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Summary

Solvit’s main task is to provide and maintain stable signal coverage

along railway tracks, ensuring quality communications. To do this, the

company should design a suitable antenna network in order to guaran-

tee good signal coverage while reducing the costs associated with the

entire network. In this report we formulate the problem as 0/1 linear

optimization models, and report computational results obtained using

the models on real data provided by the company.

† Corresponding Author: nuno.lopes@isel.pt
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1 Introduction

Solvit is an engineering company that develops and implements projects on Information

and Communications Technology. The company’s challenge for ESGI 161 is to select,

from a number of possible sites, a subset of sites for the installation of antennas in order

to ensure stable signal coverage along a railway track, while minimizing costs.

The antennas are located on the railway domain and should preferably coincide with

existing geographical infrastructures, since the following requirements are needed to in-

stall antennas: energy, free area space, road accessibility. However, there are other re-

quirements that must be taken into account, which are listed below.

The goal of this work is to select locations where to install communication antennas

in order to minimize their installation cost and ensure a minimum signal level along the

track. The installation cost depends on the site where the antenna is installed.

The company considers two issues in assessing the quality of solutions: the radio signal

quality along the railway line, and the cost of installing new antennas, that depends on

where the antenna is to be installed, that the company refers as priority site classification.

In terms of radio signal quality, there are three scenarios to take into account: lack of

coverage - defined as the % of the track where the signal is below −95 dBm; low signal

coverage - defined as the % of the track where the signal is between −95 dBm and

−80 dBm; and low signal continuity - defined as the maximum distance, in km, with low

signal. Lack of coverage is given a very high weight, while low coverage and low signal

continuity is considered a medium one. In the optimization problem, these scenarios are

addressed in the imposed constrains.

As mentioned above the site classification is related to the locations where the antennas

are to be installed. The company classifies sites in terms of their position along the

railway line, and assigns to sites within the same class a numerical value called “priority”

(Table 1). We use these “priority” values as costs of installing antennas in the objective

function. For example, the cost of installing an antenna placed at a level crossing site

is 5.

Site classification Priority

Anchor (a mandatory antenna) 0

Station 1

Halt 2

Level crossing 5

Sign 6

Other 10

Table 1: Selected sites classification (site priorities).

Wireless communication suffers from severe multi-path fading and path loss [11]. In

fact, many factors can affect the system, such as, hand-off, transmission rate, train’s

velocity, wireless channel, among others. However, in the present challenge these issues

will not be addressed since the company has mathematical models that are able to provide

estimates of the measures of the signal along the railway track.

The choice of the locations for the installation of the antennas has a great impact
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on the performance of the system. In this study, we propose a 0/1 linear optimization

formulation where each selected antenna should try to extend its coverage area while

satisfying the company’s requirements regarding coverage area, transmission length and

number of antennas.

1.1 The case study

To tackle the proposed challenge, the company provided a case study for the Portuguese

Cascais railway line (Figure 1). In this railway line there are 18 candidate sites for in-

stalling the antennas: nine stations (Cais do Sodré, Alcântara - Mar, Algés, Caxias,

Oeiras, Carcavelos, São Pedro do Estoril, Estoril, Cascais); eight halts (Santos, Belém,

Cruz Quebrada, Paço de Arcos, Santo Amaro, Parede, São João do Estoril, Monte Esto-

ril); and one Anchor (PK16+8).

Figure 1. The case study: Cascais railway line.

Measures of the signal on the 18 antennas were given for a total of 5884 not evenly

spaced positions along the railway line (Figure 2).

Figure 2. Signals of the 18 candidates antennas’ sites.

2 Methodologies

In this study, we propose a 0/1 linear optimization formulation to model the problem

posed by the company. This formulation is described in Subsection 2.2. Before that, in

Subsection 2.1, we present what was considered in a data pre-processing phase.
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2.1 Pre-processing stage

The representation of the signal used was simplified at a pre-processing stage. Figure 3

presents a simplified representation of the signal of the 18 candidate antennas, indicating

the positions on the railway track where the signal is above −80 dBm. The thickness of

each dot is settled by the priority (site classification priority) of the respective antenna. It

can be seen that there are overlaps of various antenna signals, and there are also different

signal ranges for each antenna.

Figure 3. Signals above minimum per antenna. The thickness of each dot is settled by

the priority (site classification) of the respective antenna.

Figure 4 presents a possible solution to the problem. For each j ∈ {1, . . . , n}, where n

is the number of sites where an antenna can be installed, the variable xj takes the

value one if it is decided to install an antenna in location j, and zero otherwise. In this

case, n = 18 and the solution consists of installing antennas at the stations Alcântra-

Mar, Caxias and Cascais, as well as at the Anchor (PK16+8). This solution is coded as

001000100010000001. It can be seen that for the entire length of the line the signal is

above -95 dBm and only in two small portions of the line is the signal below -80 dBm.

We assume that each antenna built at a given location has a unique continuous interval

with good signal coverage (see Figure 5). We can relax this condition and consider that

the interval of good signal coverage for each antenna is given by a union of disjoint finite

intervals. This improvement, although it could have been easily done, was not considered

in this report due to lack of realistic data. If implemented, it could allow finding feasible

solutions with fewer antennas.
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ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Priorities 1 2 1 2 1 2 1 2 2 1 0 1 2 1 2 1 2 1

Combination 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1

Figure 4. Interpretation of a possible solution.

Figure 5. Interval of good signal coverage of the j-th antenna.

In the context of this industrial challenge, areas of overlapping signals from two anten-

nas should be considered whenever they are in transition zones. In [1], a mixed-number

optimization model for the coverage localization problem is presented, for which the ex-

istence of overlapping coverage areas is necessary while fulfilling all the requirements.

Here we consider this situation in the definition of the interval with good signal coverage

in a pre-processing stage.

The reduction of signal noise and the size of the data, can also be considered in the

pre-processing phase. Here, we consider a smoothing algorithm where, for each antenna,

the data is approximated by a cubic spline obtained from 200 equidistant points in the

range in which the antenna signal is detected. In Figure 6 we can see that the noise

is reduced in the interpolated signal while maintaining the main characteristics of the
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original signal. Apart from the issue of data smoothing, the number of points where the

signal is considered is substantially reduced (from 5884 points to 200 points).
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Figure 6. Original and filtered signal (200 equidistant points).

2.2 Optimizing the antennas selection

The proposed methodologies aim to optimize the selection of a subset of sites where to

install the antennas, ensuring a minimum signal level along the track, according to the

constraints imposed by the company Solvit.

We address the problem in the framework of set covering problems, and consider

two different approaches: i) minimizing the cost of installing antennas, while ensuring

strong signal on the entire railway line; and ii) installing antennas within a given budget,

minimizing the length of the sections of the railway line that have weak or no signal.

Let J = {1, . . . , n} be the set of sites where antennas may be installed. Let [S,E] ⊆ R
be the real segment corresponding to the railway line, and P = {Ii = [si, ei[, i = 1, . . . ,m}
be the interval partition of [S,E] that satisfies the following conditions: (i) s1 = S,

em = E; (ii) ei = si+1, i = 1, . . . ,m− 1; (iii) every two points in Ii = [si, ei[ are covered

by exactly the same set of antennas; and (iv) Ii = [si, ei[ is maximal with respect to (iii).

We call P the signal partition of the railway line, and Ii the i-th interval of P, i = 1, . . . ,m

(see Figure 7).



Optimal configuration for communication antenna along a railway line 7

1 3 4 52Antennas

Railway

!

...

" ≤ 2! − 1
! = #1 $1 = #2 $2 = #3 $3 = #4

'1 '4'2 '3
$4 = #5 $5 = #6 $6 = #7

'5 '6

Figure 7. Railway partition.

Since we assume that each antenna has only one continuous signal interval and that

the n antennas will fully signal cover the railway line [S,E], it is easy to show that the

number of intervals of P, m ≤ 2n − 1 (with equality, in the likely case, that no two

extreme points of different signal intervals of two antennas coincide). Clearly, the result

holds for n = 1. To complete the proof, note that adding an extra antenna to a set of

n antennas, will partition each of two of the m ≤ 2n− 1 intervals of P in two intervals,

thus creating no more than 2n− 1 + 2 = 2(n+ 1)− 1 intervals.

Let A = [aij ] be an m×n 0/1 matrix, where aij = 1 if interval Ii will be signal covered

by an antenna installed in location j. Let also cj be the cost of installing an antenna at

site j, j = 1, . . . , n.

To model i) and ii) above we use 0/1 decision variables xj , j = 1, . . . , n, where xj = 1(0)

if an antenna is installed in site j is (not) selected.

2.2.1 Model i): Signal along the entire railway line

We formulate the problem as a set cover problem (see, e.g., [3], [6], and [9]). Despite being

NP-hard [8], there are solvers that produce optimal, or near optimal solutions, for median

large instances (say about one thousand variables and five thousand constraints [5]).

Using the parameters and variables defined above, the model consists of:

min

n∑
j=1

cj xj (2.1)

subject to
n∑

j=1

aij xj ≥ 1, i = 1, . . . ,m, (2.2)

xj ∈ {0, 1}, j = 1, . . . , n. (2.3)

The objective function (2.1) expresses the total installation cost of the facilities we want

to minimize. Constraints (2.2) guarantee that every interval Ii, i = 1, . . . ,m, will be

covered by at least an antenna. Finally, constraints (2.3) indicate the variables type.

The case where antennas have to be installed (or are already installed) in some given

sites should be taken into account. The sites of these mandatory antennas are called
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anchor sites, and the set of these sites will be denoted by Ach. To incorporate this

condition in the above model we add the following equations:

xj = 1, j ∈ Ach. (2.4)

In case where different optimal solutions exist, instead of identifying a single one,

it may be desired to provide a list of all the optimal solutions. To produce this list, we

propose to solve the problem repeatedly, while the current optimal value equals the initial

optimal value, adding in each iteration the inequality∑
j∈sol

xj ≤ |sol| − 1,

where sol is the optimal “solution” obtained in the previous iteration, i.e., sol = {j ∈ J :

x∗
j = 1}, where x∗ is the optimal solution obtained in the previous iteration. This causes

solution x∗ to be non-feasible in subsequent iterations.

In Section 3, we present six optimal solutions given by the optimization model (2.1)-

(2.4) for the case study given by the company (see Subsection 1.1). In all of them it is

required that all points of the track have a good signal (they are the feasible solutions).

To assess sites combination in terms of the priorities given to the number of sites and

to the selected sites combination, it is pertinent to control the number of antennas to

be installed, and relate this to the total cost. To control the number of antennas we

introduce the additional constraint

n∑
j=1

xj = b, (2.5)

where b is number of antennas to consider.

The problem may now be solved for different values of b ≥ b0, where b0 is the minimum b

for which feasible solutions exist.

2.2.2 Model ii): Relaxing having signal along the entire railway line

Here, we will describe relaxed optimization models that allows feasible solutions not

having signal cover along the entire railway line. The motivation is that the company

wants to evaluate the costs of antenna networks that, although not guaranteeing full

signal coverage on the railway line, can have acceptable coverage (with small failures)

but with lower costs. It is possible that there are antenna configurations which do not

guarantee full coverage of the rail network, but which are preferable to others which

do guarantee full coverage, because they reduce the cost function, or because they have

fewer antennas, or because the sum of the antenna priorities is lower.

In the following model we want to maximize the signal coverage of the railway line,

assuming that there is a given budget B that limits the cost of the installation of antennas.

This is the well-known maximal coverage problem (see, e.g., [7], [10],and [2]) that can be

formulated as follows:
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max

m∑
i=1

Liyi (2.6)

subject to

yi ≤
n∑

j=1

aijxj i = 1, . . . ,m, (2.7)

n∑
j=1

cjxj ≤ B, (2.8)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (2.9)

yi ≤ 1, i = 1, 2, . . . ,m, (2.10)

where Li = ei − si is the length of interval Ii = [si, ei[.

As in Model i), variables xj = 1(0) indicate that an antenna will (not) be installed in

site j. The budget constraint (2.8) ensures that the total cost of antennas’ installation

will not exceed the given budget B. Inequalities (2.7) and (2.10) ensure that yi ≤ 0 if no

antenna covering interval Ii is installed; and, if an antenna covering Ii is installed (i.e.,

aijxj = 1, for some j), then yi may assume values greater or equal to 1. Since Li > 0, in

the optimal solution yi = 0, in the former case, and yi = 1, in the latter case. Thus the

objective function (2.6) seeks to maximize the sum of the lengths of the intervals that

will be signal covered.

As we already notice, we did not consider in this report the situation where the range

of good signal coverage for some antennas is the union of disjoint intervals. This can be

easily handled creating as many copies of each of these antennas as the number of disjoint

signal coverage intervals of that antenna. If the signal coverage of an antenna j consists

of k disjoint intervals, then replace antenna j by the k fictitious “antennas” j1, . . . , jk,

with costs cj1 = cj2 = · · · = cjk = cj/k, and add to Models i) and ii) constraints

xj1 = xj2 = · · · = xjk , stating that either all fictitious “antennas” are selected, meaning

that antenna j is to be installed, or no fictitious “antenna” is selected, meaning that

antenna j is not installed.

3 Numerical results

In what follows we present the solutions obtained using the methods described in Sec-

tion 2. These methods are implemented computationally using the Julia (v1.8.2) lan-

guage, making use of some of its modules, such as DataFrames, LinearAlgebra,

XLSX and Plots. Moreover, the HiGHs and JuMP modules (see [4]) are used to

solve the constrained optimization problems described in Section 2.

Throughout this section, the costs cj , j = 1, . . . , n, (see (2.1)) are given by the priorities

of antennas defined according to Table 1. So, the objective function take into account the

number of selected sites and the sites classification. The parameters related with radio

signal quality defined by the company (see Section 1) are considered in the constrains

and are used to distinguish between feasibility of the solutions, where a feasible solution
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is defined as a solution that covers up to −80 dBm along all the railway, and non-feasible

if not.

3.1 Full signal coverage

In this subsection we present the full signal coverage solutions given by the optimization

model (2.1)-(2.4), for the case study given by the company in Subsection 1.1.

In Figures 8–10, we can see six optimal combinations of sites that ensure a good signal

coverage (≥ −80 dBm) along the railway. We stress that, for all these six solutions, the

minimum cost given by the objective function (see (2.1)) is 3. More specifically, we can

see that it is possible to guarantee a full signal coverage along the railway with the Anchor

antenna together with only three more antennas with priority classification of 1.

Figure 8. Solutions: (top) 100010000010010000; (bottom) 001010000010010000.
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Figure 9. Solutions: (top) 100010000010000100; (bottom) 001010000010000100.

Figure 10. Solutions: (top) 100010000010000001; (bottom) 001010000010000001.
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3.2 Relaxed signal coverage

Here, we show some results obtained using the model (2.6)–(2.10). More specifically,

we present the solutions for which the installation of the antennas has a budget of less

than 3. We stress that if one assumes the maximum budget of B = 3, i.e., the cost of

the full signal coverage solutions presented in Subsection 3.1, the same six solutions are

obtained (see Figures 8–10). Thus, in what follows, we present the maximal coverage

solutions with allowed constructions budgets of B = 2 and B = 1, respectively.

If a maximum budget of 2 is imposed, three solutions that cover 82.6% of the railway

are obtained (see Figure 11–12).

Figure 11. Solutions: (top) 000010000010000001; (bottom) 0000100000010000100.

Figure 12. Solution: 000010000010010000
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Finally, for an allowed budget of B = 1, only 64.4% of the railway track is covered and

only one solution is obtained (see Figure 13).

Figure 13. Solution: 000010000010000000

Note that the antenna located at Algés is common in all the four combinations pre-

sented here, as in the six solutions in the previous subsection.

It should be noted that this algorithm allows us to find these combinations with com-

putational execution times in the order of seconds, using a standard laptop computer.

3.3 Ranking the optimal solutions

We will now describe a strategy to rank the optimal solutions given by optimization

problems. We propose to consider a non-linear cost function, obtained by a more detailed

description of the constraints given by the company, and which is used, a posteriori, to

rank the solutions obtained by the algorithms described in Section 2.

Let us start by defining the following positive dimensionless quantities that, for feasible

solutions x = (xj)j=1,...,n, are not expected to be much higher than 1:

0 ≤ LC(x), LSC(x), C(x), N(x), P (x) ≲ 1. (3.1)

More specifically, functions LC, LSC, C, N and P stand for the lack of coverage, low

signal coverage, signal continuity, number of sites and sites priorities, respectively. These

notations are motivated by the concepts presented in Section 1, which are used empirically

by the company to select and rank the possible combinations of sites.

In order to define these dimensionless functions we introduce the following scaling

constants and coefficients: −80 dBm and −95 dBm are the low signal and lack of signal

threshold values; S and E are the the starting and ending points of the railway, respec-

tively [km]; L = E − S is the railway length [km]; D̄ is the average distance of coverage

for the antennas (with signal ≥ −80 dBm)) [km]; N̄ = ⌈ L
D̄
⌉ is the minimum number of

antennas required to cover the railway; Ā := D̄×15 is a reference value for the low signal

coverage [km × dBm]. In addition, given the signal coverage associated with a solution x

which can be represented by a function fx : [S,E] −→ R (dBm), in the sense of Figure 4,
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we define the following auxiliary functions:

fh
x (t) = −80− min

t∈[S,E]
{−80,max{−95, fx(t)}},

f l
x(t) = −95− min

t∈[S,E]
{−95, fx(t)}.

We use fh
x to evaluate the area of the graph of fx between the low signal coverage region,

i.e., where −95 < fx ≤ −80. On the other hand, with f l
x we evaluate the area of the

graph of fx in the lack of coverage region, i.e., where fx ≤ −95.

We are now able to define the functions given in (3.1) as follows:

LC(x) =
1

Ā

∫ E

S

f l
x(s) ds,

LSC(x) =
1

Ā

∫ E

S

fh
x (s) ds,

C(x) =
1

D̄
max

t1<t2∈[S,E]
{|t2 − t1| : ∀t ∈ [t1, t2], fx(t) < Ss},

N(x) =
1

N̄

n∑
j=1

xj ,

P (x) =
1

N̄ max
j=1,...,n

{cj}

n∑
j=1

xjcj ,

where cj , j = 1, . . . , n, are the site priorities defined in Table 1.

From the previous definitions we define the following cost function:

F (x) = 10LC(x) + eN(x) + LSC(x) + C(x) + (P (x))2. (3.2)

This cost function should be seen as a mere example; it can easily be changed by another

one that the company considers more convenient without having to change the optimiza-

tion algorithm. The choice of this function took into account the parameters related with

radio signal quality defined by the company (see Section 1).

In what follows, we evaluate F (x) in order to rank the solutions presented in the

previous subsections, along with some others. We also test some feasible and non-feasible

combinations, in order to illustrate the use of the cost function proposed here. Recall that

we assume that a solution is non-feasible if the signal (≥ −80 dBm) along the railway is

not guaranteed.

In Table 2 one can see the ordered solutions using the function defined in (3.2). We

note that in the last column of this table, whenever they are shown, we refer to the figures

in this work. Moreover, the column labeled with N shows the number of antennas in the

corresponding solution and the column labeled LP refers to the cost function (2.1) of

the LP model (2.1)-(2.4).



Optimal configuration for communication antenna along a railway line 15

F / ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 LP N Figures
3.8790462 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 3 4 Figure 8(bottom)
3.8790468 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 3 4 Figure 9(bottom)
3.8790480 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 3 4 Figure 8(top)
3.8790486 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 3 4 Figure 9(top)
3.8843242 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 2 Figure 13
3.8949483 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 3 4 Figure 10(bottom)
3.8949501 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 3 4 Figure 10(top)
3.9298649 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 3 3
3.9384414 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 3 3
4.0444962 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2
4.1074113 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 2 3 Figure 12
4.1074118 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 2 3 Figure 11(bottom)
4.1159878 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 2 3 Figure 11(top)
4.1445329 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 3 4
4.1531094 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 3 4
4.3537200 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2
4.8450397 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 2
6.2108113 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
10.801664 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 5 5 Figure 14(bottom)

Table 2: Ordered combination of sites.

Finally, in Figure 14 a non-optimal feasible solution of five antennas is shown.

Figure 14. A non optimal feasible combination of five antennas.

4 Conclusions and recommendations

In this report, we present an efficient strategy to solve the signal coverage problem in a

railway line. We considered a 0/1 Linear Programming algorithm that took into account

the priorities presented by the company. The work was carried out based on a case study

that showed the effectiveness of the considered approach.

The proposed approach now needs to be validated with real data, in particular in the

definition of the weights/costs associated to each antenna, and also for more problematic

railway lines. We recommend that the company stays in contact with the team of mathe-

maticians who developed this proposal to make the necessary improvements to overcome

the new challenges that will arise.
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