Skip to content
Register Sign in Wishlist

The Banach–Tarski Paradox

2nd Edition


Part of Encyclopedia of Mathematics and its Applications

  • Date Published: September 2019
  • availability: Available
  • format: Paperback
  • isbn: 9781107617315

£ 36.99

Add to cart Add to wishlist

Other available formats:
Hardback, eBook

Looking for an inspection copy?

This title is not currently available on inspection

Product filter button
About the Authors
  • The Banach–Tarski Paradox is a most striking mathematical construction: it asserts that a solid ball can be taken apart into finitely many pieces that can be rearranged using rigid motions to form a ball twice as large. This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, set theory, and logic. This new edition of a classic book unifies contemporary research on the paradox. It has been updated with many new proofs and results, and discussions of the many problems that remain unsolved. Among the new results presented are several unusual paradoxes in the hyperbolic plane, one of which involves the shapes of Escher's famous 'Angel and Devils' woodcut. A new chapter is devoted to a complete proof of the remarkable result that the circle can be squared using set theory, a problem that had been open for over sixty years.

    • Offers complete coverage of the classic Banach–Tarski Paradox
    • Provides several examples of constructive or geometric paradoxes that can be visualized
    • Includes diagrams to help understand proofs and ideas visually
    Read more

    Reviews & endorsements

    'The new edition of The Banach–Tarski Paradox, by Grzegorz Tomkowicz and Stan Wagon, is a welcome revisiting and extensive reworking of the first edition of the book. Whether you are new to the topic of paradoxical decompositions, or have studied the phenomenon for years, this book has a lot to offer. I recommend buying two copies of the book, one for the office and one for the home, because studying the book carefully (perhaps in a series of working seminars) will be worthwhile, and casually browsing through the book in your spare time will be simply a lot of fun.' Joseph Rosenblatt, Department Chair, Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis

    'This is the second edition of this classic and comprehensive monograph on paradoxical decompositions. What adds to the special appeal of this topic is the diversity of methods and the connection to several fields including set theory, group theory, measure theory, geometry, algebra, and discrete mathematics. The previous edition of this book stimulated a large amount of research. The present volume also includes these developments and furthermore discusses the solutions to some of the problems that were solved in the past thirty years, including the realization of the Banach–Tarski paradox with pieces having the Baire property and Tarski's circle squaring problem.' Miklos Laczkovich, University College London

    'Wagon's classic book on the Banach–Tarski paradox has been updated with Tomkowicz to include major advances over the last thirty years. It remains the definitive source for both newcomers to the subject and experts who want to broaden their knowledge. The book provides a basic introduction to the field with clear exposition and important historical background. It includes complete proofs of the Banach–Tarski paradox and related results. It continues with an extensive survey of more advanced topics. This is far and away the best resource for beginners and experts on the strangest result in all of mathematics.' Matthew Foreman, University of California, Irvine

    'Several spectacular results have been proved since the first edition of this book … All these results and problems are presented in a penetrating and lucid way in this new edition.' Jan Mycielski, University of Colorado, Boulder, from the Foreword

    Review of previous edition: '… a readable and stimulating book.' Ward Henson, American Scientist

    'In 1985 Stan Wagon wrote The Banach-Tarski Paradox, which not only became the classic text on paradoxical mathematics, but also provided vast new areas for research. The new second edition, co-written with Grzegorz Tomkowicz, a Polish mathematician who specializes in paradoxical decompositions, exceeds any possible expectation I might have had for expanding a book I already deeply treasured. The meticulous research of the original volume is still there, but much new research has also been included … I should also mention that this book is beautifully illustrated.' John J. Watkins, MAA Reviews

    'For some people the book will be over by page 36, because by then one has seen full treatments of the results of Hausdorff and of Banach and Tarski. These people are short-sighted; there is much fascinating mathematics to be learned from the further developments. As the recent result of Marks and Unger shows, there is probably still much to discover. Indeed, the book contains some very interesting questions that still await solution.' Klaas Pieter Hart, Mathematical Reviews

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Edition: 2nd Edition
    • Date Published: September 2019
    • format: Paperback
    • isbn: 9781107617315
    • length: 366 pages
    • dimensions: 230 x 153 x 20 mm
    • weight: 0.6kg
    • contains: 47 b/w illus. 6 colour illus.
    • availability: Available
  • Table of Contents

    Part I. Paradoxical Decompositions, or the Nonexistence of Finitely Additive Measures:
    1. Introduction
    2. The Hausdorff paradox
    3. The Banach–Tarski paradox: duplicating spheres and balls
    4. Hyperbolic paradoxes
    5. Locally commutative actions: minimizing the number of pieces in a paradoxical decomposition
    6. Higher dimensions
    7. Free groups of large rank: getting a continuum of spheres from one
    8. Paradoxes in low dimensions
    9. Squaring the circle
    10. The semigroup of equidecomposability types
    Part II: Finitely Additive Measures, or the Nonexistence of Paradoxical Decompositions:
    11. Transition
    12. Measures in groups
    13. Applications of amenability
    14. Growth conditions in groups and supramenability
    15. The role of the axiom of choice.

  • Resources for

    The Banach–Tarski Paradox

    Grzegorz Tomkowicz, Stan Wagon

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact

  • Authors

    Grzegorz Tomkowicz, Centrum Edukacji G2, Bytom, Poland
    Grzegorz Tomkowicz is a self-educated Polish mathematician who has made several important contributions to the theory of paradoxical decompositions and invariant measures.

    Stan Wagon, Macalester College, Minnesota
    Stan Wagon is a Professor of Mathematics at Macalester College, Minnesota. He is a winner of the Wolfram Research Innovator Award, as well as numerous writing awards including the Ford, Evans, and Allendoerfer Awards. His previous work includes A Course in Computational Number Theory (2000), The SIAM 100-Digit Challenge (2004), and Mathematica® in Action, 3rd edition (2010).

Related Books

also by this author

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.