Linear Algebraic Groups and Finite Groups of Lie Type
Part of Cambridge Studies in Advanced Mathematics
- Authors:
- Gunter Malle, Technische Universität Kaiserslautern, Germany
- Donna Testerman, École Polytechnique Fédérale de Lausanne
- Date Published: September 2011
- availability: Available
- format: Hardback
- isbn: 9781107008540
Hardback
Other available formats:
eBook
Looking for an inspection copy?
This title is not currently available on inspection
-
Originating from a summer school taught by the authors, this concise treatment includes many of the main results in the area. An introductory chapter describes the fundamental results on linear algebraic groups, culminating in the classification of semisimple groups. The second chapter introduces more specialized topics in the subgroup structure of semisimple groups and describes the classification of the maximal subgroups of the simple algebraic groups. The authors then systematically develop the subgroup structure of finite groups of Lie type as a consequence of the structural results on algebraic groups. This approach will help students to understand the relationship between these two classes of groups. The book covers many topics that are central to the subject, but missing from existing textbooks. The authors provide numerous instructive exercises and examples for those who are learning the subject as well as more advanced topics for research students working in related areas.
Read more- Tried and tested for graduate courses
- Includes numerous exercises and examples ranging in difficulty
- The first textbook to present the modern results on maximal subgroups of both the semisimple algebraic groups and the finite groups of Lie type
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: September 2011
- format: Hardback
- isbn: 9781107008540
- length: 324 pages
- dimensions: 231 x 155 x 20 mm
- weight: 0.59kg
- contains: 6 b/w illus. 20 tables 100 exercises
- availability: Available
Table of Contents
Preface
List of tables
Notation
Part I. Linear Algebraic Groups:
1. Basic concepts
2. Jordan decomposition
3. Commutative linear algebraic groups
4. Connected solvable groups
5. G-spaces and quotients
6. Borel subgroups
7. The Lie algebra of a linear algebraic group
8. Structure of reductive groups
9. The classification of semisimple algebraic groups
10. Exercises for Part I
Part II. Subgroup Structure and Representation Theory of Semisimple Algebraic Groups:
11. BN-pairs and Bruhat decomposition
12. Structure of parabolic subgroups, I
13. Subgroups of maximal rank
14. Centralizers and conjugacy classes
15. Representations of algebraic groups
16. Representation theory and maximal subgroups
17. Structure of parabolic subgroups, II
18. Maximal subgroups of classical type simple algebraic groups
19. Maximal subgroups of exceptional type algebraic groups
20. Exercises for Part II
Part III. Finite Groups of Lie Type:
21. Steinberg endomorphisms
22. Classification of finite groups of Lie type
23. Weyl group, root system and root subgroups
24. A BN-pair for GF
25. Tori and Sylow subgroups
26. Subgroups of maximal rank
27. Maximal subgroups of finite classical groups
28. About the classes CF1, …, CF7 and S
29. Exceptional groups of Lie type
30. Exercises for Part III
Appendix A. Root systems
Appendix B. Subsystems
Appendix C. Automorphisms of root systems
References
Index.-
General Resources
Find resources associated with this title
Type Name Unlocked * Format Size Showing of
This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.
Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.
Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.
If you are having problems accessing these resources please contact lecturers@cambridge.org.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×