Number Theory and Polynomials
£54.99
Part of London Mathematical Society Lecture Note Series
- Editors:
- James McKee, Royal Holloway, University of London
- Chris Smyth, University of Edinburgh
- Date Published: May 2008
- availability: Available
- format: Paperback
- isbn: 9780521714679
£
54.99
Paperback
Other available formats:
eBook
Looking for an inspection copy?
This title is not currently available on inspection
-
Many areas of active research within the broad field of number theory relate to properties of polynomials, and this volume displays the most recent and most interesting work on this theme. The 2006 Number Theory and Polynomials workshop in Bristol drew together international researchers with a variety of number-theoretic interests, and the book's contents reflect the quality of the meeting. Topics covered include recent work on the Schur-Siegel-Smyth trace problem, Mahler measure and its generalisations, the merit factor problem, Barker sequences, K3-surfaces, self-inversive polynomials, Newman's inequality, algorithms for sparse polynomials, the integer transfinite diameter, divisors of polynomials, non-linear recurrence sequences, polynomial ergodic averages, and the Hansen-Mullen primitivity conjecture. With surveys and expository articles presenting the latest research, this volume is essential for graduates and researchers looking for a snapshot of current progress in polynomials and number theory.
Read more- An invaluable resource to both students and experts in this area, with survey articles on the most important topics in the field
- Expository articles introduce graduate students to some problems of active interest
- The inclusion of new results from leading experts in the field provides a snapshot of current progress
Reviews & endorsements
'… certainly interesting not only for those interested in some selected topic but also for those who like to browse the papers with the aim of extending their knowledge.' EMS Newsletter
Customer reviews
22nd Jul 2020 by MatenganeJr1
this is very understandable book for beginner especially the ones who stating to study number and polynomials in all over the world
Review was not posted due to profanity
×Product details
- Date Published: May 2008
- format: Paperback
- isbn: 9780521714679
- length: 364 pages
- dimensions: 228 x 150 x 19 mm
- weight: 0.51kg
- contains: 16 b/w illus. 4 colour illus. 26 tables
- availability: Available
Table of Contents
Preface
Index of authors
List of participants
Conference photograph, with key
The trace problem for totally positive algebraic integers Julián Aguirre and Juan Carlos Peral, with an appendix by Jean-Pierre Serre
Mahler's measure: from Number Theory to Geometry Marie José Bertin
Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps Frits Beukers and Hans Montanus
The merit factor problem Peter Borwein, Ron Ferguson and Joshua Knauer
Barker sequences and flat polynomials Peter Borwein and Michael Mossinghoff
The Hansen-Mullen primitivity conjecture: completion of proof Stephen Cohen and Mateja Prešern
An inequality for the multiplicity of the roots of a polynomial Artūras Dubickas
Newman's inequality for increasing exponential sums Tamás Erdélyi
On primitive divisors of n2 + b Graham Everest and Glyn Harman
Irreducibility and greatest common divisor algorithms for sparse polynomials Michael Filaseta, Andrew Granville and Andrzej Schinzel
Consequences of the continuity of the monic integer transfinite diameter Jan Hilmar
Nonlinear recurrence sequences and Laurent polynomials Andrew Hone
Conjugate algebraic numbers on conics: a survey James McKee
On polynomial ergodic averages and square functions Radhakrishnan Nair
Polynomial inequalities, Mahler's measure, and multipliers Igor E. Pritsker
Integer transfinite diameter and computation of polynomials Georges Rhin and Qiang Wu
Smooth divisors of polynomials Eira Scourfield
Self-inversive polynomials with all zeros on the unit circle Christopher Sinclair and Jeffrey Vaaler
The Mahler measure of algebraic numbers: a survey Chris Smyth.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×