
GCSE Computer Science for OCR
Overview Scheme of Work
The following assumes a two-year model.

During the course, the final challenges can be used for practice in computational thinking, algorithm design and coding as well as maintaining a practical element during the study of the more theoretical aspects of the course.

They can also be used for introducing the requirements of the Programming Project (J276/03/04): analysis, design, development, testing, evaluations and conclusions, and the use of appropriate programming techniques.

They can also be used to stress the items listed in the specification section 2.3 Producing robust programs:

[image:]	
	

© Cambridge University Press 2016					www.cambridge.org/education

· defensive design considerations:
· input sanitisation/validation
· planning for contingencies
· anticipating misuse
· authentication
· maintainability:
· comments
· indentation
· the purpose of testing
· types of testing:
· iterative
· final/terminal
· how to identify syntax and logic errors
· selecting and using suitable test data.

[bookmark: _GoBack]In the following overview, suitable ‘final challenges’ are suggested to accompany the content.

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	1 Algorithms
	7
	Explain what an algorithm is and create algorithms to solve specific problems.
	2.1 Algorithms
	Algorithmic thinking

	
	
	Use sequence, selection and iteration in algorithms.
	2.2 Programming techniques
	the use of the three basic programming constructs used to control the flow of a program: sequence, selection and iteration

	
	
	Use input, processing and output in algorithms.
	2.2 Programming techniques
	the use of variables, constants, operators, inputs, outputs and assignments

	
	
	Express algorithms using flow charts and pseudocode.
	2.1 Algorithms
	how to produce algorithms using pseudocode and flow diagrams

	
	
	Analyse, assess and compare different algorithms.
	2.1 Algorithms
	interpret, correct or complete algorithms

	
	
	Create, name and use suitable variables.
	2.2 Programming techniques
	the use of variables, constants, operators, inputs, outputs and assignments

1 Algorithms (continued)
	
	
	Use arithmetic, relational and Boolean operators.
	2.2 Programming techniques

2.4 Computational logic
	the common arithmetic operators; the common Boolean operators

apply computing related mathematics:
+, -, /, *, exponentiation, MOD, DIV

	
	
	Use conditional statements.
	2.2 Programming techniques
	the use of the three basic programming constructs used to control the flow of a program: selection

	Final challenge:
	Create an algorithm to help a taxi company calculate its fares.

	Additional Cambridge Elevate resources
	10 interactive activities
6 worksheets
2 animations

	

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	2 Iteration
	6
	Explain what is meant by iteration.
	2.2 Programming techniques
	the use of the three basic programming constructs used to control the flow of a program: iteration (count and condition controlled loops)

	
	
	Explain the difference between definite and indefinite iteration.
	
	

	
	
	Use for loops.
	
	

	
	
	Use while loops.
	
	

	
	
	Use do … until loops.
	
	

	
	
	Use nested loops.
	
	

	
	
	Analyse algorithms using trace tables.
	2.1 Algorithms
	interpret, correct or complete algorithms

	
	
	Use iteration when designing algorithms.
	2.2 Programming techniques
	the use of the three basic programming constructs used to control the flow of a program: iteration (count and condition controlled loops)

	Final challenge:
	Write an algorithm for a computer game.

	Additional Cambridge Elevate resources
	5 interactive activities
5 worksheets

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	3 Boolean logic
	2
	Create truth tables for Boolean operators
	2.4 Computational logic
	simple logic diagrams using the operations AND, OR and NOT
truth tables

	
	
	Draw AND, OR and NOT logic gates
	2.4 Computational logic
	simple logic diagrams using the operations AND, OR and NOT

	
	
	Combine logic gates into logic circuits
	2.4 Computational logic
	simple logic diagrams using the operations AND, OR and NOT
truth tables

	
	
	Create truth tables for logic circuits.
	2.4 Computational logic
	applying logical operators in appropriate truth tables to solve problems

combining Boolean operators using AND, OR and NOT to two levels

	Final challenge:
	Design logic circuits to solve a control problem.

	Additional Cambridge Elevate resources
	3 interactive activities
4 worksheets
1 animation

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	4 Data types and structures
	3
	Explain what is meant by ‘data type’ and list some common types
	2.2 Programming techniques
	the use of data types:
integer, real, Boolean, character and string
casting

	
	
	Use the correct data types in algorithms
	
	

	
	
	Carry out various manipulations such as finding the length of and slicing and concatenating ‘string’ data types
	2.2 Programming techniques
	the use of basic string manipulation

	
	
	Create and work with simple array data structures
	2.2 Programming techniques
	the use of arrays (or equivalent) when solving problems, including both one and two dimensional arrays

	
	
	Create and work with two dimensional arrays.
	
	

	
	
	Describe other data structures
	2.2 Programming techniques
	the use of records to store data
the use of SQL to search for data

	Final challenge:
	Encode and decode messages with an encryption key.

	Additional Cambridge Elevate resources
	5 interactive activities
4 worksheets
1 animation

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	5 Searching and sorting algorithms
	4
	Explain why sorted lists are of more value than unsorted lists
	2.1 Algorithms
	standard sorting algorithms:
bubble sort, merge sort, insertion sort

	
	
	Describe the bubble sort, selection sort and merge sort algorithms
	
	

	
	
	Use these algorithms to sort lists into ascending and descending order
	
	

	
	
	Describe the linear and binary search algorithms
	2.1 Algorithms
	standard searching algorithms:
binary search and linear search

	
	
	Use these algorithms to search sorted and unsorted lists
	
	

	
	
	Write code for the implementation of these algorithms.
	2.2 Programming techniques
	All techniques mentioned above including one and two dimensional arrays

	Final challenge:
	Write an algorithm to find the top ten.

	Additional Cambridge Elevate resources
	4 interactive activities
5 worksheets
4 animations

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	6 Input and output
	3
	Explain why user input is needed.
	2.3 Producing robust programs

2.6 Data representation
	defensive design considerations:
input sanitisation/validation
planning for contingencies
anticipating misuse
authentication

The purpose of testing
The types of testing

Check digits

	
	
	Describe ways in which data input can be validated.
	
	

	
	
	Format output.
	

	
	
	Work with text files.
	2.2 Programming techniques
	the use of basic file handling operations:
open, read, write, close

	Final challenge:
	Write a program to create and manage logins.

	Additional Cambridge Elevate resources
	4 interactive activities
4 worksheets
2 animations

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	7 Problem solving
	4
	Explain what is meant by computational thinking
	2.1 Algorithms
	computational thinking:
abstraction
decomposition

	
	
	Explain what is meant by decomposition and abstraction and use them to solve problems
	
	

	
	
	Create algorithms to solve problems that you have analysed
	2.3 Producing robust programs
	All sections previously mentioned

	
	
	Explain what is meant by top-down and bottom-up problem solving
	2.1 Algorithms
	computational thinking:
abstraction
decomposition

	
	
	Create structured programs using procedures
	2.2 Programming techniques
	how to use sub programs (functions and procedures) to produce structured code

7 Problem solving (continued)
	
	
	Follow the systems development cycle to analyse problems, design and implement solutions and test the outcomes.
	2.3 Producing robust programs

2.5 Translators and facilities of languages

	maintainability: comments and indentation
types of testing:
iterative and final/terminal
how to identify syntax and logic errors
selecting and using suitable test data.

common tools and facilities available in an integrated development environment (IDE):
editors, error diagnostics,
run-time environment, translators

	Final challenge
	Write a program for ordering a pizza online.

	Additional Cambridge Elevate resources
	3 interactive activities
5 worksheets
3 animations

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	8 Binary and hexadecimal
	5
	Explain how data is represented by computer systems.
	2.4 Computational logic

2.6 Data representation
	why data is represented in computer systems in binary form

Units
bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte, petabyte
how data needs to be converted into a binary format to be processed by a computer.

	
	
	Explain why the binary system is essential for computer processing.
	
	

	
	
	Convert binary numbers into denary and vice versa.
	2.6 Data representation
	how to convert positive denary whole numbers (0-255) into 8 bit binary numbers and vice versa

	
	
	Carry out addition, subtraction, multiplication and division on binary numbers.
	2.6 Data representation
	how to add two 8 bit binary integers and explain overflow errors which may occur

	
	
	Use left and right shifts when multiplying or dividing binary numbers by powers of 2.
	2.6 Data representation
	binary shifts

8 Binary and hexadecimal (continued)
	
	
	Explain why hexadecimal numbers are used.
	2.6 Data representation
	how to convert positive denary whole numbers (0-255) into 2 digit hexadecimal numbers and vice versa
how to convert from binary to hexadecimal equivalents and vice versa

	
	
	Convert between binary, denary and hexadecimal.
	
	

	Final challenge
	Write a program that will convert between different number formats.

	Additional Cambridge Elevate resources
	4 interactive activities
5 worksheets
1 animation

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	9 Binary representations
	4
	Explain how characters are represented in binary.
	2.6 Data representation
	Characters
the use of binary codes to represent characters
the term ‘character-set’
the relationship between the number of bits per character in a character set and the number of characters which can be represented (for example ASCII, extended ASCII and Unicode)

	
	
	Calculate the ASCII code for any character.
	
	

	
	
	Calculate the size of a text file.
	
	

	
	
	Explain how images are represented in binary.
	2.6 Data representation
	Images
how an image is represented as a series of pixels represented in binary metadata included in the file
the effect of colour depth and resolution on the size of an image file

	
	
	Calculate the size of an image file.
	
	

9 Binary representations (continued)
	
	
	Explain how sound is represented in binary.
	2.6 Data representation
	Sound
how sound can be sampled and stored in digital form
how sampling intervals and other factors affect the size of a sound file and the quality of its playback:
sample size
bit rate
sampling frequency

	
	
	Calculate the size of an audio file.
	
	

	
	
	Explain the disadvantages of large image and audio files.
	2.6 Data representation
	Compression
need for compression
types of compression:
lossy and lossless

	
	
	Explain how file compression reduces the size of files.
	
	

	
	
	Explain the differences between lossless and lossy file compression.
	
	

	Final challenge
	Create a program to compress and decompress image files for a social media site.

	Additional Cambridge Elevate resources
	4 interactive activities
4 worksheets

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	10 Programming languages
	2
	Describe the difference between low and high level languages.
	2.5 Translators and facilities of languages

	Characteristics and purpose of different levels of programming language, including low-level languages

	
	
	Explain the advantages of using high level languages.
	
	

	
	
	Explain how program instructions are encoded in low level languages
	
	

	
	
	Explain why high level languages need to be translated
	2.5 Translators and facilities of languages

	the purpose of translators

	
	
	Explain the characteristics and use of
• an assembler
• a compiler
• an interpreter.
	2.5 Translators and facilities of languages

	the characteristics of an assembler, a compiler and an interpreter

	Final challenge
	Write programs using a low level language.

	Additional Cambridge Elevate resources
	1 interactive activity
3 worksheets
1 animation

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	11 Computer systems: hardware
	4
	Explain what is meant by a computer system.
	1.2 Memory
	the difference between RAM and ROM
the purpose of ROM in a computer system
the purpose of RAM in a computer system
the need for virtual memory
flash memory.

	
	
	Explain what is meant by an embedded system.
	1.1 Systems architecture
	embedded systems:
purpose of embedded systems
examples of embedded systems

	
	
	Describe the structure of the central processing unit and the functions of its components.
	1.1 Systems architecture
	the purpose of the CPU
Von Neumann architecture:
MAR (Memory Address Register)
MDR (Memory Data Register)
Program Counter
Accumulator
common CPU components and their function:
ALU (Arithmetic Logic Unit)
CU (Control Unit)
Cache

11 Computer systems: hardware (continued)
	
	
	Describe the fetch-decode-execute cycle.
	1.1 Systems architecture
	the function of the CPU as fetch and execute instructions stored in memory

	
	
	Explain the need for and role of multiple cores and cache and virtual memory.
	1.1 Systems architecture

	how common characteristics of CPUs affect their performance:
clock speed
cache size
number of cores

	
	
	Describe secondary storage media and the advantages and disadvantages of each.
	1.3 Storage

	the need for secondary storage
data capacity and calculation of data capacity requirements
common types of storage:
optical, magnetic, solid state
suitable storage devices and storage media for a given application, and the advantages and disadvantages of these, using characteristics:
capacity, speed, portability, durability, reliability, cost

	Final challenge
	Create a learning resource.

	Additional Cambridge Elevate resources
	4 interactive activities
5 worksheets
2 animations

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	12 Computer systems: systems software
	1
	Explain what is meant by systems software.
	1.7 Systems software
	the purpose and functionality of systems software
operating systems:
user interface
memory management/ multitasking
peripheral management and drivers
user management
file management

	
	
	Explain what is meant by an operating system.
	
	

	
	
	Describe the functions of the operating system.
	
	

	
	
	Explain what is meant by utility systems software.
	1.7 Systems software
	utility system software:
encryption software
defragmentation
data compression
the role and methods of backup:
full
incremental

	
	
	List some examples of utility systems software and their functions.
	
	

	Final challenge
	Create a program to clean up a hard disk drive.

	Additional Cambridge Elevate resources
	2 interactive activities
3 worksheets

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	13 Networks
	5
	Explain what is meant by a computer network and list the different types
of networks.
	1.4 Wired and wireless networks

	types of networks:
LAN (Local Area Network)
WAN (Wide Area Network)

	
	
	Describe the differences between client server and peer-to-peer networks.
	1.4 Wired and wireless networks

	the different roles of computers in a client-server and a peer-to-peer network

	
	
	Explain the functions of the hardware needed to connect computers.
	1.4 Wired and wireless networks

	the hardware needed to connect stand-alone computers into a Local Area Network:
wireless access points
routers/switches
NIC (Network Interface Controller/Card)

	
	
	Explain how computers communicate using cable and microwave.
	1.4 Wired and wireless networks

1.5 Network topologies, protocols and layers
	transmission media
factors that affect the performance of networks

Wifi:
frequency and channels
ethernet

	
	
	Describe network topologies.
	1.5 Network topologies, protocols and layers
	star and mesh network topologies

13 Networks (continued)
	
	
	Explain how users connect to and use the internet.
	1.4 Wired and wireless networks
	the internet as a worldwide collection of computer networks:
DNS (Domain Name Server); hosting; the cloud

	
	
	Explain how data is transmitted across networks.
	1.5 Network topologies, protocols and layers
	packet switching

	
	
	Explain the use of protocols.
	1.5 Network topologies, protocols and layers
	the uses of IP addressing, MAC addressing, and protocols including:
TCP/IP (Transmission Control Protocol/Internet Protocol); HTTP (Hyper Text Transfer Protocol); HTTPS (Hyper Text Transfer Protocol Secure); FTP (File Transfer Protocol); POP (Post Office Protocol); IMAP (Internet Message Access Protocol); SMTP (Simple Mail Transfer Protocol)
the concept of layers

	
	
	Explain how virtual networks can be set up.
	1.4 Wired and wireless networks
	the concept of virtual networks

	Final challenge
	Act as a consultant.

	Additional Cambridge Elevate resources
	5 interactive activities
5 worksheets

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	14 System security
	3
	Describe the different strategies that criminals use to attack computer networks
	1.6 System security

	threats posed to networks:
malware, phishing

	
	
	Explain how people are the greatest security risks to networks
	1.6 System security

	people as the ‘weak point’ in secure systems (social engineering)

	
	
	Describe the threats posed to networks
	1.6 System security

	brute force attacks
denial of service attacks
data interception and theft
the concept of SQL injection
poor network policy

	
	
	Explain how these threats can be identified, prevented and combatted
	1.6 System security

	Identifying and preventing vulnerabilities:
penetration testing; network forensics; anti-malware software; firewalls; user access levels; passwords; encryption

	
	
	Explain the role of network policies.
	1.6 System security

	network policies

	Final challenge
	Design and code an information point.

	Additional Cambridge Elevate resources
	3 interactive activities
4 worksheets

	Chapter
	Number of weeks
	Learning outcomes
	OCR Specification references

	15 Ethical, legal, cultural and environmental concerns
	4
	Investigate and discuss the following issues in relation to the development and impact of computer science technologies:
• environmental
• ethical
• legal
• cultural
	1.8 Ethical, legal, cultural and environmental concerns
	how to investigate and discuss Computer Science technologies while considering:
ethical issues; legal issues; cultural issues; environmental issues

how key stakeholders are affected by technologies environmental impact of Computer Science cultural implications of Computer Science

	
	
	Discuss issues of data collection and privacy
	1.8 Ethical, legal, cultural and environmental concerns
	privacy issues

	
	
	Describe the legislation relevant to computer science.
	1.8 Ethical, legal, cultural and environmental concerns
	legislation relevant to Computer Science:
The Data Protection Act 1998; Computer Misuse Act 1990; Copyright Designs and Patents Act 1988; Creative Commons Licensing; Freedom of Information Act 2000; open source vs proprietary software

	Final challenge
	Design and code an online test.

	Additional Cambridge Elevate resources
	2 interactive activities
4 worksheets

image1.jpg

