Skip to content
Register Sign in Wishlist

Groups as Galois Groups
An Introduction

Part of Cambridge Studies in Advanced Mathematics

  • Date Published: June 2008
  • availability: Available
  • format: Paperback
  • isbn: 9780521065030


Add to wishlist

Other available formats:
Hardback, eBook

Looking for an inspection copy?

This title is not currently available on inspection

Product filter button
About the Authors
  • This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of the century. It brings together ideas from group theory, algebraic geometry and number theory, topology, and analysis. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory. The first part of the book is quite elementary, and leads up to the basic rigidity criteria for the realisation of groups as Galois groups. The second part presents more advanced topics, such as braid group action and moduli spaces for covers of the Riemann sphere, GAR- and GAL- realizations, and patching over complete valued fields. Graduate students and mathematicians from other areas (especially group theory) will find this an excellent introduction to a fascinating field.

    • Describes recent results on the Inverse Galois Problem
    • Is elementary enough to be understood by second-year graduate students
    Read more

    Reviews & endorsements

    Review of the hardback: 'I highly recommend this book to all readers who like to learn this aspect of Galois theory, those who like to give a course on Galois theory and those who like to see how different mathematical methods as analysis, Riemann surface theory and group theory yield a nice algebraic result.' Translated from Martin Epkenhans, Zentralblatt für Mathematiche

    Review of the hardback: '… a very helpful introduction into an active research area, recommended for graduate students and anyone interested in recent progress in the inverse Galois problem.' B. H. Matzat, Bulletin of London Mathmatical Society

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Date Published: June 2008
    • format: Paperback
    • isbn: 9780521065030
    • length: 268 pages
    • dimensions: 229 x 150 x 15 mm
    • weight: 0.396kg
    • contains: 6 b/w illus.
    • availability: Available
  • Table of Contents

    Part 1. The Basic Rigidity Criteria:
    1. Hilbert's irreducibility theorem
    2. Finite Galois extensions of C (x)
    3. Descent of base field and the rigidity criterion
    4. Covering spaces and the fundamental group
    5. Riemann surfaces and their functional fields
    6. The analytic version of Riemann's existence theorem
    Part II. Further Directions:
    7. The descent from C to k
    8. Embedding problems: braiding action and weak rigidity
    Moduli spaces for covers of the Riemann sphere
    Patching over complete valued fields.

  • Author

    Helmut Volklein, University of Florida and Erlangen University

Related Books

also by this author

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.