Skip to content
Register Sign in Wishlist
Look Inside Mathematische Werke

Mathematische Werke
Herausgegeben unter Mitwirkung einer von der königlich preussischen Akademie der Wissenschaften eingesetzten Commission

Volume 5

£30.99

Part of Cambridge Library Collection - Mathematics

  • Date Published: April 2013
  • availability: Available
  • format: Paperback
  • isbn: 9781108059176

£ 30.99
Paperback

Add to cart Add to wishlist

Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • The German mathematician Karl Weierstrass (1815–97) is generally considered to be the father of modern analysis. His clear eye for what was important is demonstrated by the publication, late in life, of his polynomial approximation theorem; suitably generalised as the Stone–Weierstrass theorem, it became a central tool for twentieth-century analysis. Furthermore, the Weierstrass nowhere-differentiable function is the seed from which springs the entire modern theory of mathematical finance. The best students in Europe came to Berlin to attend his lectures, and his rigorous style still dominates the first analysis course at any university. His seven-volume collected works in the original German contain not only published treatises but also records of many of his famous lecture courses. Edited by Johannes Knoblauch (1855–1915), Volume 5 was published in 1915.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: April 2013
    • format: Paperback
    • isbn: 9781108059176
    • length: 342 pages
    • dimensions: 297 x 210 x 18 mm
    • weight: 0.82kg
    • availability: Available
  • Table of Contents

    Vorwort
    Einleitung
    1. Transformation des Differentials
    2. Integration der Differentialgleichung durch Reihenentwicklung
    3. Die Function
    4. Die Function
    5. Die partielle Differentialgleichung der Function
    6. Lösung der Gleichung durch Reihenentwicklung
    7. Bestimmung aller Lösungen der Gleichung
    8. Grundformeln der Theorie der Function
    9. Die Perioden der Function für reelle Invarianten
    10. Die Functionen und die Quotienten
    11. Die Differentialgleichungen der Quotienten
    12. Darstellung der Function durch ein unednliches Product
    13. Umwandlung des unendlichen Productes für die Function
    14. Darstellung elliptischer Functionen mittels der Function
    15. Darstellung elliptischer Functionen durch der Function
    16. Darstellung der Functionen durch unendliche Producte
    17. Weitere Umwandlung der Productsausdrücke für die Functionen
    18. Die vier Theta-Functionen
    19. Die allgemeine Theta-Functionen
    20. Die Theta-Functionen mit zwei Parametern
    21. Beziehungen zwischen Functionen von mehrgliedrigen Argumenten
    22. Die Additionstheoreme der Quotienten
    23. Das Multiplicationstheorem der Function
    24. Das Multiplicationstheorem der Quotienten
    25. Die elliptischen Integrale
    26. Die Additionstheoreme der Integrale erster, zweiter und dritter Art
    27. Formeln zur Berechnung der Perioden
    28. Bestimmung eines primitiven Periodenpaares der Function für beliebige Grössen
    29. Bestimmung von u aus der Gleichung
    30. Anwendung der Formeln des achtzehnten und neunundzwanzigsten Kapitels auf den Fall reeller Invarianten
    31. Transformation der elliptischen Functionen
    32. Transformation specieller Functionen
    33. Zur Transformation der Function
    34. Die Transformation zweiter Ordnung
    Alphabetisches Inhalts-Verzeichniss.

  • Author

    Karl Weierstrass

    Editor

    Johannes Knoblauch

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×