Skip to content
Register Sign in Wishlist
Look Inside Mathematische Werke

Mathematische Werke
Herausgegeben unter Mitwirkung einer von der königlich preussischen Akademie der Wissenschaften eingesetzten Commission

Volume 3

£35.99

Part of Cambridge Library Collection - Mathematics

  • Date Published: April 2013
  • availability: Available
  • format: Paperback
  • isbn: 9781108059152

£ 35.99
Paperback

Add to cart Add to wishlist

Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • The German mathematician Karl Weierstrass (1815–97) is generally considered to be the father of modern analysis. His clear eye for what was important is demonstrated by the publication, late in life, of his polynomial approximation theorem; suitably generalised as the Stone–Weierstrass theorem, it became a central tool for twentieth-century analysis. Furthermore, the Weierstrass nowhere-differentiable function is the seed from which springs the entire modern theory of mathematical finance. The best students in Europe came to Berlin to attend his lectures, and his rigorous style still dominates the first analysis course at any university. His seven-volume collected works in the original German contain not only published treatises but also records of many of his famous lecture courses. Edited by Johannes Knoblauch (1855–1915), Volume 3 was published in 1903.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: April 2013
    • format: Paperback
    • isbn: 9781108059152
    • length: 376 pages
    • dimensions: 297 x 210 x 20 mm
    • weight: 0.9kg
    • contains: 1 b/w illus.
    • availability: Available
  • Table of Contents

    Vorwort
    1. Ueber die analytische Darstellbarkeit sogenannter willkürlicher Functionen reeller Argumente
    2. Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist
    3. Allgemeine Untersuchungen über 2n-fach periodische Functionen von n Veränderlichen
    4. Ueber die Convergenz der Theta-Reihen beliebig vieler Argumente
    5. Verallgemeinerung einer Jacobi'schen Thetaformel
    6. Nachtrag zu der am 4. März 1858 in der königl. Akademie der Wissenschaften gelesenen Abhandlung
    7. Ueber die Bedingungen der Zerlegbarkeit einer ganzen rationalen Function von mehr als zwei Veränderlichen
    8. Zur Theorie der Jacobi'schen Functionen von mehreren Veränderlichen
    9. Rein geometrischer Beweis des Hauptsatzes der projectivischen Geometrie
    10. Zur Dioptrik
    11. Zwei specielle Flächen vierter Ordnung
    12. Ueber eine die Raumcurven constanter Krümmung betreffende, von Delaunay herrührende Aufgabe der Variationsrechnung
    13. Fortsetzung der Untersuchung über die Minimalflächen
    14. Analytische Bestimming einfach zusammenhängender Minimalflächenstücke
    15. Ueber eine besondere Gattung von Minimalflächen
    16. Einfacher Beweis eines Hermitischen Satzes
    17. Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen
    18. Zur Determinantentheorie
    19. Zur Theorie der hyperelliptischen Functionen
    20. Ueber Normalformen algebraischer Gebilde
    21. Zur Integration der hyperelliptischen Differentialgleichungen
    Anhang
    Anmerkung.

  • Author

    Karl Weierstrass

    Editor

    Johannes Knoblauch

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×