Skip to content
Register Sign in Wishlist

Multiplicative Number Theory I
Classical Theory


Part of Cambridge Studies in Advanced Mathematics

  • Date Published: July 2012
  • availability: Available
  • format: Paperback
  • isbn: 9781107405820

£ 66.99

Add to cart Add to wishlist

Other available formats:
Hardback, eBook

Looking for an inspection copy?

This title is not currently available on inspection

Product filter button
About the Authors
  • Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises.

    • Large collection of stimulating problems associated with each section
    • Extensive references to both historical background and further development of subject
    • Based extensively on the material used successfully at the University of Michigan, Imperial College London, and Penn State University
    Read more

    Reviews & endorsements

    'The text is very well written and accessible to students. On many occasions the authors explicitly describe basic methods known to everyone working in the field, but too often skipped in textbooks. This book may well become the standard introduction to analytic number theory.' Zentralblatt MATH

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Date Published: July 2012
    • format: Paperback
    • isbn: 9781107405820
    • length: 572 pages
    • dimensions: 229 x 152 x 32 mm
    • weight: 0.83kg
    • availability: Available
  • Table of Contents

    1. Dirichlet series-I
    2. The elementary theory of arithmetic functions
    3. Principles and first examples of sieve methods
    4. Primes in arithmetic progressions-I
    5. Dirichlet series-II
    6. The prime number theorem
    7. Applications of the prime number theorem
    8. Further discussion of the prime number theorem
    9. Primitive characters and Gauss sums
    10. Analytic properties of the zeta function and L-functions
    11. Primes in arithmetic progressions-II
    12. Explicit formulae
    13. Conditional estimates
    14. Zeros
    15. Oscillations of error terms
    Appendix A. The Riemann-Stieltjes integral
    Appendix B. Bernoulli numbers and the Euler-MacLaurin summation formula
    Appendix C. The gamma function
    Appendix D. Topics in harmonic analysis.

  • Resources for

    Multiplicative Number Theory I

    Hugh L. Montgomery, Robert C. Vaughan

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact

  • Authors

    Hugh L. Montgomery, University of Michigan, Ann Arbor

    Robert C. Vaughan, Pennsylvania State University

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.