The Collected Mathematical Papers of James Joseph Sylvester
Volume 4. 1882–1897
- Real Author: James Joseph Sylvester
- Editor: H. F. Baker
- Date Published: February 2012
- availability: Available
- format: Paperback
- isbn: 9781107644182
Paperback
Looking for an inspection copy?
This title is not currently available on inspection
-
James Joseph Sylvester (1814–97) was an English mathematician who made key contributions to numerous areas of his field and was also of primary importance in the development of American mathematics, both as inaugural Professor of Mathematics at Johns Hopkins University and founder of the American Journal of Mathematics. Originally published in 1912, this book forms the fourth in four volumes of Sylvester's mathematical papers, covering the period from 1882 to 1897. Together these volumes provide a comprehensive resource that will be of value to anyone with an interest in Sylvester's theories and the history of mathematics.
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: February 2012
- format: Paperback
- isbn: 9781107644182
- length: 798 pages
- dimensions: 244 x 170 x 40 mm
- weight: 1.25kg
- availability: Available
Table of Contents
Biographical notice
1. A constructive theory of partitions, arranged in three acts, an interact and an exodion
2. Sur les nombres de fractions ordinaires inégales qu'on peut exprimer en se servant de chiffres qui n'excèdent pas un nombre donné
3. Note sur le théorème de Legendre cité dans une note insérée dans les Comptes Rendus
4. Sur le produit indéfini 1 - x. 1 - x2. 1 - x3
5. Sur une théorème de partitions
6. Preuve graphique du théorème d'Euler sur la partition des nombres pentagonaux
7. Démonstration graphique d'un théorème d'Euler concernant les partitions des nombres
8. Sur un théorème de partitions de nombres complexes contenu dans un théorème de Jacobi
9. On the number of fractions contained in any 'Farey series' of which the limiting number is given
10. On the equation to the secular inequalities in the planetary theory
11. On the involution and evolution of quaternions
12. On the involution of two matrices of the second order
13. Sur les quantités formant un groupe de nonions analoques aux quaternions de Hamilton
14. On quaternions, nonions, sedenions, etc.
15. On involutants and other allied species of invariants to matrix systems
16. On the three laws of motion in the world of universal algebra
17. Equations in matrices
18. Sur les quantités formant un groupe de nonions analoques aux quaternions de Hamilton
19. Sur une note récente de M. D. André
20. Sur la solution d'une classe très étendue d'équations en quaternions
21. Sur la correspondence entre deux espèces differentes de fonctions de deux systèmes de quantités, corrélatifs et également nombreux
22. Sur le théorème de M. Brioschi, relatif aux fonctions symétriques
23. Sur une extension de la loi de Harriot relative aux équations algébriques
24. Sur les équations monothétiques
25. Sur l'équation en matrices px = xq
26. Sur la solution du cas le plus général des équations linéaires en quantitiés binaires, c'est-à-dire en quaternions ou en matrices du second ordre
27. Sur les deux méthodes, celle de Hamilton en quaternions ou en matrices du second ordre
29. Sur la résolution générale de l'équation linéaire en matrices d'un ordre quelconque
30. Sur l'équation linéaire trinôme en matrices d'un ordre quelconque
31. Lectures on the principles of universal algebra
32. On the solution of a class of equations in quaternions
33. On Hamilton's quadratic equation and the general unilateral equation in matrices
34. Note on Captain MacMahon's transformation of the theory of invariants
35. On the D'Alembert–Carnot geometrical paradox and its resolution
36. Sur une nouvelle théorie de formes algébriques
37. Note on Schwarzian derivatives
38. On reciprocants
39. Note on certain elementary geometrical notions and determinations
40. On the trinomial unilateral quadratic equation in matrices of the second order
41. Inaugural lecture at Oxford, on the method of reciprocants
42. Lectures on the theory of reciprocants
43. Sur les réciprocants purs irréductibles du quatriè me ordre
44. Sur une extension du théorème relatif au nombre d'invariants asyzygétiques d'un type donné à une classe de formes analogues
45. Note sur les invariants différentiels
46. Sur l'équation différéntielle d'une courbe d'ordre quelconque
47. Sur une extension d'un théorème de Clebsch relatif aux courbes du quatrième degré
48. On the differential equation to a curve of any order
49. On the so-called Tschirnhausen transformation
50. Sur une découverte de M. James Hammond relative à une certaine série de nombres qui figurent dans la théorie de la transformation Tschirnhausen
51. On Hamilton's numbers
52. Sur les nombres dits de Hamilton
53. Note on a proposed addition to the vocabulary of ordinary arithmetic
54. On certain inequalities relating to prime numbers
55. Sur les nombres parfaits
56. Sur une classe spéciale des diviseurs de la somme d'un-
General Resources
Find resources associated with this title
Type Name Unlocked * Format Size Showing of
This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.
Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.
Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.
If you are having problems accessing these resources please contact lecturers@cambridge.org.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×