Lebesgue Integration and Measure
- Author: Alan J. Weir
- Date Published: July 1973
- availability: Available
- format: Paperback
- isbn: 9780521097512
-
Lebesgue integration is a technique of great power and elegance which can be applied in situations where other methods of integration fail. It is now one of the standard tools of modern mathematics, and forms part of many undergraduate courses in pure mathematics. Dr Weir's book is aimed at the student who is meeting the Lebesgue integral for the first time. Defining the integral in terms of step functions provides an immediate link to elementary integration theory as taught in calculus courses. The more abstract concept of Lebesgue measure, which generalises the primitive notions of length, area and volume, is deduced later. The explanations are simple and detailed with particular stress on motivation. Over 250 exercises accompany the text and are grouped at the ends of the sections to which they relate; notes on the solutions are given.
Reviews & endorsements
'The book is easy to read, partly because of the treatment adopted, and partly because of the quality of the exposition. Dr Weir's style is clear, friendly and informal; he shows how the results fit in with the reader's intuition; he highlights the important things and warns of the difficult things (these warnings when a hard bit is coming up are most confidence-preserving). He does not aim at maximum generality at the cost of understanding. The examples are chosen with care, many of them being, in effect, lemmas that will be needed later in the proofs of theorems.' Mathematical Gazette
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: July 1973
- format: Paperback
- isbn: 9780521097512
- length: 296 pages
- dimensions: 229 x 152 x 17 mm
- weight: 0.44kg
- availability: Available
Table of Contents
Preface
1. The completeness of the reals
2. Null sets
3. The Lebesgue integral on R
4. The Lebesgue integral on Rk
5. The convergence theorems
6. Measurable functions and Lebesgue measure
7. The spaces Lp
Appendix: the elements of topology
Solutions
References
Index.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×