Skip to content

Due to technical disruption we are experiencing some delays to publication. We are working hard to restore services as soon as possible and apologise for the inconvenience caused. Find out more

Register Sign in Wishlist
Lebesgue Integration and Measure

Lebesgue Integration and Measure

textbook
  • Date Published: July 1973
  • availability: Available
  • format: Paperback
  • isbn: 9780521097512

Paperback

Add to wishlist

Request inspection copy

Lecturers may request a copy of this title for inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Lebesgue integration is a technique of great power and elegance which can be applied in situations where other methods of integration fail. It is now one of the standard tools of modern mathematics, and forms part of many undergraduate courses in pure mathematics. Dr Weir's book is aimed at the student who is meeting the Lebesgue integral for the first time. Defining the integral in terms of step functions provides an immediate link to elementary integration theory as taught in calculus courses. The more abstract concept of Lebesgue measure, which generalises the primitive notions of length, area and volume, is deduced later. The explanations are simple and detailed with particular stress on motivation. Over 250 exercises accompany the text and are grouped at the ends of the sections to which they relate; notes on the solutions are given.

    Reviews & endorsements

    'The book is easy to read, partly because of the treatment adopted, and partly because of the quality of the exposition. Dr Weir's style is clear, friendly and informal; he shows how the results fit in with the reader's intuition; he highlights the important things and warns of the difficult things (these warnings when a hard bit is coming up are most confidence-preserving). He does not aim at maximum generality at the cost of understanding. The examples are chosen with care, many of them being, in effect, lemmas that will be needed later in the proofs of theorems.' Mathematical Gazette

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: July 1973
    • format: Paperback
    • isbn: 9780521097512
    • length: 296 pages
    • dimensions: 229 x 152 x 17 mm
    • weight: 0.44kg
    • availability: Available
  • Table of Contents

    Preface
    1. The completeness of the reals
    2. Null sets
    3. The Lebesgue integral on R
    4. The Lebesgue integral on Rk
    5. The convergence theorems
    6. Measurable functions and Lebesgue measure
    7. The spaces Lp
    Appendix: the elements of topology
    Solutions
    References
    Index.

  • Author

    Alan J. Weir

Related Books

also by this author

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×