Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 7: Clustering

Chapter 7: Clustering

pp. 243-281

Authors

, Stanford University, California, , Rocketship VC, , Stanford University, California
Resources available Unlock the full potential of this textbook with additional resources. There are free resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

Clustering is the process of examining a collection of “points,” and grouping the points into “clusters” according to some distance measure. The goal is that points in the same cluster have a small distance from one another, while points in different clusters are at a large distance from one another. A suggestion of what clusters might look like was seen in Fig. 1.1. However, there the intent was that there were three clusters around three different road intersections, but two of the clusters blended into one another because they were not sufficiently separated. Our goal in this chapter is to offer methods for discovering clusters in data. We are particularly interested in situations where the data is very large, and/or where the space either is high-dimensional, or the space is not Euclidean at all. We shall therefore discuss several algorithms that assume the data does not fit in main memory. However, we begin with the basics: the two general approaches to clustering and the methods for dealing with clusters in a non-Euclidean space.

Keywords

  • clustering
  • distance measure
  • hierarchical clustering
  • <span class='italic'>k</span>-means algorithm
  • non-Euclidean clustering

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$89.00
Hardback
US$89.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers