(αi)

Γ(
∑d

i=1 αi)

d∏
i=1

xαi−1
i

)
1{∑d

i=1 xi=1 and xi≥0, i=1,...,d}.

Remark 4.4. We shall denote random vectorX with multinomial distribution with parameters
(m, p1, ..., pd) as

X ∼ Multinom(m; p1, ..., pd)

and the random vector P with Dirichlet distribution with parameters (α1, ..., αd) as
P ∼ Dir(α1, ..., αd).
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Denote

Pi∗(a) := (Pi1(a), Pi2(a), ..., PiN (a)), i = 1, ..., N, a ∈ A

the i-th row of transition matrix P (a) that contains probabilities of changing the stress level
from i given a certain action a of the employer.

4.2 Bayesian model of stress profile

Consider day t and an employee with the stress level i with employer’s action a on this day.
Hereafter by a stress profile we mean the family of the transition probabilities P (a), a ∈ A.

Note that stress level i of the employee can be represented as an N-dimensional vector
with 1 at the i-th coordinate and zeroes at all the others. Such representation is convenient
as in this case the stress level the next day is a multinomial random variable with “number
of trials” parameter equal to 1 and vector of outcome probabilities Pi∗(a) that depends on
current stress level and action performed by the employer. Denote this random variable
St+1,i,a, i.e.

St+1,i,a := St+1 | St = i, a.

Assume that vector Pi∗(a) is random with Dirichlet distribution with parameters α1(a, i), ...,
αN (a, i), i.e. consider the following Bayesian model of the stress profile:

St+1,i,a ∼ Multinom(1;Pi∗(a)),

Pi∗(a) ∼ Dir(α1(a, i), ..., αN (a, i)).
(4.1)

Assume that St+1,i,a = y, where y = (y1, ..., yN ) is a vector with all zeroes except for the
position (which is 1) where the stress level was on day t + 1. In this case, denoting x =

(x1, ..., xN ), according to the Bayes’ theorem,
fPi∗(a)|St+1,i,a=y(x) ∝ fSt+1,i,a|Pi∗(a)=x (y)fPi∗(a)(x) ∝

∝
N∏
j=1

x
yj

j

N∏
j=1

x
αj(a,i)−1
j =

N∏
j=1

x
yj+αj(a,i)−1
j ,

(4.2)

where
fPi∗(a)|St+1,i,a=y(x)

is a conditional density of Pi∗(a) given St+1,i,a = y,
fSt+1,i,a|Pi∗(a)=x(y)

is a conditional density of St+1,i,a given Pi∗(a) = x and
fPi∗(a)(x)
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is a density of Pi∗(a).
Therefore, due to the form of the Dirichlet distribution density,

Pi∗(a) | St+1,i,a = y ∼ Dir(α1(a, i) + y1, ..., αN (a, i) + yN ).

This gives us a simple and efficient online algorithm to update our beliefs concerning the
transition probability vectors in the stress profile.
Updating Rule 4.5. Given

- stress level i on day t,
- action a on day t,
- Dirichlet distribution parameters for the day t:

(αt
1(a, i), ..., α

t
N (a, i)),

- stress level j on day t+ 1,

the updated Dirichlet distribution parameters for the day t+ 1

(αt+1
1 (a, i), ..., αt+1

N (a, i))

are computed as follows:
αt+1
j (a, i) = αt

j(a, i) + 1,

αt+1
k (a, i) = αt

k(a, i), ∀k 6= j.

Remark 4.6. Note that at each step we update only one row of the matrix P (a) for the given
action a. It is easy to see that, in general, there are K × N of such vectors in the stress
profile.
Remark 4.7. As a result of each update, we obtain a distribution of the transition probability
vector Pi∗(a). In order to obtain the point estimates for Pi∗(a), we can use, for example,
posterior mean ormaximum a posteriori (MAP), if all parameters of the Dirichlet distribution
are greater than 1.
Namely, if

Pi∗(a) = (Pi1(a), ..., Pi,N (a)) ∼ Dir(α1(a, i), ..., αN (a, i)).

then

• E [Pij(a)] =
αj(a,i)∑N

k=1 αk(a,i)
,

• MAP (Pij(a)) =
αj(a,i)−1∑N

k=1 αk(a,i)−N
.
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4.3 Estimating priors

As it is stated in Remark 4.6, there are K ×N vectors to estimate, which requires commen-
surate database size to train the model to an appropriate level.
One of possible approaches lies in clustering the employees into homogenuous groups and
use the data from all the group members to update the probabilities. In such case, if d

employees from the group have the same stress level i and are asked to perform the
same task a, the update formulas for Pi∗(a) should be applied d times.
However, in order to make the model more convenient on early stages of learning, it is
useful to choose meaningful initial values for parameters

(α1(a, i), ..., αN (a, i)), i = 1, ..., N, a ∈ A,

to plug in into the model in the beginning.
One may collect initial dataset consisting of the stress level measurement before applica-
tion of the control, the control itself and the stress level after the control. Then anN-variate
logistic regression-type model of the following form may be fitted
Pij(a

(d), a(r)) = P
{
S1 = j | S0 = i, a0 = (a(d), a(r))

}
=

exp
{
βj
0 + βj

1a
(d) + βj

2a
(r) + βj

3|j − i|+ + βj
4|j − i|−

}
1 +

∑N−1
k=1 exp

{
βk
0 + βk

1a
(d) + βk

2a
(r) + βk

3 |k − i|+ + βk
4 |k − i|−

} , j = 1, ..., N − 1;

Pi,N (a(d), a(r)) = 1−
N−1∑
j=1

Pi,j(a
(d), a(r)), (4.3)

with some parameters βj
u, u = 0, . . . , 4, j = 1, . . . , N −1 to be found. Here the terms (j− i)+ :=

max{j− i, 0} and (j− i)− := max{i− j, 0} correspond to up and down movement in the stress
level respectively and penalize drastic day-to-day changes in stress.
Note that in (4.3) we used logistic transform mapping R to [0, 1]. In general one may use
some different function from the theory of generalised linear models, see e.g. [10, Chapter
9] .
After obtaining estimates P̂ij(a) of transition probabilities given the state a, we set initial
parameters of the Dirichlet distributions Dir(α0

1(a, i), ..., α
0
N (a, i)) as follows:

α0
j (a, i) = P̂ij(a)× LPi∗(a),

where LPi∗(a) > 0 are positive constants that should be chosen heuristically. We suggest to
set

LPi∗(a) = N,

but further data-based tuning is required.
Page 14
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Remark 4.8. The parameters of the Dirichlet distribution should be positive, therefore the
estimates P̂ij(a) should be positive as well. The estimates obtained by logistic regression-
type method described above have this property.

The interpretation of LPi∗(a) is as follows. Let
Pi∗(a) = (Pi1(a), ..., Pi,N (a)) ∼ Dir(α1(a, i), ..., αN (a, i)).

Recall the posteriori mean point estimates of Pij(a), j = 1, ..., N , given in Remark 4.7. If
we equate them to estimates P̂ij(a) obtained with any other method (for instance, logistic
regression described above) we get:

α0
j (a, i)∑N

k=1 α
0
k(a, i)

= P̂ij(a),

α0
j (a, i) = P̂ij(a)×

(
N∑

k=1

α0
k(a, i)

)
=: P̂ij(a)× LPi∗(a),

i.e. LPi∗(a) :=
∑N

k=1 α
0
k(a, i).

Note that

Var [Pij(a)] =

α0
j (a,i)∑N

k=1 α0
k(a,i)

(
1− α0

j (a,i)∑N
k=1 α0

k(a,i)

)
∑N

k=1 αk(a, i)
=

α0
j (a,i)∑N

k=1 α0
k(a,i)

(
1− α0

j (a,i)∑N
k=1 α0

k(a,i)

)
LPi∗(a)

,

so the constants LPi∗(a) in the denominator tune marginal variances of the Dirichlet distri-
butions. In oher words, the greater the values of LPi∗(a) are, the smaller the variances of
marginals become.
We can use this fact to take into account the stress profile changes in time: division of pa-
rameters of the Dirichlet distribution by a constant C > 1 does not change posteriori mean
point estimates but increases variance of the transition probabilities. Therefore, weekly or
monthly division of model parameters by a “relatively big” constant (chosen, again, heuris-
tically) makes the model emphasize on new observations and re-train faster, adapting to
new changes swiftly.

5 Solution of the Markov decision model

The solution of the Markov decision model stated in the Section 2 will be based on the
Bellman equations and the so-called reward iteration. For the sake of convenience, we
sketch this approach below. Interested reader may consult e.g. [1], [5], [6] for a thorough
description and mathematical details of the problem.
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5.1 Finite horizon case

For function v : S 7→ R define the minimal reward operators
Ttv(s) := inf

a∈A
(ct(a, s) + E (v(St+1)|St = s, at = a)) (5.1)

where t = 0, . . . , T − 1. Consider in addition the system of recursive equationsVT = cT ,

Vt = TtVt+1 for t = 0, . . . , T − 1,
(5.2)

where we look for functions V0, . . . , VT : S 7→ R.

Optimal strategy for (2.2) may be found using Theorem 5.1 below. In a nutshell, if we can find
a solution to the system of equations (5.2) and minimisers for (5.1), then we can construct
an optimal strategy for the problem (2.2). For the proof and further discussion see e.g. [1,
Theorem 2.3.7].
Theorem 5.1. Suppose (Vt) are solutions to the system of equations (5.2). Moreover, assume
(a∗t ) are minimisers for (5.1) and (Vt), i.e.

Vt(s) = ct(a
∗
t (s), s) + E (Vt+1(St+1)|St = s, at = a∗t (s)) , s ∈ S.

Then the policy a∗ := (a∗t ) is optimal for (2.2) and
CT (s0) = CT (s0, a

∗) = V0(s0).

Note that in our case (5.2) reads as
VT (s) = cT (s),

Vt(s) = min
a∈A

(
ct(a, s) +

N∑
j=1

Vt+1(j)Pij(a)

)
for t = 0, . . . , T − 1

for any s ∈ S. Since we assumed finiteness of the control set A, existence of the minimisers
is guaranteed. However, the Theorem can be applied in the more general framework; see
[1] for details and necessary technical conditions. Moreover, based on Theorem 5.1, one can
easily construct optimisation algorithm.
Algorithm 5.2. Backward induction

1. Set t← T. For any s ∈ S compute
VT (s)← cT (s).
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2. Set t← t− 1. For any s ∈ S compute

Vt(s)← min
a∈A

ct(a, s) +

N∑
j=1

Vt+1(j)Pij(a)

 .

Denote by a∗t (s) the minimiser.
3. Repeat step 2 until t = 0. Then a∗ := (a∗t )

T−1
t=0 is the optimal policy and CT (s) = VT (s).

We refer to Section 6 for computational example.

5.2 Stationary and infinite horizon case

Now we restrict our attention to the intertemporal cost functions of the form
ct(s, a) = γtc(a, s) (5.3)

for some function c : A× S 7→ R and a constant γ ∈ (0, 1). Hence, the cost function depends
on time only through the “discount factor” γ. Assumption γ ∈ (0, 1) guarantees convergence
of the sum in (2.3).
In analogy to (5.1) we introduce the following operator

T v(s) := inf
a∈A

(c(a, s) + γE (v(S1)|S0 = s, a0 = a)) . (5.4)
Moreover, let V0 = 0,

Vt = T Vt−1 for t = 1, 2, . . . .
(5.5)

Note that in contrast to (5.2), in (5.5) we used forward recursion.
The following theorem provides a method for finding optimal strategy for problem (2.3). For
proof, see e.g. [1, Theorem 7.1.7, Theorem 7.1.8].
Theorem 5.3. Suppose V := limt→∞ Vt is a bounded function such that

V (s) = T V (s).

Assume in addition that there exists a∗ : S 7→ A satisfying for any s ∈ S

T V (s) = c(a∗(s), s) + γE (V (S1)|S0 = s, a0 = a∗(s)) .

Then, the policy a∗ = (a∗) is optimal and

C∞(s0) = V (s0).
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One can show that operator T is monotone, hence limt→∞ Vt from Theorem 5.3 exists. By
assumption, the function V is a fixed point of the operator T and a∗ is a minimiser for (5.4)
and V . Moreover, the optimal control depends on time only through the current state St, i.e.
for any time t it is optimal to apply policy a∗(St).

Let us consider again the finite horizon problem (2.2). Assume that the intertemporal cost
functions is of the form (5.3) and the terminal cost is given by

cT (s) = γT r(s)

for some r : S 7→ R. Special structure of the cost functions allows us to replace Algorithm
5.2 by the following:
Algorithm 5.4. Forward induction

1. Set t← 0. For any s ∈ S compute
V0(s)← r(s).

2. Set t← t+ 1. For any s ∈ S compute
Vt(s)← min

a∈A

c(a, s) + γ

N∑
j=1

Vt−1(j)Pij(a)

 .

Denote by a∗t (s) the minimiser.
3. Repeat step 2 until t = T. Then a∗ := (a∗T−t)

T−1
t=0 is the optimal policy and CT (s) = VT (s).

Note that Algorithm 5.4 combined with (5.5) and Theorem 5.3 provides a method for approx-
imating solution of the infinite horizon problem. One simply needs to take r ≡ 0 and repeat
step 2 of the Algorithm 5.4 for sufficiently large T. For other methods see [1, Section 7.5].

6 Numerical example

6.1 Setup

Our goal is to determine optimal actions for each time epoch by solving the Bellman equa-
tions as described in Section 5. In what follows we present an illustrational example of tran-
sition probabilities and cost functions without any references to any databases or needs of
particular companies.
Assume that there are five different stress levels {1, 2, 3, 4, 5} and only one type of task
difficulty, i.e. a(d)t = 1. We define five different reward levels, namely a

(r)
t ∈ {1, 2, 3, 4, 5}. For

the ease of notation at will stand for a(r)t .
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Remark 6.1. The higher reward levels are associated with an attempt to reduce stress of the
employee, which can be interpreted not only by getting a higher reward by the employee
but also by having more time to finish the specific task.

We will use the following cost functions:
c1t (a, s) = 0.99t(a+ (s− 1)+), c1T (s) = 0.99T (s− 1)+; (6.1)
c2t (a, s) = 0.99t(a+ (s− 1)+ + 101{s=5}), c2T (s) = 0.99T ((s− 1)+ + 101{s=5}); (6.2)
c3t (a, s) = 0.99t(a+ 101{s=5}), c3T (s) = 0.99T (101{s=5}). (6.3)

For more information about choosing the suitable cost function, see Section 3.
The transition probabilities in general need to be estimated from empirical data, see Section
4 for more details. For this implementation we used the transition matrices included in the
Appendix A. The matrices we use are meant to capture our belief that the lower rewards
tend to shift stress level upwards, while the higher rewards will shift them downwards.

6.2 Results

Figure 3 illustrates the optimal policies. The tables show that as time passes (horizontal
line) which policy should be applied by the employer, i.e. which reward should be given (the
numbers in the boxes) to the employees in the different stress levels (vertical line). E.g. the
first column of Figure 3a is 

2

2

3

3

3


,

which means that in the first time period the optimal allocation is reward level 2 for stress
level 1, reward level 2 for stress level 2, reward level 3 for stress level 3 etc. The second
column stands for the optimal policy in the second time period and so on. Note that applying
the optimal control for the specific employee one has to take into account that the stress
level changes randomly. Hence, as time passes it may be necessary to switch between
different rows of the table.
First let us consider cost function c1 as defined in (6.1). The optimal policy depicted in Figure
3a is to give higher reward to the employees with high stress levels, and lower rewards
in case of low stress levels. However, the optimal reward for the last period is to pay the
minimum possible amount. If we add an additional penalty for the highest stress level, as in
function c2 from (6.2), we see that the rewards in the last periods grow, which reflects the
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fact that in this case the employer tries even harder to avoid this level, see Figure 3b. We
can also consider the function c3 from (6.3) that penalises only the highest stress level. As
expected, the results are in between the outcome for c1 and c2, see Figure 3c.

(a) Cost function c1 (b) Cost function c2

(c) Cost function c3

Figure 3: Optimal control with cost functions c1, c2 and c3 given by (6.1), (6.2) and (6.3), respec-
tively. The number in the i-th row and t-th column of the table shows the optimal policy for
the t-th period, assuming that the current stress level satisfies St = i.

Remark 6.2. In the examples, in the last periods the employer tends to decrease the reward
as they are interested in the short-horizon result only. In this sense the infinite time horizon
version is more meaningful. For more references on the topic, see Subsections 5.2 and 7.1.

7 Generalisations and further ideas

During the work, several ideas were proposed for the model. This includes completely
different approaches as well as furher extensions of the main model. For various reasons
the concepts have not been developed. However, we decided to briefly describe them in
this section.
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7.1 Modifications of the Markov model

Functional (2.2) takes into account the expected outcome of the scheme performance. How-
ever, it does not guarantee stability of the results. We can introduce penalty for big variabil-
ity of the income including variance in the cost functional, i.e. defining the mean-variance
functional

CMV (s0) = inf
a

[
Es0

(
T∑

t=0

ct(at, St)

)
+ θD2

(
T∑

t=0

ct(at, St)

)]
(7.1)

for some parameter θ > 0. This idea follows the well known Markowitz approach for port-
folio selection, see e.g. [1, Section 4.6].
The next extension is based on the cost per time criterion. In this case the problem reads
as follows

C
∞
(s0) = inf

a
lim

T→∞
1

T
Es0

(
T∑

t=0

ct(at, St)

)
. (7.2)

Please note that in general, limit in (7.2) may not exist. In this case we should replace it by
e.g. limit superior that corresponds to the worst case scenario. Moreover, note that the
value of the functional (7.2) does not change if we modify the strategy for finitely many t.

See e.g. [5, Chapter 3] for discussion and details.
Combining long-term idea of (7.2) and variability penalisation from (7.1) we can also consider
the so-called risk sensitive criterion, i.e.

CRS(s0) = inf
a

lim
T→∞

1

Tθ
ln
[
Es0e

∑T
t=0 θct(at,St)

]
. (7.3)

Using Taylor expansion in (7.3), we recover idea standing behind (7.1), but we take into account
also high order moments. Risk-sensitive functional (7.3) and the so-called entropic utility
measure gained substantial popularity in the financial context, see e.g. [2].
In the model introduced in Section 2 we assumed that the employee always meets the goal
set by the employer. In general, we can describe employee’s performance at period t by
a random variable pt. It is natural to assume that distribution of pt depends on the stress
level and the motivation scheme (at least, a(d), i.e. difficulty of the task). Then, we should
include dependence on productivity in the cost functions, hence we replace ct(at, St) by
ct(at, St, pt).Moreover, we should reflect in the model design the possibility for paying partial
reward for the goal that is not completely met. Due to technical difficulties the idea has not
been developed. However, the similar approach based on the theory of optimal learning is
described in Subsection 7.2.
The model described in Section 2 allows the company to find the motivation scheme for one
employee or one homogeneous group of employees. However, the proposed approach can
be directly extended to the case with several motivation schemes. One needs to consider
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one Markov chain for each stratum of employees and include the sum over all strata in (2.2).
Clearly, this change leads to higher computational complexity of the model.

7.2 Bayesian Learning framework

To apply the model from Section 2 one has to specify the transition matrix describing the
evolution of stress with given control. Therefore, the decision maker firstly performs statis-
tical inference as described in Section 4 and then applies algorithms from 5. However, one
can combine the process of estimating the transition probabilities and finding the optimal
control using the theory of optimal learning (see [11]). On the other hand, in this case we can
find the optimal policy only for one step ahead. Below we sketch this approach.
Recall that the decision maker has a finite set of possible actions a ∈ A from which they
can choose. Each of these actions, when performed, results in collecting reward Wa by the
decision maker. Here Wa is a random variable that comes from a known probability distri-
bution with unknown parameters. The decision maker will try to estimate these parameters
as they make subsequent decisions and learn about the system.
Consider a single employee or a homogeneous group of employees. Assume that the re-
wards resulting from performing action a, namely Wa, are normally distributed with true
mean µa and standard deviation σ2

a. For the sake of this argument, we assume that σ2
a is a

deterministic value that is known to the decision maker. However the decision maker does
not know the true mean µa and they will try to estimate this value by performing action a

and observing the outcome (receiving the reward Wa). Furthermore, we assume that µa is
itself normally distributed with unknown mean µ̄a and variance σ̄2

a. We define the precision
of our estimate of µa to be βa = 1

σ̄2
a
.

At the end of each time step t, the decision maker chooses to perform an action a ∈ A and
at the beginning of time step t + 1 they observe an outcome of this action W t+1

a . They use
this information to update their belief about action a. Updating equations are specific to the
assumed probability distribution and in the case of presented normal-normal model they
are (see [11, Section 2.2]):

µ̄t+1
a =

βtµ̄t
a + βWaW t+1

βt
a + βWa

, βt+1
a = βt

a + βWa , (7.4)
where βWa = σ2

a is deterministic as is a precision of a single observation.
Let us now extend this model to the setting of the problem defined earlier. In addition to
the dynamics of the revenue Wa, we take into account that performing the task changes
the employee’s stress level. We operate in the stress model introduced earlier in Section
2 where stress levels are modelled using a Markov chain. Therefore our observation col-
lected when a worker performs task a ∈ A consists of two components: the revenue W t+1

a
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and a response vector St+1,i,a = y. Recall that y is a vector with all zeroes except for the
position (which is 1) where the stress level was on day t+ 1, i.e. the position corresponding
to the stress level of the worker to which they transitioned from stress state i because of
performing the task a ∈ A that was assigned to them at the end of t.
For each a ∈ A we will maintain a belief which will represent our State of Knowledge of that
worker with respect to performing task a ∈ A which consists of:

• µ̄t
a - the vector of expected revenues resulting from performing the task at different
stress levels. Vector µ̄t

a has N entries, where N is the number of stress level states at
which the task can be performed. For example, expected revenue from assigning task
a ∈ A at the stress level i at time step t is stored at the i-th position of vector µ̄t

a

• βt
a - the vector of precisions of estimates µ̄t

a. The situation is analogous to the one
introduced in earlier chapter with a difference that we extend a scalar value to a
vector of values.
• P t

a - a two-dimensional matrix of parameters from Dirichlet distribution indicating a
probability of transitioning between certain stress levels due to performing task a ∈ A.

We define an expected profit of performing assigned task at time step t to our worker being
at that time at stress level i as:

qta,i = µ̄t
a,i, (7.5)

where µ̄t
a,i is expected revenue from assigning a task a ∈ A at stress level i as introduced

above.
Assume that we are at time t and we stop learning now, that is, we will be still collecting
our rewards for every time period until infinity, however we will not update our state of
knowledge. Then our optimal choice would be to indefinitely choose an action with the
highest expected profit. Therefore we define the value of being in a state described by the
state of knowledge (µ̄t

a, β
t
a, P

t
a)a∈A as:

V ((µ̄t
a, β

t
a, P

t
a)a∈A) = max

a∈A
qta,i. (7.6)

For that specified online learning problem, there are plethora of policies (decision-making
algorithms) that can be implemented depending on the goal of the business that is doing
the implementation. Most of the literature focuses on the concept of balancing exploration
and exploitation, that is, balancing immediate rewards with knowledge that can be obtained
from testing yet not so well known alternatives.
Pure exploration policy will always choose a ∈ A at random with equal probability. On the
other hand, pure exploitation will choose a ∈ A according to at = argmaxa∈A qta,i, were at is
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the action to be executed at time t. Examples of other policies include: upper confidence
bounding, excitation policy, Gittins indices policy or quite recently developed knowledge gra-
dient policy which cleverly balances immediate rewards with rewards that can be obtained
in the future due to information collection process. The interested reader may consult [11]
as an introduction to the field.

8 Conclusion

In this report, we present our solution of given stress management problem based on com-
bination of stochastic processes theory, statistics and machine learning. Namely,

- the temporal stress changes are modeled in a framework of a discrete controlled
Markov process, where an employer can directly influence the transition probabilities
of moving from one stress level to another;

- the optimal control (i.e. a sequence of actions performed by the employer) is calcu-
lated with respect to some cost function that depicts business goals of the employer
using Bellman approach;

- Bayesian learning algorithm is presented for estimation of model parameters.

Note that, in order to use this approach, the employer needs to determine an appropri-
ate cost function that, in general, comprises a compromise between an urge to push the
employees for profit maximization and an acceptable level of their stress. Moreover, as
high stress levels directly influence productivity of the staff (and therefore achievement of
business goals of the company), the cost function should depict the dependance between
stress and efficiency.
In order to define a reasonable cost function, as well as to implement the Bayesian learning
approach, a decent dataset is required. It should contain, on the one hand, information on
how different actions of the employer change the stress levels (to estimate transition prob-
abilities in the Bayesian scheme) and, on the other hand, data that “catches” performance
under certain stress conditions (in order to find a cost function).
We also propose several extensions of the given model. The mean-variance, cost-per-
time or risk-sensitive modifications of the cost function allow to obtain far more stable
results and Bayesian learning framework gives another “greedy”-type way to get an optimal
strategy with simultaneous estimation of model parameters.
As it has been shown, we can model policies that can improve process planning, leading to
efficient use of resources, and, what is also important, incentivizing personnel by efficient

Page 24



Optimal motivation scheme design using machine learning and control theory ESGI144
stress level control. Mainly, the goal in such approach lies in keeping the balance between
willingness to work (stability of stress level) and low labour costs.
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A Transition matrices used in the numerical example

a(r) = 1 1 2 3 4 5
1 34.5% 26.1% 18.6% 12.6% 8.2%
2 7.6% 34.8% 26.3% 18.7% 12.7%
3 1.2% 8.6% 39.4% 29.7% 21.2%
4 0.2% 1.5% 10.9% 49.8% 37.6%
5 0% 0.3% 2.4% 17.4% 79.9%

Table 1: Exemplary transition probabilities Pij(a) for a(r) = 1. Due to rounding the numbers
may not add up to 100%.

a(r) = 2 1 2 3 4 5
1 67.3% 24.5% 6.4% 1.5% 0.3%
2 25.2% 50.5% 18.4% 4.8% 1.1%
3 9.2% 23.1% 46.3% 16.9% 4.4%
4 3.3% 9.3% 23.4% 46.8% 17.1%
5 1.4% 4% 11.1% 27.8% 55.7%

Table 2: Exemplary transition probabilities Pij(a) for a(r) = 2. Due to rounding the numbers
may not add up to 100%.

a(r) = 3 1 2 3 4 5
1 85.7% 13% 1.1% 0.1% 0%
2 44.9% 47.3% 7.2% 0.6% 0.1%
3 29.9% 31.5% 33.2% 5% 0.4%
4 22.1% 23.4% 24.7% 26% 3.9%
5 17.8% 18.9% 20% 21.1% 22.2%

Table 3: Exemplary transition probabilities Pij(a) for a(r) = 3. Due to rounding the numbers
may not add up to 100%.
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a(r) = 4 1 2 3 4 5
1 94.3% 5.5% 0.2% 0% 0%
2 57.3% 40.3% 2.4% 0.1% 0%
3 40.9% 33.9% 23.8% 1.4% 0%
4 30.9% 28.3% 23.4% 16.5% 1%
5 24.5% 23.5% 21.6% 17.9% 12.6%

Table 4: Exemplary transition probabilities Pij(a) for a(r) = 4. Due to rounding the numbers
may not add up to 100%.

a(r) = 5 1 2 3 4 5
1 97.8% 2.1% 0% 0% 0%
2 63% 36.2% 0.8% 0% 0%
3 41.5% 36.9% 21.2% 0.5% 0%
4 29.7% 29.1% 25.9% 14.9% 0.3%
5 23% 22.9% 22.5% 20% 11.5%

Table 5: Exemplary transition probabilities Pij(a) for a(r) = 5. Due to rounding the numbers
may not add up to 100%.
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