Skip to content
Register Sign in Wishlist
Look Inside Œuvres de Charles Hermite

Œuvres de Charles Hermite

Volume 3


Part of Cambridge Library Collection - Mathematics

  • Date Published: July 2009
  • availability: Available
  • format: Paperback
  • isbn: 9781108003315

$ 57.00

Add to cart Add to wishlist

Looking for an inspection copy?

This title is not currently available for inspection. However, if you are interested in the title for your course we can consider offering an inspection copy. To register your interest please contact providing details of the course you are teaching.

Product filter button
About the Authors
  • Charles Hermite (1822–1901) was a French mathematician who made significant contributions to pure mathematics, and especially to number theory and algebra. In 1858 he solved the equation of the fifth degree by elliptic functions, and in 1873 he proved that e (the base of natural logarithms) is transcendental. The legacy of his work can be shown in the large number of mathematical terms which bear the adjective 'Hermitian'. As a teacher at the École Polytechnique, the Faculté des Sciences de Paris and the École Normale Supérieure he was influential and inspiring to a new generation of scientists in many disciplines. The four volumes of his collected papers were published between 1905 and 1908.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Date Published: July 2009
    • format: Paperback
    • isbn: 9781108003315
    • length: 536 pages
    • dimensions: 234 x 27 x 156 mm
    • weight: 0.74kg
    • contains: 1 b/w illus.
    • availability: Available
  • Table of Contents

    1. Sur l'extension du théorème de M. Sturm
    2. Intégration des fonctions rationelles
    3. Intégration des fonctions transcendantes
    4. Sur l'équation
    5. Sur l'équation de Lamé
    6. On an application of the theory of unicursal curves
    7. Sur l'irrationalité de la base
    8. Sur une équation transcendante
    9. Extrait d'une lettre
    10. Extrait d'une lettre
    11. Sur la fonction exponentielle
    12. Extrait d'une lettre
    13. Extrait d'une lettre
    14. Extrait d'une lettre
    15. Extrait d'une lettre
    16. Extrait d'une lettre
    17. Extrait d'une lettre
    18. Sur les développements
    19. Sur un théorème d'Eisenstein
    20. Extrait d'une lettre
    21. Extrait d'une lettre
    22. Sur l'aire d'un segment
    23. Sur un exemple de réduction d'integrales
    24. Sur un formule de Jacobi
    25. Sur quelques applications
    26. Etudes de M. Sylvester
    27. Extrait d'une lettre
    28. Extrait d'une lettre
    29. Extrait d'une lettre
    30. Extrait d'une lettre
    31. Extrait d'une lettre
    32. Sur la théorie des fonctions
    33. Sur l'intégrale
    34. Sur un théorème de Galois
    35. Sur le contact des surfaces
    36. Sur les équations différentielles linéaires
    37. Sur les équations linéaires
    38. Extrait d'une lettre.

  • Author

    Charles Hermite

Sign In

Please sign in to access your account


Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.