Skip to content
Register Sign in Wishlist

Automorphic Forms and L-Functions for the Group GL(n,R)


Part of Cambridge Studies in Advanced Mathematics

  • Date Published: November 2015
  • availability: Available
  • format: Paperback
  • isbn: 9781107565029

£ 48.99

Add to cart Add to wishlist

Other available formats:
Hardback, eBook

Looking for an inspection copy?

This title is not currently available on inspection

Product filter button
About the Authors
  • L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.

    • Gives complete detailed proofs of results in an easy-to-read format
    • An entirely self-contained introduction to the theory of L-functions, accessible to graduate students
    • Includes an appendix of Mathematica functions, to let readers explore the subject computationally
    Read more

    Reviews & endorsements

    '… a gentle introduction to this fascinating new subject. The presentation is very explicit and many examples are worked out with great detail … This book should be of great interest to students beginning with the theory of modular forms or for more advanced readers wanting to know about general L-functions.' Emmanuel P. Royer, Mathematical Reviews

    'This book, whose clear and sometimes simplified proofs make the basic theory of automorphic forms on GL(n) accessible to a wide audience, will be valuable for students. It nicely complements D. Bump's book (Automorphic Forms and Representations, Cambridge, 1997), which offers a greater emphasis on representation theory and a different selection of topics.' Zentralblatt MATH

    'Unfortunately, when n > 2 the GL(n) theory is not very accessible to the student of analytic number theory, yet it is increasing in importance. [This book] addresses this problem by developing a large part of the theory in a way that is carefully designed to make the field accessible … much of the literature is written in the adele language, and seeing how it translates into classical terms is both useful and enlightening … This is a unique and very welcome book, one that the student of automorphic forms will want to study, and also useful to experts.' Daniel Bump, SIAM Review

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Date Published: November 2015
    • format: Paperback
    • isbn: 9781107565029
    • length: 516 pages
    • dimensions: 227 x 151 x 29 mm
    • weight: 0.74kg
    • contains: 1 b/w illus.
    • availability: Available
  • Table of Contents

    1. Discrete group actions
    2. Invariant differential operators
    3. Automorphic forms and L-functions for SL(2,Z)
    4. Existence of Maass forms
    5. Maass forms and Whittaker functions for SL(n,Z)
    6. Automorphic forms and L-functions for SL(3,Z)
    7. The Gelbert–Jacquet lift
    8. Bounds for L-functions and Siegel zeros
    9. The Godement–Jacquet L-function
    10. Langlands Eisenstein series
    11. Poincaré series and Kloosterman sums
    12. Rankin–Selberg convolutions
    13. Langlands conjectures
    Appendix. The GL(n)pack manual

  • Resources for

    Automorphic Forms and L-Functions for the Group GL(n,R)

    Dorian Goldfeld

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact

  • Author

    Dorian Goldfeld, Columbia University, New York

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.