Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 15: Periodic Systems

Chapter 15: Periodic Systems

pp. 469-501

Authors

, Oregon State University
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

We explore the energy eigenvalues and eigenstates of a periodic series of potential energy wells with the purpose of creating a rudimentary model of a solid. Our model uses an approximate approach that emphasizes the interaction between neighboring atoms. We learn how the eigenstates of the periodic potential can be constructed from the eigenstates of the single elements of the periodic potential. We also learn that the eigenstates of a solid are characterized by a wavelength, and that the energies of those eigenstates form bands centered near the atomic energy eigenvalues. We model electron motion in solids with the use of a wave packet, a superposition of delocalized Bloch states.

Keywords

  • periodic wells
  • Brillouin zones
  • Bloch’s theorem
  • band structure
  • density of states
  • Kronig-Penney model
  • metals
  • insulators
  • semiconductors
  • band gap

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$69.00
Hardback
US$69.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers